DUAL H-BRIDGE MOTOR DRIVERS

UDN2993B LOAD SUPPLY 1 ENABLE A 2 PHASEA 3 GROUND 4 GROUND 5 OUT 1A 6 OUT 2A 7 VEA 8 DWG. No. A-12,455

ABSOLUTE MAXIMUM RATINGS at $T_J \le +150^{\circ}C$

Load Supply Voltage, V _{BB} 30 V
Logic Supply Voltage, V _{DD}
Logic Input Voltage Range, V _{PHASE} or
V _{ENABLE} 0.3 V to V _{DD} + 0.3 V
Output Current, I _{OUT} ±600 mA
Sink Driver Emitter Voltage,
V _E 1.5 V
Package Power Dissipation,
P _D See Graph
Operating Temperature Range,
T _A 20°C to +85°C

IMPORTANT: Load supply voltage must never be applied without logic supply voltage present.

T_S -55°C to +150°C

NOTE: Output current rating may be limited by chopping frequency, ambient temperature, airflow, and heat sinking. Under any set of conditions, do not exceed the specified maximum current and a junction temperature of +150°C.

Cost-effective monolithic drive electronics for bipolar stepper and dc (brush) servo motors to 30 V and 500 mA is very practical with the UDN2993B and UDN2993LB. These dual full-bridge motion control ICs integrate separate inputs, level shifting for upper power outputs, control logic, integral inductive transient protection, and source (upper) and sink (lower) drivers in an H-bridge configuration. The single-chip power IC provides improved space utilization and reliability unmatched by discrete component circuitry.

Excepting the power supply connections, the two H-bridges are independent. An ENABLE input is provided for each bridge and permits pulse-width modulation (PWM) through the use of external circuitry. PWM drive techniques provide the benefits of reduced power dissipation, improved motor performance (especially torque), and positively affect system efficiency. Separate PHASE inputs for each bridge determine the direction of current flow in the load. Additionally, each pair of (sink) emitters are terminated to package connections. This allows the use of current-sensing circuitry. Both devices incorporate an intrinsic "dead time" to preclude high crossover or cross-conduction) currents during changes in direction (phase).

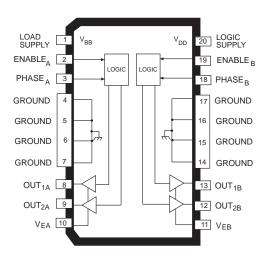
These devices are packaged in plastic DIPs (suffix B) or surface-mountable wide-body SOICs (suffix LB) with copper lead frames for optimum power dissipation without heat sinks. The lead configurations allow automatic insertion, fit standard IC sockets or printed wiring board layouts, and enable easy attachment of a heat sink for maximum power-handling capability. The heat-sink tabs are at ground potential and require no insulation.

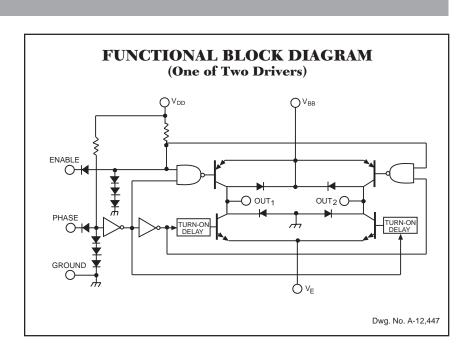
Dual full-bridge drivers with peak current ratings of ± 3 A are supplied as the UDN2998W.

FEATURES

- ±600 mA Output Current
- Output Voltage to 30 V
- Crossover Current Protection
- TTL/NMOS/CMOS Compatible Inputs
- Low Input Current
- Internal Clamp Diodes
- Automotive Capable

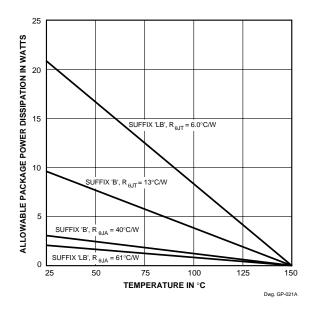
Always order by complete part number:

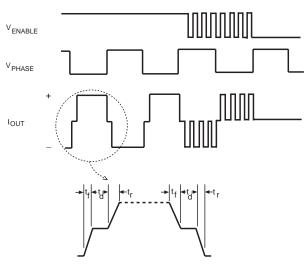

Part Number	Package		
UDN2993B	16-Pin DIP		
UDN2993LB	20-Lead Wide-Body SOIC		


Storage Temperature Range,

2993 DUAL H-BRIDGE MOTOR DRIVERS

UDN2993LB



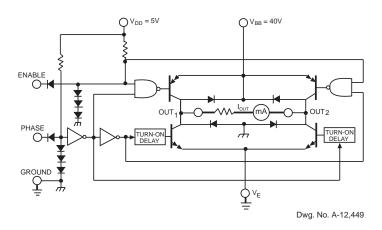

Dwg. No. A-14,340

TRUTH TABLE

Enable Input	Phase Input	Output 1	Output 2
High	High	Low	High
High	Low	High	Low
Low	High	Low	Open
Low	Low	Open	Low

