

Frequency Generator & Integrated Buffers for PENTIUM/Pro™

General Description

The **ICS9147-14** generates all clocks required for high speed RISC or CISC microprocessor systems such as Intel PentiumPro. Two bidirectional I/O pins (FS1,FS2) are latched at power-on to the functionality table, with FS0 selectable in real-time to toggle between conditions.

High drive PCICLK and SDRAM outputs typically provide greater than 1 V/ns slew rate into 30 pF loads. CPU outputs typically provide better than 1V/ns slew rate into 20 pF loads while maintaining $50\pm5\%$ duty cycle. The REF clock outputs typically provide better than 0.5V/ns slew rates. Separate buffers supply pins VDDL1 allow for 3.3V or reduced voltage swing (from 2.9 to 2.5V) for CPU (0:3) and IOAPIC outputs.

Block Diagram

Power Groups

VDD1 = REF (0:1), X1, X2, 24MHz, 48MHz VDD2 = PCICLKF, PCICLK(0:5) VDD3 = SDRAM (0;11) VDDL1 = CPUCLK (0:3)

9147-14 Rev B 071897P

Features

- Four copies of CPU clock
- Twelve SDRAM (3.3V TTL), usable as AGP clocks
- Seven copies of PCICLK clock (synchronous with CPU clock/2 or CPU/2.5 for 75 and 83.3 MHz CPU)
- CPU clocks to PCICLK clocks skew 1-4ns, center 2.6ns.
- One IOAPIC clock @14.31818MHz
- Two copies of Ref. clock @14.31818MHz
- Ref. 14.31818MHz Xtal oscillator input
- Separate V_{DDL1} for four CPU and single IOAPIC output buffers to allow 2.5V output (or Std. Vdd)
- One each 48/24MHz (3.3VTTL)
- 3.3V outputs: SDRAM, PCI, REF, 48/24MHz.
- 2.5V or 3.3V outputs: CPU, IOAPIC.
- 20 ohm CPU clock output impedance
- 20 ohm PCI clock output impedance
- 1.5ns rise time (30 pF loading)
- $\pm 250 \text{ ps CPU}$, PCI clock skew
- 350ps (cycle by cycle) CPU jitter
- 2ms Power up clock stable time
- 45-55% Clock duty cycle
- 48 pin 300 mil SSOP package
- 3.0V-3.7V supply range w/2.5V compatible outputs

Pin Configuration

48-Pin SSOP

* Internal Pull-up Resistor of 300K to 3.3V on indicated inputs

Pentium is a trademark of Intel Corporation

ICS reserves the right to make changes in the device data identified in this publication without further notice. ICS advises its customers to obtain the latest version of all device data to verify that any information being relied upon by the customer is current and accurate.

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1	VDD1	PWR	Ref (0:2), XTAL, 24MHz, 48MHz power supply
2	REF0	OUT	14.318 Mhz reference clock.
3,9,22,33,39,45	GND	PWR	Ground
4	X1	IN	Crystal input has internal load cap and feedback resistor from X2
5	X2	OUT	Crystal output nominally 14.318MHz. Has internal load cap
16,23,24, 27,48	N/C	-	Pins are not internally connected
6,14	VDD2	PWR	Supply for PCICLK_F and PCICLK (0:5)
7	PCICLK_F	OUT	Free running PCI clock
/	FS1*	IN	Frequency select pin. *
Q	PCICLK0	OUT	PCI clock output.
0	FS2*	IN	Frequency select pin. *
10, 11, 12, 13	PCICLK(1:4)	OUT	PCI clock outputs
15	PCICLK5	OUT	PCI clock output.
17, 18, 20, 21, 28, 29, 31, 32, 34, 35,37,38	SDRAM (0:11)	OUT	SDRAM clock outputs.
19,30,36	VDD3	PWR	Supply for SDRAM (0:11)
25	24MHz	OUT	24MHz output clock
26	48MHz	OUT	48MHz output clock
20	FS0*	IN	Frequency select pin
40, 41, 43, 44	CPUCLK(0:3)	OUT	CPU clock outputs, powered by VDD1
42	VDDL1	PWR	Supply for CPU (0:3) and IOAPIC clock, can be 2.5 or 3.3V
46	REF1	OUT	14.318 Mhz reference clock.
47	IOAPIC	OUT	IOAPIC clock output. Powered by VDDL1.

