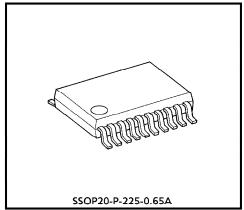
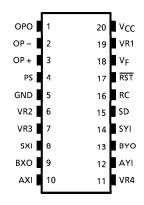
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

T A 8 5 5 3 F N


G-FORCE SENSOR AMP IC

TA8553FN is a Bipolar Monolithic Integrated Circuit for use of G-Force Sensor Amp.

This device detect G-Force by connect Sensor extenally.

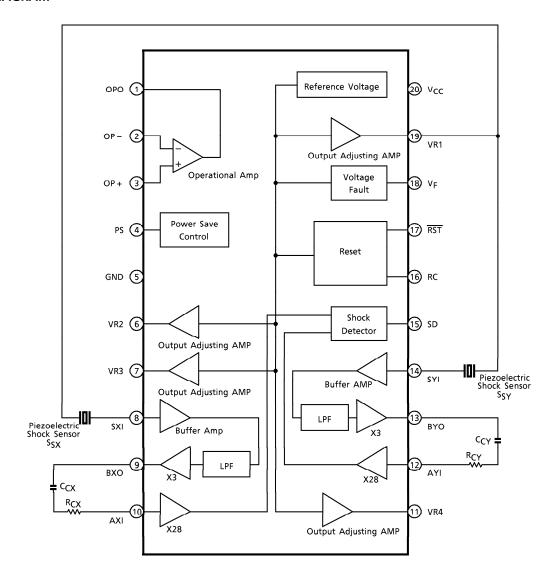

FEATURE

- Supply Voltage: +5V
- This device detect by external G-Force Sensor. And can detect both X-direction and Y-direction.
- This device could set follows, **Total Gain** Cut off Frequency
- This device include follows Block. Reference Voltage Circuit **Reset Circuit** Voltage Fault Detector Op-Amp

- Weight: 0.14g (Typ.)
- Reference Voltage used Band-Gap Circuit and superior Temperature Characteristics.
- Powersave Mode is a Low Power Mode and act only Reference Circuit, Reset Circuit.
- Package: SSOP20-P-225A (0.65mm pitch)

PIN CONNECTION (TOP VIEW)

961001EBA2


- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

BLOCK DIAGRAM


PIN CONNECTION

Pin No.	PIN NAME	DESCRIPTION
1	ОРО	Op-Amp Output
2	OP –	Op-Amp Input(-)
3	OP+	Op-Amp Output(+)
4	PS	Powersave Input (H : Powersave Mode)
5	GND	Ground
6	VR2	Reference Voltage 2 Output
7	VR3	Reference Voltage 3 Output
8	SXI	Output of X-direction Sensor Amp
9	ВХО	LPF Output of X-direction Sensor
10	AXI	Input of 28 Multiplicator for X-direction Sensor
11	VR4	Reference Voltage Output (= 1/2 Voltage of VR1)
12	AYI	Input of 28 Multiplicator for Y-direction Sensor
13	BYO	LPF Output of X-direction Sensor
14	SYI	Output of X-direction Sensor Amp
15	SD	Shock Detector Output (H : Shock being given)
16	RC	Reset Time Setting Terminal
17	RST	Reset Output (L : Reset active)
18	V _F	Voltage Fault Detector Input (H : Voltage fault)
19	VR1	Reference Voltage Output
20	V _{CC}	Supply Voltage

CIRCUIT OPERATION

1. Sensor Amp Block

The structure of Sensor Amp. Block is as follows. This block outputs "L" at SD terminal, if it detects shock signal from the shock sensor.

(1) The method of setting Cut-off frequency of high pass filter.

