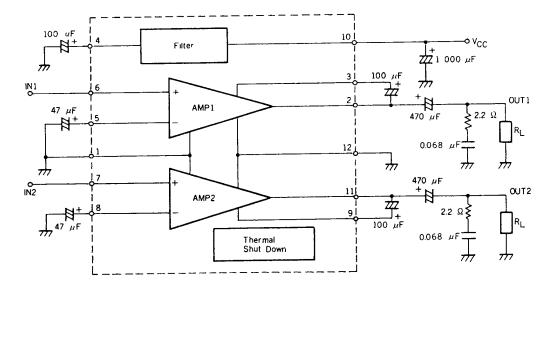
BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC1277H$

4.2 W DUAL AUDIO POWER AMPLIFIER

DESCRIPTION

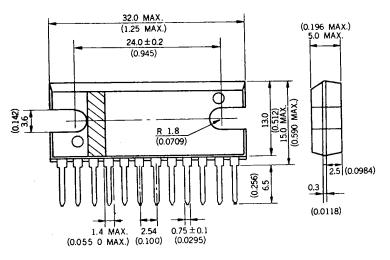
The μ PC1277H is a dual audio power amplifier designed for a stereo radio cassette and in a 12-pin power single in line plastic package.

The μ PC1277H has two audio power amplifiers and each of the two provides 4.2 W output power at 12 V/4 ohms.


FEATURES

4.2 W/ch (TYP.)	V_{CC} = 12 V, R _L = 4 ohms
5 W/ch (TYP.)	V_{CC} = 12 V, R _L = 3 ohms
2.2 W/ch (TYP.)	V _{CC} = 9 V, R _L = 4 ohms
3 W/ch (TYP.)	$V_{CC} = 9 V, R_L = 3 ohms$
	5 W/ch (TYP.) 2.2 W/ch (TYP.)

- Wide operating voltage range. $V_{CC} = 5$ to 16 V
- No shock noise at power supply switch on and off.
- Soft clipping wave form.
- High ripple rejection ratio. R.R.R. = 50 dB (TYP.)
- Few external components.
- Thermal shut'down circuit is built in.
- A 12-pin power SIP can easily be mounted on PCB and a external heat sink can easily be attached.


12 parts

BLOCK DIAGRAM

6427525 N E C ELECTRONICS INC

PACKAGE DIMENSIONS in millimeters (inches)

72C 08667 D T-74-05-01

CONNECTION DIAGRAM

Pin No.	Connection			
1	GND (Input)			
2	Output 1			
3	Boot Strap 1			
4	Filter			
5	NFB 1			
6	Input 1			
7	Input 2			
8	NFB 2			
9	Boot Strap 2			
10	Vcc			
11	Output 2			
12	GND (Output)			

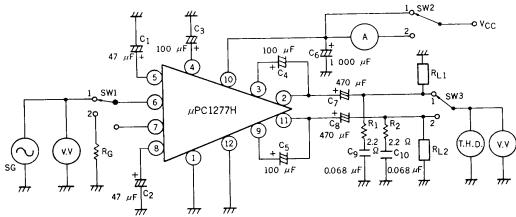
ABSOLUTE MAXIMUM RATINGS (Ta = 25 $^{\circ}$ C)

Supply Voltage (No Signal)	V _{CC1}	20	v
Supply Voltage (Operating)	V _{CC2}	16	V
Allowable Power Dissipation	PD	13*	W
Operating Temperature	Topt	-20 to +75	°C
Storage Temperature	T _{stg}	-40 to +150	°C
	* 100 × 100 ×	2 mm³ Al heat sink	

RECOMMENDED OPERATING CONDITIONS (Ta = 25 °C)

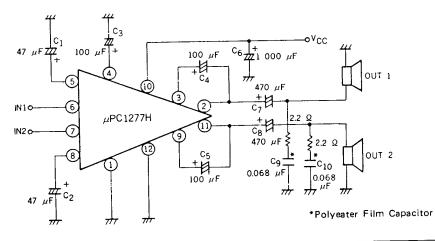
Supply Voltage	V _{CC}	5 to 12 to 16	V
Load Impedance	RL	3 to 4 to 8	ohms

ELECTRICAL CHARACTERISTICS

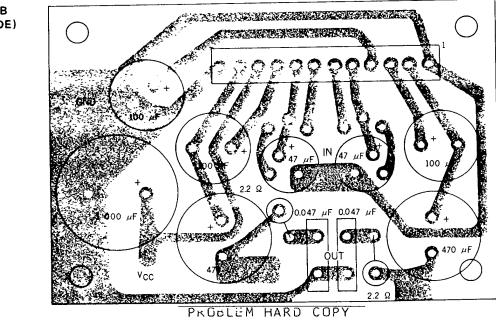

$\begin{pmatrix} V_{CC} = 12 \text{ V}, \text{ } \text{R}_{L} = 4 \text{ ohm, } \text{f} = 1 \text{ kHz, } \text{Ta} = 25 \text{ }^{\circ}\text{C}, \\ 100 \text{ x} 100 \text{ x} 2 \text{ mm} \text{ Al Panel Heat Sink} \end{pmatrix}$