* Internal Pull-up Resistor of 120K to 3.3V on indicated inputs

Functionality 3.3v±10% 0-70°c Crystal (X1, X2 = 14.3181MHz

FS2	FS1	FS0	CPU, SDRAM(MHz)	PCICLK (MHz)	REF, IOAPIC (MHz)	
0	0	0	50.0	25.0	14.318	
0	0	1	75.0	32.0	14.318	
0	1	0	33.3	16.65	14.318	
0	1	1	68.5	34.25	14.318	
1	0	0	55.0	27.5	14.318	
1	0	1	75.0	37.5	14.318	
1	1	0	60.0	30.0	14.318	
1	1	1	66.8	33.4	14.318	

Absolute Maximum Ratings

Supply Voltage	7.0 V
Logic Inputs	GND –0.5 V to V_{DD} +0.5 V
Ambient Operating Temperature	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics at 3.3V

 V_{DD} = 3.0 – 3.7 V, T_A = 0 – 70° C unless otherwise stated

DC Characteristics								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS		
Input Low Voltage	VIL	Latched inputs	-	-	0.8	V		
Input High Voltage	Vih	Latched inputs	2.0	-	-	V		
Output Low Current ¹	Ioli	VOL=0.8V; for SDRAM, PCICLK	19.0	30.0	-	mA		
Output High Current ¹	Іоні	VOH=2.0V; for SDRAM PCICLK	-	-26.0	-16.0	mA		
Output Low Current ¹	IOL2	VOL=0.8V; 24, 48 CLKs, CPU, REF & IOAPIC	16.0	25.0	-	mA		
Output High Current ¹	Іон2	VOH=2.0V; 24, 48 CLKs, CPU, REF & IOAPIC	-	-22.0	-14.0	mA		
Output Low Current ¹	IOL3	VOL=0.8V; for CPU at VDDL = 2.5V	10.0	18.0	-	mA		
Output High Current ¹	Іонз	VOH = $1.7V$; for CPU at VDDL = $2.5V$	-	-14.0	-8.0	mA		
Output Low Voltage ¹	Voli	IOL = 10mA; for PCICLK, SDRAM	-	0.3	0.4	V		
Output High Voltage ¹	Voh1	IOH = -10mA; for SDRAM, PCICLK	2.4	2.8	-	V		
Output Low Voltage ¹	Vol2	IOL = 8mA; for fixed CLKs, CPU, REF & IOAPIC	-	0.3	0.4	V		
Output High Voltage ¹	Voh2	IOH = -8mA; for fixed CLKs, CPU, REF & IOAPIC	2.4	2.8	-	V		
Output Low Voltage ¹	Vol3	IOL = 5 mA; for CPU at VDDL = 2.5 V	-	0.25	0.4	mA		
Output High Voltage ¹	Vон3	IOH = -5mA; for CPU at $VDDL = 2.5V$	2.1	2.25	-	mA		
Supply Current	Idd	@66.6 MHz; all outputs unloaded	-	70	120	mA		
Pullup Resistor ¹	R pU1	FS0, FS1 FS2 inputs	150	300	450	K ohm		

Note 1: Parameter is guaranteed by design and characterization. Not 100% tested in production.