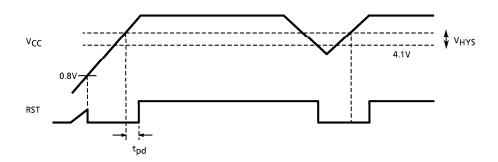
This filter's characteristics is defined by $R_{C} \cdot C_{C}$ Cut-off frequency f_{H} are defined by the following equations.

$$f_H = \frac{1}{2 \cdot \pi \cdot C_C (R_C + 15000)}$$
 (Hz)

(2) The method of setting total gain.

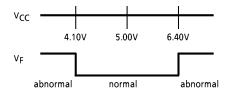
Total gain is defined by R_C. Gain G are defined by the following equation.

$$G = \frac{70 \times 15000}{15000 + R_C} \qquad (V/V)$$


2. Reference Voltage Block

Reference Voltage Circuit built in this IC outputs the voltage shown in the following table. It is made of Band-gap circuit. So we can get thermally stable output.

Parameter	Output Voltage (typ value√Ta = 25°C)
VR1	3.20
VR2	4.00
VR3	0.80
VR4	1.60 (1 / 2 Voltage of VR1)


3. Reset Block

The function of Reset circuit is shown as follows.

4. Supply Voltage Fault Detection Block.

It outputs "H" at VF terminal in the case of detecting abnormal voltage.

5. Powersave Mode

To input "L" level signal at PS terminal. Powersave mode is active and this IC is put in lower power dissipation state. The terminals in the following table are in High-Impedance.

* Output Terminals which is put in High Impedance in Powersave Mode.

PIN No.	TERMINAL
1	ОРО
6	VR2
7	VR3
9	вхо
13	BYO
15	VR4
18	V _F
19	VR1

SPECIFICATION

1. Absolute Maximum Ratings (Ta = 25°C)

PARAMETER	SYMBOL	RATING	UNIT
Power Supply Voltage	Vcc	7	V
Input Voltage Range	VIN	-0.3~V _{CC} +0.3	٧
Power Dissipation	PD	960	mW
Storage Temperature	T _{stg}	- 55∼150	°C

2. Recommend Operating Conditions

PARAMETER	SYMBOL	RATING	UNIT
Power Supply Voltage	Vcc	5V ± 10%	V
Operating Temperature	T _{opr}	- 40∼85	°C

ELECTRICAL CHARACTERISTICS (Unless Otherwise Noted $V_{CC} = 5V$, $Ta = 25^{\circ}C$) 1. Supply Current

PARAMETER	SYMBOL	TEST NO.	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Current (PWSV Mode)	lccs	1	PS = "H"		1.1	1.5	mA
Supply Current	ICCD	1	PS = "L"	_	_	5	

2. Powersave Input Block

PARA	METER	SYMBOL	TEST NO.	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input	H Level	V_{IH}	_	_	3.0	_	_	
Voltage	L Level	V _{IL}	_	_	_	_	1.4	V
Threshold \	/oltage	V _{TH}	_	_	_	2.3	_	

3. Sensor Detector (1) BUFFER / LPF Block

PARAMETER	SYMBOL	TEST NO.	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Impedance	Z _{IN}	_	_	30	45	60	МΩ
LPF Cut-off Frequency	f _C	2	– 3dB	5	8.3	11.6	kHz
Output Impedance	Z _{out}	_		_	_	500	Ω
Gain	G _V	2		_	9.0	_	dB
Voltage Drop VR1 – SXI (SYI)	VR1 – SX1 (SY1)		_	- 0.6	1	0.6	V

(2) AMP/SHOCK Detector Block

PARAMETER	SYMBOL	TEST NO.	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
AMP GAIN	G_{V}	_	_	_	28.5	_	dB
Input Impedance	Z _{IN}	—	_	12	15	18	kΩ
Minimum Detected Voltage Range Converted into Input	∆V _{INp-p}	3	Buffer Amp : V _{IN} = 1KHz	12	_	20	mV _{p-p}
Shock Detecting Time	t _{SD}	_	SD Out: Open V _{IN} = 50mV f = 1kHz	_	_	1	μs
Output Sink Current	l _{sink}	_	_	0.5	_	_	mA
Output Source Current	l _{source}	_	_	_	50	_	μΑ