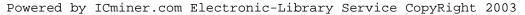
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION
Circuit Current	ICC	20	45	90	mA	No Signal
Voltage Gain	Av	42	45	48	dB	P _o = 1 W
Output Power	P _{o1}	1.8	2.2		w	T.H.D. = 10 % V _{CC} = 9 V, R _L = 4 ohm
	P ₀₂	2.5	3		w	T.H.D. = 10 % V _{CC} = 9 V, R _L = 3 ohm
	P _{o3}	3.2	4.2		w	T.H.D. = 10 % V _{CC} = 12 V, R _L = 4 ohm
	P _{o4}	4	5		w	T.H.D. = 10 % V _{CC} = 12 V, R _L = 3 ohm
Total Harmonic Distortion	T.H.D.	1	0.2	1	%	P ₀ = 1 W
Output Noise Voltage	NL		0.6	2	mVr.m.s.	R _G = 10 kohm
Cross Talk	С.Т.	45	55		dB	P _o = 1 W other ch. R _G = 10 kohm
Channel Balance	Ch. B.	-2	0	+2	dB	P _o = 1 W
Ripple Rejection	R.R.	40	50		dB	R _G = 0, f = 100 Hz v = 0.3 Vr.m.s.
Input Impedance	Zin	30	50		kohm	

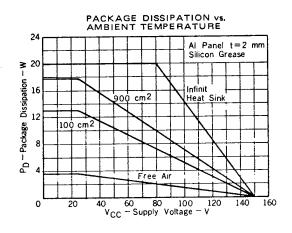
6427525 N E C ELECTRONICS INC

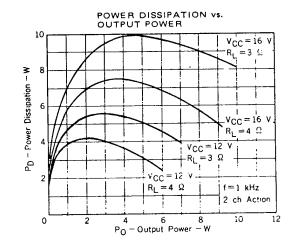

72C 08668 DT-74-05-01

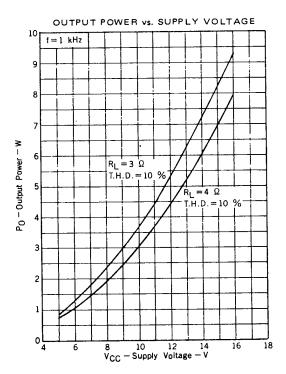
TEST CIRCUIT




SWITCH POSITION	ITEM	SYMBOL	SW 1	SW 2	SW 3
(AMP 1 : TEST)	Circuit Current	1cc	2	2	1
	Voltage Gain	A _v	1	1	1
	Output Power	۴o	1	1	1
	Total Harmonic Distortion	T.H.D.	1	1	1
	Output Noise Voltage	NL	2	1	1






6427525 N E C ELECTRONICS INC

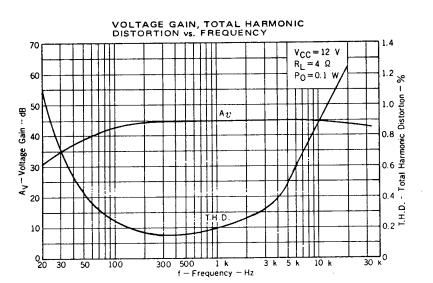
72C 08669 DT=74-05-01

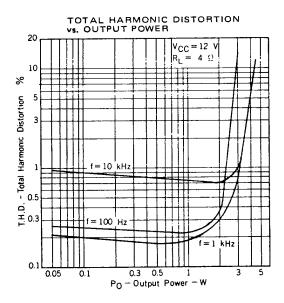
TYPICAL CHARACTERISTICS (Ta = 25 $^{\circ}$ C)

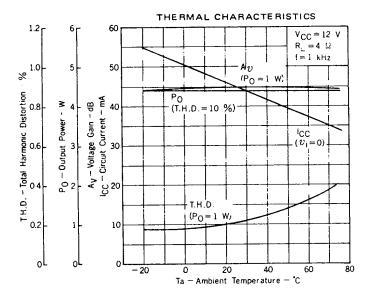
2.4 80 r 60 R_L = 4 € f = 1 kHz % Harmonic Distortion -2.0 70 50 U_{CC} , $U_{I} = 0;$ Æ අ 40 1.6 60 er Gain 5 50 Voltage 8 1.2 $A_{U}(P_{0}=0.1 \text{ W})$ ŝ Circuit - Total 20 0.8 40 ₹ <u>ខ</u> T.H.D. 10 0.4 30 $T.H.D.(P_0 = 0.1 W)$ ٥٢ 20 04 10 12 14 16 18 8 6 V_{CC} - Supply Voltage - V

SUPPLY VOLTAGE CHARACTERISTICS

Powered by ICminer.com Electronic-Library Service CopyRight 2003


. .


•••••


A . .

6427525 N E C ELECTRONICS INC

72C 08670 DT-74-05-01

- Note 1) An inverse connection of the supply voltage pin and the GND pin or a connection of the output pin and either the supply voltage line or GND sometimes causes μPC1277H to break down immediately. Handle it with care.
- Note 2) GND pins #1 (input side GND) and #12 (output side GND) are separated inside of the IC, therefore connect them on a PCB. Make the input and output common impedance least when designing a PCB.
- Note 3) Recommend a polyeater Film capacitor as a phase compasated capacitance $(0.068 \ \mu F)$. Choose larger capacity in case that a long power supply line on a PCB causes the IC a parasitic oscillation.