Frequency Generator \& Integrated Buffers for PENTIUM/Pro ${ }^{\text {TM }}$ \& K6

Recommended Application:

VIA PM133 chipset
Output Features:

- 2-CPUs @ 2.5V
- 5-SDRAM @ 3.3V
- 3-PCI @ 3.3V,
- 1-48MHz, @ 3.3V fixed.
- 2-REF @ 3.3V, 14.318MHz.

Features:

- Up to 133 MHz frequency support
- Support power management: PCI_STOP \& CLK_STOP
- Spread spectrum for EMI control (-0.5% down spread).
- Uses external 14.318 MHz crystal
- FS pins for frequency select

Key Specifications:

- CPU-PCI Skew: 1-4ns
- PCI-PCI Skew: $\pm 500 \mathrm{ps}$
- CPU-CPU Skew: $\pm 175 \mathrm{ps}$
- CPU Jitter: 250ps (cyc-cyc)
- PCI Jitter: 500ps (cyc-cyc)

28-Pin SSOP/TSSOP

* Internal Pull-up Resistor of 120 K to VDD

1. These pin will have 2 X drive strength
2. FS1 is a pull down

Block Diagram

Frequency Select

FS1	FS0	CPUCLK	PCICLK	Down Spread
0	0	66.66	33.33	-0.5%
0	1	100.00	33.33	-0.5%
1	0	97.00	32.33	-0.5%
1	1	133.33	33.33	-0.5%

General Description

The ICS9248-185 is the single chip clock solution for Notebook designs using the 440BX or the VIA Apollo Pro 133 style chipset. It provides all necessary clock signals for such a system. The ICS9248-185 provides CPU and PCI clocks with continous spread spectrum. The ICS9248-185 employs a proprietary closed loop design, which tightly controls the percentage of spreading over process and temperature variations.

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
$1,6,15,18$,	VDD	PWR	Power supply, nominal 3.3V
2	REF0	OUT	14.318 Mhz reference clock.This REF output is the STRONGER buffer for ISA BUS loads
$3,8,13$, 19,24	GND	PWR	Ground
4	X1	IN	Crystal input, has internal load cap (36pF) and feedback resistor from X2
5	X2	OUT	Crystal output, nominally 14.318MHz.
7	PCICLK_F	OUT	Free running PCI clock not affected by PCI_STOP\# for power management.
9	FS11,2	IN	Frequency select pin. Latched Input.
	PCICLK0	OUT	PCI clock output. Synchronous to CPU clocks with 1-4ns skew (CPU early)
10	BUFFER IN	IN	Input to Fanout Buffers for SDRAM outputs.
11	PCICLK1 with 1-4ns skew (CPU early)		
12	PCI_STOP\#	OS0	PCI clock output. Synchronous to CPU clocks win

Notes:

1: Internal Pull-up Resistor of 120 K to 3.3 V on indicated inputs
2: Bidirectional input/output pins, input logic levels are latched at internal power-on-reset. Use 10Kohm resistor to program logic Hi to VDD or GND for logic low.

ICS9248-185

Absolute Maximum Ratings

Supply Voltage	5.5 V
Logic Inputs.	GND -0.5 V to VDD +0.5 V
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Case Temperature	$115^{\circ} \mathrm{C}$
Storage Temperature .	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

$\mathrm{T}_{\mathrm{A}}=0-70 \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%, \mathrm{~V}_{\mathrm{DDL}}=2.5 \mathrm{~V}+/-5 \%$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	$\mathrm{V}_{\text {IH }}$		2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		$\mathrm{V}_{\text {SS }}-0.3$		0.8	V
Operating Supply Current	$\mathrm{I}_{\text {DD3.30P }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Select @ 66MHz		63	150	mA
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Select @ 100MHz		67	170	
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Select @ 133MHz		73	180	
Powerdown Current	$\mathrm{I}_{\text {DDPD }}$	$\mathrm{CL}=0 \mathrm{pF}$; Input address VDD or GND			600	$\mu \mathrm{A}$
Input Frequency	F_{i}	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	12	14.318	16	MHz
Input Capacitance ${ }^{1}$	$\mathrm{C}_{\text {IN }}$	Logic Inputs			5	pF
	$\mathrm{C}_{\text {INX }}$	X1 \& X2 pins	27	36	45	pF
Clk Stabilization ${ }^{1}$	$\mathrm{T}_{\text {STAB }}$	From $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ to 1% target Freq.			5.5	ms
Skew ${ }^{1}$	$\mathrm{t}_{\text {CPU-PCII }}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$	1	28	4	ns

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Electrical Characteristics - CPU