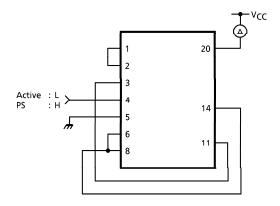
4. Reference Voltage Block

PARAMETER	SYMBOL	TEST NO.	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
VR1 Output Voltage	VR1	4	_	3.08	3.20	3.32	
VR2 Output Voltage	VR2	4	_	3.85	4.00	4.15	v
VR3 Output Voltage	VR3	4	_	0.77	0.80	0.83	v
VR4 Output Voltage	VR4	4	-	1.54	1.60	1.66	
VR1 Output Source Current	lsource1	5	_	5	_	_	Л
VR2 Output Source Current	I _{source2}	5	_	1	_	_	mA
VR3 Output Source Current	I _{source3}	5	-	_	100	_	μA
VR4 Output Source Current	I _{source4}	5	_	3	_	_	mA
VR1, 2 Output Sink Current	lsink1, 2	6	_	_	100	_	μ A
VR3 Output Sink Current	l _{sink3}	6	_	2	_	_	A
VR4 Output Sink Current	lsink4	6	_	3	_	_	mA
Temperature Variation of	$_{\Delta V_{f out}}$		_	_	_	± 100	PPM /
Output Voltage	_ · out						°C
VR1/VR2/VR3/VR4 Relative	ΔV_R			l	l _	± 1	%
Accuracy of Output Voltage	△ • K					'	70

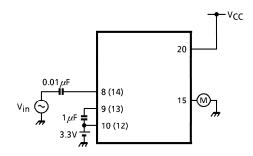
5. Reset Block

PARAMETER	SYMBOL	TEST NO.	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Reset Detecting Supply Voltage	V _{RST}	7	_	3.90	4.10	4.30	٧
Delay Time	D _T	_	$C_{RC} = 0.1 \mu F$	60	100	150	ms
Lower Limit Supply Voltage on Operation	V _{min}	_	_	_	_	0.8	V
Sink Current	l _{sink}	8	V _{OL} = 0.4V	2	_	_	mA
Source Current	l _{source}	9	V _{OH} = 4V	_	1	_	mA
Hysteresis Voltage	V_{hys}	_	_	50	100	150	mV
Response Time	T _{pd}	_	Output : Open	_	2	5	μs

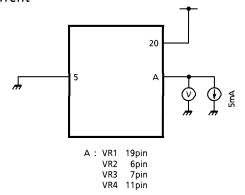
6. Power Supply Voltage Fault Detection

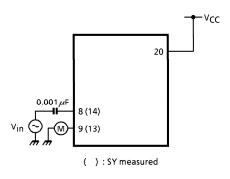

PARAMETER	SYMBOL	TEST NO.	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
L-Level Detection Voltage	V _{F (L)}	10	_	4.00	4.20	4.40	V
H-Level Detection Voltage	V _F (H)	10	_	6.00	6.30	6.60	V
Sink Current	l _{sink}	11	V _{OL} = 0.4V	0.50	_	_	m ^
Source Current	l _{source}	12	V _{OH} = 4V	0.50	_	_	mΑ
Difference between L-Level Detection Voltage and Reset Detection Voltage	∆V (V _F -V _{RST})	_	_	-	0.10		V
Responce Time	t _F	_	Output : Open	_	2	5	μs

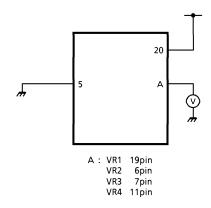
7. Operational Amplifier

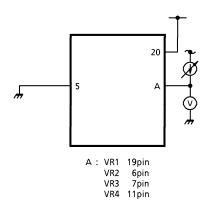

PARAMETER	SYMBOL	TEST NO.	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage Range	V _{IN}	13	_	0	_	V _C C - 1.6	V
Output Voltage	Vout	13	_	0.4	_	V _C C – 1.6	
Input Offset Voltage	V _{IO}	_	_	_	± 1	± 5	mV
Input Bias Current	Ц	_	_	_	100	300	nA
Output Source Current	l _{source}	_	_	5	_	_	mA
Output Sink Current	l _{sink}	_	_	3	_	_	
Slew Rate	SR	_	_	0.1	0.3	_	V / μ s