Dwg. No. A-12,448

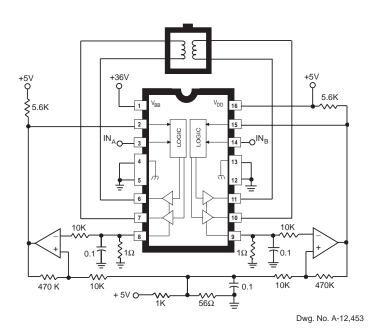
DUAL H-BRIDGE MOTOR DRIVERS


ELECTRICAL CHARACTERISTICS at T_A = +25°C, V_{BB} = 30 V, V_{DD} = 5 V, V_E = 0 V, T_J ≤ +150°C Figure 1 (unless otherwise noted).

			Limits				
Characteristic Symbol Test Cor		Test Conditions	Min.	Тур.	Max.	Units	
Output Drivers							
Operating Voltage Range	V_{BB}		10	_	30	V	
Output Leakage Current	I _{CEX}	V _{ENABLE} = 0.8 V, V _{OUT} = V _{BB} , Note 2	_	< 1.0	50	μΑ	
		V _{ENABLE} = 0.8 V, V _{OUT} = 0 V, Note 2	_	< -1.0	-50	μΑ	
Output Saturation Voltage	V _{CE(SAT)}	V _{ENABLE} = 2.4 V, I _{OUT} = 500 mA	_	1.6	1.8	V	
		V _{ENABLE} = 2.4 V, I _{OUT} = -500 mA	_	1.6	2.0	V	
Output Sustaining Voltage	V _{CE(sus)}	I _{OUT} = ±500 mA, Figure 2, Note 2	30	_	_	V	
Motor Supply Current	I _{BB(ON)}	V _{ENABLE} = 2.4 V, Outputs Open, Note 2	_	1.0	3.0	mA	
	I _{BB(OFF)}	V _{ENABLE} = 0.8 V, Outputs Open, Note 2	_	250	300	μΑ	
Source Driver Rise Time	t _r	I _{OUT} = -500 mA	_	75	_	ns	
Source Driver Fall Time	t _f	I _{OUT} = -500 mA	_	280	_	ns	
Clamp Diode Forward Voltage	V _F	I _F = 500 mA	_	1.6	1.8	V	
Control Logic (PHASE or ENA	BLE)	•			•		
Logic Input Current	I _{IN(1)}	V _{PHASE} or V _{ENABLE} = 2.4 V	_	< 1.0	10	μΑ	
	I _{IN(0)}	V _{PHASE} or V _{ENABLE} = 0.8 V	_	-200	-300	μΑ	
Logic Input Voltage	V _{IN(1)}		2.4	_	_ [V	
	V _{IN(0)}		_	_	0.8	V	
Logic Supply Current	I _{DD}		_	14	20	mA	
Turn-On Delay Time	t _{pd0}	ENABLE Input to Source Drivers	_	250	_	ns	
Turn-Off Delay Time	t _{pd1}	ENABLE Input to Source Drivers	_	500	_	ns	

NOTES: 1. Each driver is tested separately. 2. Test is performed with $V_{PHASE} = 0.8 \text{ V}$ and then repeated for $V_{PHASE} = 2.4 \text{ V}$. 3. Negative current is defined as coming out of (sourcing) the specified device pin.

TEST FIGURES


FIGURE 1

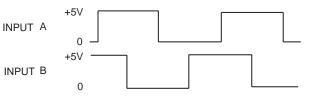
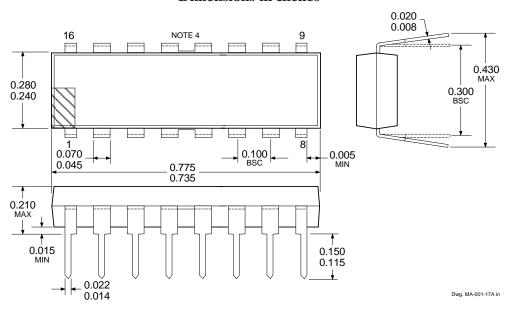
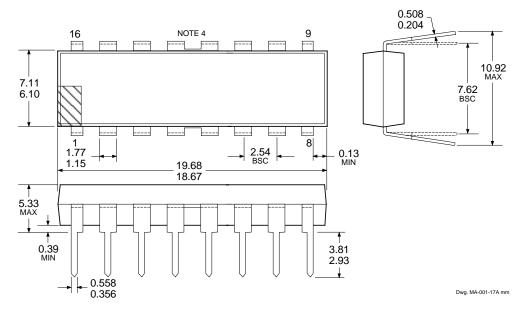