Electrical Characteristics at 3.3V

 V_{DD} = 3.0 – 3.7 V, T_A = 0 – 70 $^{\circ}\,C\,$ unless otherwise stated

AC Characteristics								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS		
Rise Time ¹	Tr1	20pF load, 0.8 to 2.0V CPU, IOAPIC, Fixed & REF	-	0.9	1.5	ns		
Fall Time ¹	Tfl	20pF load, 2.0 to 0.8V CPU, IOAPIC, Fixed & REF	-	0.8	1.4	ns		
Rise Time ¹	Tr2	20pF load, 20% to 80% CPU, IOAPIC, Fixed & REF	-	1.5	2.5	ns		
Fall Time ¹	Tf2	20pF load, 80% to 20% CPU, IOAPIC, Fixed& REF	-	1.4	2.4	ns		
Rise Time ¹	Tr3	20pF load, 0.8 to 2.0V PCI, SDRAM	-	0.9	1.5	ns		
Fall Time ¹	Tf3	20pF load, 2.0 to 0.8V PCI, SDRAM	-	0.8	1.4	ns		
Rise Time ¹	Tr4	20pF load, 0.4 to 2.0V , CPU and IOAPIC with VDDL = $2.5V$	-	-	3.0	ns		
Fall Time ¹	Tf4	20pF load, 2.0 to 0.4V, CPU and IOAPIC with VDDL = 2.5V	-	-	2.0	ns		
Duty Cycle ¹	Dt	20pF load @ VOUT=1.4V All clocks except REF	45	50	55	%		
Duty Cycle ¹	Dt2	20pF load @ VOUT=1.4V REF outputs	40	50	60	%		
Jitter, One Sigma ¹	Tjis1	CPU & PCICLK Clocks; Load=20pF, SDRAM; Load = 30pF	-	50	150	ps		
Jitter, Absolute ¹	Tjab1	CPU & PCICLK Clocks; Load=20pF, SDRAM; Load = 30pF	-250	-	250	ps		
Jitter, Cycle to Cycle	Tjc-c	CPU	-	200	350	ps		
Jitter, One Sigma ¹	Tjis2	Fixed CLK; Load=20pF	-	1	3	%		
Jitter, Absolute ¹	Tjab2	Fixed CLK; Load=20pF	-5	2	5	%		
Input Frequency ¹	ıt Frequency ¹ Fi		12.0	14.318	16.0	MHz		
Logic Input Capacitance ¹	Cin	Logic input pins	-	5	-	pF		
Crystal Oscillator Capacitance ¹	Cinx	X1, X2 pins	-	18	-	pF		
Power-on Time ¹	ton	From VDD=1.6V to 1st crossing of 66.6 MHz VDD supply ramp < 40ms	-	2.5	4.5	ms		
Clock Skew ¹	Tsk1	CPU to CPU or PCI to PCI; Load=20pF; @1.4V (Same VDD)	-	150	250	ps		
Clock Skew ¹	Tsk2	SDRAM to SDRAM; Load=20pF; @1.4V	-	300	500	ps		
Clock Skew ¹	Tsk3	CPU to PCICLK; Load=20pF; @1.4V (CPU is early)	1	2.1	4	ns		

Note 1: Parameter is guaranteed by design and characterization. Not 100% tested in production.

Shared Pin Operation -Input/Output Pins

Pins 7, 8 and 26 on the **ICS9147-14** serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 4-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm(10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period. Figs. 1 and 2 show the recommended means of implementing this function. In Fig. 1 either one of the resistors is loaded onto the board (selective stuffing) to configure the device's internal logic. Figs. 2a and b provide a single resistor loading option where either solder spot tabs or a physical jumper header may be used.

These figures illustrate the optimal PCB physical layout options. These configuration resistors are of such a large ohmic value that they do not effect the low impedance clock signals. The layouts have been optimized to provide as little impedance transition to the clock signal as possible, as it passes through the programming resistor pad(s).

Fig.1

Fig. 2a

Fig. 2b

SSOP Package

SYMBOL	COMMON DIMENSIONS			VARIATIONS	D			Ν
	MIN.	NOM.	MAX.		MIN.	NOM.	MAX.	
А	.095	.101	.110	AC	.620	.625	.630	48
A1	.008	.012	.016					
A2	.088	.090	.092					
В	.008	.010	.0135					
С	.005	-	.010					
D	See Variations							
Е	.292	.296	.299					
e	0.025 BSC							
Н	.400	.406	.410					
h	.010	.013	.016					
L	.024	.032	.040					
N	See Variations]				
~	0°	5°	8°					
X	.085	.093	.100					

Ordering Information

ICS9147F-14

7

ICS reserves the right to make changes in the device data identified in this publication without further notice. ICS advises its customers to obtain the latest version of all device data to verify that any information being relied upon by the customer is current and accurate.