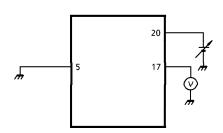
TEST CIRCUIT

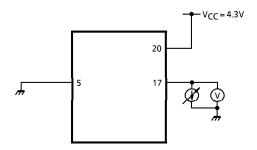

① Supply Current

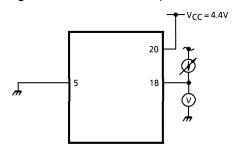

③ Minimum Detected Voltage Range Converted into Input

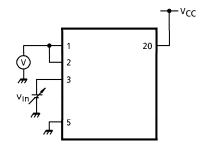

⑤ Reference voltage circuit Output source current

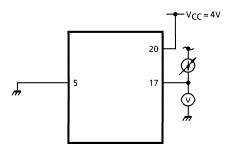

② AMP Gain, LPF Cut off Frequency

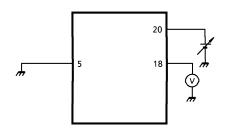

4 Reference Voltage

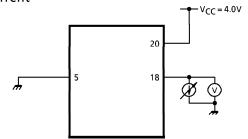

6 Reference circuit output sink current


7 Reset Detecting Voltage


Reset circuit output source current


① Voltage Fault Detection output sink current


(13) Op-Amp Input voltage Range


8 Reset circuit output sink current

10 Voltage Fault Detection output voltage

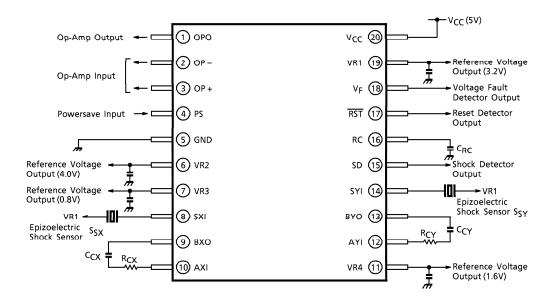
Woltage Fault Detection output source current

USAGE PRECAUTIONS

1. Processing of shock sensor signal input pins (pins 8 and 16)

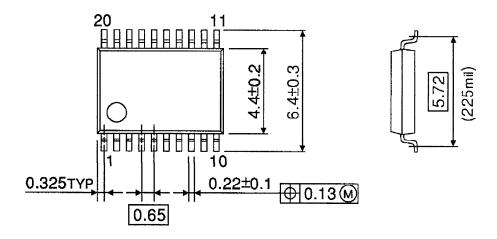
Pins 8 and 16 of the device are high-impedance input pins. Therefore, pay careful attention not to cause leakage from these to other pins. Leakage from these pins could cause the device to operate erratically.

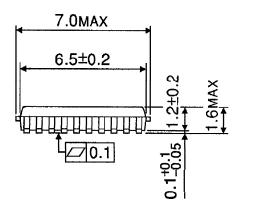
Also, make sure that the sensor and the device are connected in the shortest distance possible.

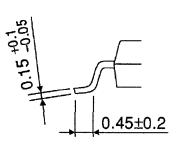

2. About V_{CC} and GND

Make sure that V_{CC} and GND are as wide as possible. Insert the power supply-to-GND bypass capacitor near the device.

3. About the sensor used


Before using a sensor connected external to the chip, carefully check it to see that its characteristics suit the device.


APPLICATION CIRCUIT



PACKAGE

SSOP20-P-225-0.65A UNIT: mm

Weight: 0.14g (Typ.)