$\mathrm{T}_{\mathrm{A}}=0-70 \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 2 \mathrm{~A}}$	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$	2.4	2.85		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 2 \mathrm{~A}}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.31	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		-45	-27	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	22	29		mA
Rise Time 1	$\mathrm{t}_{\mathrm{r} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		0.9	1.6	ns
Fall Time 1	$\mathrm{t}_{\mathrm{f} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1	1.6	ns
Duty Cycle 1	$\mathrm{~d}_{\mathrm{t} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	50	55	$\%$
Skew window 1	$\mathrm{t}_{\mathrm{sk2A}}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$		35	175	ps
Jitter, Cycle-to-cycle 1	$\mathrm{t}_{\mathrm{icyc-cyc2A}}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$ Dram not running, CPU=66.6MHz		123	150	ps
Jitter, Cycle-to-cycle 1	$\mathrm{t}_{\mathrm{jcyc-cyc2A}}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$ Dram running		119	250	ps

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Electrical Characteristics - CPU

$\mathrm{T}_{\mathrm{A}}=0-70 \mathrm{C} ; \mathrm{VDDL}=2.5 \mathrm{~V},+/-5 \% ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 2 \mathrm{~A}}$	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$	2	2.3		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 2 \mathrm{~A}}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.31	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		-39	-21	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	22	26		mA
Rise Time 1	$\mathrm{t}_{\mathrm{r} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		0.96	1.6	ns
Fall Time 1	$\mathrm{t}_{\mathrm{f} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.06	1.6	ns
Duty Cycle 1	$\mathrm{~d}_{\mathrm{t} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$	45	50.3	55	$\%$
Skew window 1	$\mathrm{t}_{\mathrm{sk2A}}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$		35	175	ps
Jitter, Cycle-to-cycle 1	$\mathrm{t}_{\mathrm{jcyc-cyc} 2 \mathrm{~A}}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$ Dram not running		123	150	ps
Jitter, Cycle-to-cycle 1	$\mathrm{t}_{\mathrm{jcyc-cyc2A}}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$ Dram running		119	250	ps

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Electrical Characteristics - PCI

$\mathrm{T}_{\mathrm{A}}=0-70 \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VDDL}=2.5 \mathrm{~V},+/-5 \% ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4	3		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 1}$	$\mathrm{I}_{\mathrm{OL}}=9.4 \mathrm{~mA}$		0.2	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		-62	-33	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 1}$	$\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	38	43		mA
Rise Time 1	$\mathrm{t}_{\mathrm{r} 1}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		1.51	2	ns
Fall Time 1	$\mathrm{t}_{\mathrm{f} 1}$	$\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.47	2	ns
Duty Cycle 1	$\mathrm{~d}_{\mathrm{t} 1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	50.1	55	$\%$
Skew window						
	$\mathrm{t}_{\mathrm{sk} 1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$		58	500	ps
Jitter, Cycle to cycle	$\mathrm{t}_{\mathrm{cycle}}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$		145	500	ps

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Electrical Characteristics - SDRAM

$\mathrm{T}_{\mathrm{A}}=0-70 \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VDDL}=2.50 \mathrm{~V},+/-5 \% ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 3}$	$\mathrm{I}_{\mathrm{OH}}=-28 \mathrm{~mA}$	2.4	3		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 3}$	$\mathrm{I}_{\mathrm{OL}}=19 \mathrm{~mA}$		0.3	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 3}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		-69	-46	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 3}$	$\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	32	42		mA
Rise Time 1	$\mathrm{~T}_{\mathrm{r} 3}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		1.07	1.3	ns
Fall Time 1	$\mathrm{~T}_{\mathrm{f} 3}$	$\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.3	2	ns
Duty Cycle 1	$\mathrm{D}_{\mathrm{t} 3}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	50.8	55	$\%$
Skew window 1	$\mathrm{~T}_{\mathrm{sk} 3}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$		104	250	ps
Propagation Time						
(Buffer In to output) 1	$\mathrm{~T}_{\mathrm{sk} 3}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$			5	ns

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Electrical Characteristics - REF
$\mathrm{T}_{\mathrm{A}}=0-70 \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VDDL}=2.5 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=10-20 \mathrm{pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 5}$	$\mathrm{I}_{\mathrm{OH}}=-14 \mathrm{~mA}$	2.4	2.6		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 5}$	$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$		0.22	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 5}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		-32	-20	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 5}$	$\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	16	22		mA
Rise Time 1	$\mathrm{t}_{\mathrm{r} 5}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		2.11	4	ns
Fall Time 1	$\mathrm{t}_{\mathrm{f} 5}$	$\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		2.14	4	ns
Duty Cycle 1	$\mathrm{~d}_{\mathrm{t} 5}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	52.1	55	$\%$
Jitter, cycle to cycle 1	$\mathrm{t}_{\mathrm{jcycle} 5}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	-600	848	1000	ps