FIGURE 2

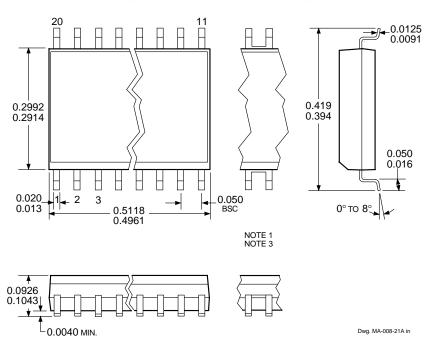
2.4V 2.4V ENABLE PHASE GROUND TURN-ON DELAY Dwg. No. A-12,450

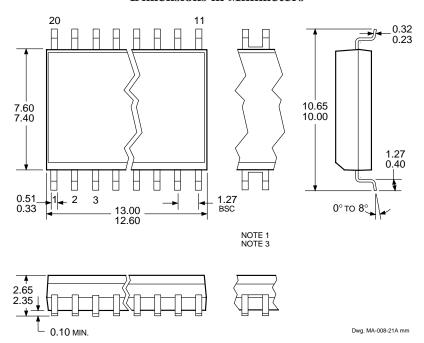
TYPICAL APPLICATION 2-PHASE BIPOLAR STEPPER MOTOR DRIVE (Chopper Mode)




Dwg. No. A-12,454

UDN2993B Dimensions in Inches


Dimensions in Millimeters (Based on 1" = 25.4 mm)


NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

- 2. Lead spacing tolerance is non-cumulative
- 3. Lead thickness is measured at seating plane or below.
- 4. Webbed lead frame. Leads 4, 5, 12, and 13 are internally one piece.

UDN2993LB Dimensions in Inches (Based on 1 mm = 0.03937")

Dimensions in Millimeters

NOTES: 1. Webbed lead frame. Leads 5, 6, 15, and 16 are internally one piece.

- 2. Lead spacing tolerance is non-cumulative.
- 3. Exact body and lead configuration at vendor's option within limits shown.

This page intentionally left blank

MOTOR DRIVERS SELECTION GUIDE

Function	Output Ratings *		Part Number †		
INTEGRATED CIRCUITS FOR BRUSHLESS DC MOTORS					
3-Phase Controller/Drivers	±2.0 A	45 V	2936 and 2936-120		
Hall-Effect Latched Sensors	10 mA	24 V	3175 and 3177		
2-Phase Hall-Effect Sensor/Controller	20 mA	25 V	3235		
Hall-Effect Complementary Output Sensor	20 mA	25 V	3275		
2-Phase Hall-Effect Sensor/Driver	900 mA	14 V	3625		
2-Phase Hall-Effect Sensor/Driver	400 mA	26 V	3626		
Hall-Effect Comp. Output Sensor/Driver	300 mA	60 V	5275		
3-Phase Back-EMF Controller/Driver	±900 mA	14 V	8902–A		
3-Phase Controller/DMOS Driver	±4.0 A	14 V	8925		
3-Phase Back-EMF Controller/Driver	±1.0 A	7 V	8984		
INTEGRATED BRIDGE DRIVERS FOR DC AND BIPOLAR STEPPER MOTORS					
PWM Current Controlled Dual Full Bridge	±750 mA	45 V	2916		
DWM Current Controlled Dual Full Bridge	±1 5 ∧	15 \/	2017		

PWM Current Controlled Dual Full Bridge	±750 mA	45 V	2916	
PWM Current Controlled Dual Full Bridge	±1.5 A	45 V	2917	
PWM Current Controlled Dual Full Bridge	±1.5 A	45 V	2918	
PWM Current Controlled Dual Full Bridge	±750 mA	45 V	2919	
Dual Full Bridge Driver	±2.0 A	50 V	2998	
PWM Current Controlled Full Bridge	±2.0 A	50 V	3952	
PWM Current Controlled Full Bridge	±1.3 A	50 V	3953	
PWM Current Controlled Dual Full Bridge	±800 mA	45 V	3961	
PWM Current Controlled Dual Full Bridge	±800 mA	30 V	3962	

OTHER INTEGRATED CIRCUIT & PMCM MOTOR DRIVERS

Unipolar Stepper Motor Quad Driver	1.8 A	50 V	2544
Unipolar Stepper-Motor Translator/Driver	1.25 A	50 V	5804
Unipolar Stepper-Motor Quad Driver	1 A	46 V	7024 and 7029
Unipolar Microstepper-Motor Quad Driver	1.2 A	46 V	7042
Voice-Coil Motor Driver	±500 mA	6 V	8932-A
Voice-Coil Motor Driver	±800 mA	16 V	8958
Voice-Coil (and spindle) Motor Driver	±350 mA	7 V	8984

^{*} Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits or over-current protection voltage limits.
Negative current is defined as coming out of (sourcing) the output.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products. Components made under military approvals will be in accordance with the approval requirements. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

[†] Complete part number includes additional characters to indicate operating temperature range and package style.