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Electrical Characteristics - 48MHz

$\mathrm{T}_{\mathrm{A}}=0-70 \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VDDL}=2.5 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=10-20 \mathrm{pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 5}$	$\mathrm{I}_{\mathrm{OH}}=-14 \mathrm{~mA}$	2.4	2.6		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 5}$	$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$		0.22	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 5}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		-32	-20	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 5}$	$\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	16	22		mA
Rise Time ${ }^{1}$	$\mathrm{t}_{\mathrm{r} 5}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		1.79	4	ns
Fall Time 1	$\mathrm{t}_{\mathrm{f} 5}$	$\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.92	4	ns
Duty Cycle 1	$\mathrm{~d}_{\mathrm{t} 5}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	50.8	55	$\%$
Jitter, cycle to cycle	$\mathrm{t}_{\mathrm{jcycle}}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$		267	500	ps

${ }^{1}$ Guaranteed by design, not 100% tested in production.

ICS9248-185

CLK_STOP\# Timing Diagram

CLK_STOP\# is an asychronous input to the clock synthesizer. It is used to turn off the CPU clocks for low power operation. CLK_STOP\# is synchronized by the ICS9248-185. The minimum that the CPU clock is enabled (CLK_STOP\# high pulse) is 100 CPU clocks. All other clocks will continue to run while the CPU clocks are disabled. The CPU clocks will always be stopped in a low state and start in such a manner that guarantees the high pulse width is a full pulse. CPU clock on latency is less than 4 CPU clocks and CPU clock off latency is less than 4 CPU clocks.

Notes:

1. All timing is referenced to the internal CPU clock.
2. CLK_STOP\# is an asynchronous input and metastable conditions may exist. This signal is synchronized to the CPU clocks inside the ICS9248-185.
3. All other clocks continue to run undisturbed.

PCI_STOP\# Timing Diagram

PCI_STOP\# is an asynchronous input to the ICS9248-185. It is used to turn off the PCICLK clocks for low power operation. PCI_STOP\# is synchronized by the ICS9248-185 internally. The minimum that the PCICLK clocks are enabled (PCI_STOP\# high pulse) is at least 10 PCICLK clocks. PCICLK clocks are stopped in a low state and started with a full high pulse width guaranteed. PCICLK clock on latency cycles are only three rising PCICLK clocks, off latency is one PCICLK clock.

Notes:

1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS9248 device.)
2. PCI_STOP\# is an asynchronous input, and metastable conditions may exist. This signal is required to be synchronized inside the ICS9248.
3. All other clocks continue to run undisturbed.
4. CLK_STOP\# is shown in a high (true) state.

ICS9248-185

Shared Pin Operation Input/Output Pins

The I/O pins designated by (input/output) serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm $(10 \mathrm{~K})$ resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period.

Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

Fig. 1

SYMBOL	In MillimetersCOMMON DIMENSIONS		In Inches COMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
A	--	2.00	--	. 079
A1	0.05	--	. 002	--
A2	1.65	1.85	. 065	. 073
b	0.22	0.38	. 009	. 015
c	0.09	0.25	. 0035	. 010
D	SEE VARIATIONS		SEE VARIATIONS	
E	7.40	8.20	. 291	. 323
E1	5.00	5.60	. 197	. 220
e	0.65 BASIC		0.0256 BASIC	
L	0.55	0.95	. 022	. 037
N	SEE VARIATIONS		SEE VARIATIONS	
α	0°	8°	0°	8°

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.90	10.50	.390	.413

Reference Doc.: JEDEC Publication 95, MO-150
10-0033
209 mil SSOP

Ordering Information

ICS9248yF-185-T
Example:

ICS, AV = Standard Device

SYMBOL	In Millimeters COMMON DIMENSIONS		In Inches COMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
A	--	1.20	--	.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.19	0.30	.007	.012
c	0.09	0.20	.0035	.008
D	SEE VARIATIONS		SEE VARIATIONS	
E	6.40 BASIC		0.252 BASIC	
E1	4.30	4.50	.169	.177
e	0.65 BASIC		0.0256 BASIC	
L	0.45	0.75	.018	.030
N	SEE VARIATIONS		SEE VARIATIONS	
α	0°	8°	0°	
aaa	--	0.10	--	.004

VARIATIONS

N	D mm.$$		D (inch)	
	MIN	MAX	MIN	MAX
28	9.60	9.80	.378	.386

10-0035
4.40 mm. Body, 0.65 mm. pitch TSSOP
(173 mil) (0.0256 Inch)

Ordering Information

 ICS9248yG-185-TExample:

