

This product is obsolete.

This information is available for your convenience only.

For more information on Zarlink's obsolete products and replacement product lists, please visit

http://products.zarlink.com/obsolete_products/

SL3145

1.6GHz NPN TRANSISTOR ARRAYS

The SL3145 is a monolithic array of five high frequency low current NPN transistors. The SL3145 consists of 3 isolated transistors and a differential pair in a 14 lead SO package The transistors exhibit typical $f\tau s$ of 1.6GHz and wideband noise figures of 3.0dB The device is pin compatible with the CA3046.

FEATURES

- f_⊤ Typically 1.6GHz
- Wideband Noise Figure 3.0dB
- V_{BE} Matching Better Than 5mV

Fig.1 Pin connections SL3145

APPLICATIONS

- Wide Band Amplifiers
- PCM Regenerators
- High Speed Interface Circuits
- High Performance Instrumentation Amplifiers
- High Speed Modems

ORDERING INFORMATION

SL3145 C MP

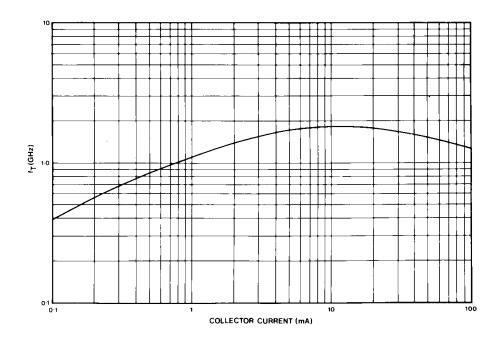


Fig.2 Transition frequency (f_T) v. collector current (V_{CB} = 2V, f=200MHz)

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed over the following test conditions (unless otherwise stated)

 $T_{amb} = 22^{\circ}C \pm 2^{\circ}C$

Characteristic	Symbol	Value			Units	Conditions
) Cymisei	Min.	Тур.	Max.		Conditions
Static characteristic						
Collector base breakdown	ВУсво	20	30		V	$Ic = 10\mu A$, $Ie = 0$
Collector emitter breakdown	LVceo	15	18		V	Ic = 1mA, IB = 0
Collector substrate breakdown (isolation)	BVcio	20	55		V	$Ic = 10\mu A$, $IR = IE = 0$
Base to isolation breakdown	ВVвю	10	20		V	$I_B = 10\mu A$, $I_C = I_E = 0$
Base emitter voltage	VBE	0.64	0.74	0.84	V	Vce = 6V, Ic = 1mA
Collector emitter saturation voltage	Vce(SAT)		0.26	0.5	V	Ic = 10mA, $IB = 1mA$
Emitter base leakage current	ІЕВО		0.1	1	μΑ	$V_{EB} = 4V$
Base emitter saturation voltage	VBE(SAT)		0.95		V	Ic = 10mA, $IB = 1mA$
Base emitter voltage difference,	ΔV be		0.45	5	mV	Vce = 6V, Ic = 1mA
all transistors expect TR1, TR2						
Base emitter voltage difference	ΔV be		0.35	5	mV	VcE = 6V, $Ic = 1mA$
TR1, TR2						
Input offset current	ΔI_B		0.2	3	μΑ	$V_{CE} = 6V$, $I_{C} = 1mA$
(except for TR1, TR2)						
Input offset current TR1, TR2	ΔI_B		0.2	2	μΑ	Vce = 6V, Ic = 1mA
Temperature coefficient of ΔV _{BE}	∂ <u>ΔV</u> <u>be</u>		2.0		μV/°C	
	∂T				l .	
Temperature coefficiient of VBE	∂ <u>V</u> be		-1.6		mV/°C	Vce = 6V, Ic = 1mA
	∂T					
Static forward current ratio	HFE	40	100			Vce = 6V, Ic = 1mA
Collector base leakage	Ісво		0.3		nA	VcB = 16V
Collector isolation leakage	Icio		0.6		nA	Vci = 20V
Base isolation leakage	Івю		100		nA	Vві = 5V
Emitter base capacitance	Сев		0.4		pF	Veb = 0V
Collector base capacitance					·	
SL3145	Ссв		0.4		pF	$V_{CB} = 0V$
Collector isolation capacitance	Ссі		0.8		pF	Vcı = 0V
Dynamic characteristics						
Transition frequency						
SL3145	f⊤		1.6		GHz	$V_{CE} = 6V$, $I_{C} = 5mA$
Wideband noise figure	NF		3.0		dB	$V_{CE} = 2V$, $R_S = 1k\Omega$
						$Ic = 100\mu A, f = 60MHz$
Knee of 1/f noise curve			1		KHz	$V_{CE} = 6V$, $R_S = 200\Omega$
						Ic = 2mA

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

All electrical ratings apply to individual transistors. Thermal ratings apply to the total package.

The isolation pin (substrate) must be connected to the most negative voltage applied to the package to maintain electrical isolation.

VcB = 20 volt

 $V_{EB} = 4.0 \text{ volt}$

Vce = 15 volt

Vci = 20 volt

Ic = 20 mA

Maximum individual transistor dissipation 200 mWatt Storage temperature -55°C to 150°C Max junction temperature 150°C

Package thermal resistance (°C/watt):-

Package Type MP14
Chip to case 45°C/W
Chip to ambient 123°C/W

NOTE:

If all the power is being dissipated in one transistor, these thermal resistance figures should be increased by 100°C/watt

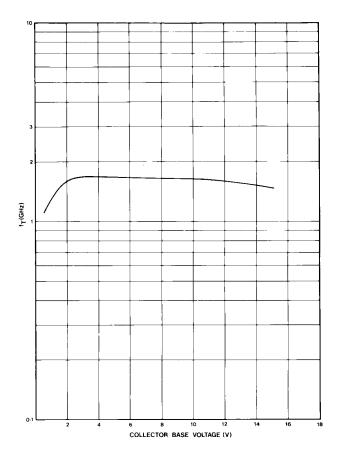


Fig.3 Transition frequency ($f\tau$) v. collector base voltage (Ic = 5mA, Frequency = 200MHz)

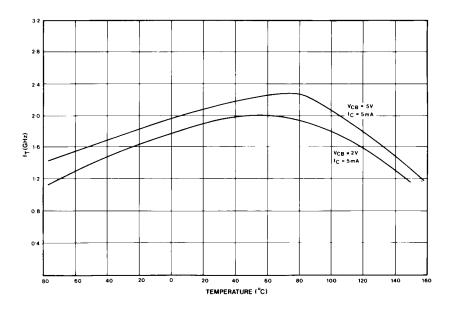


Fig.4 Variation of transition frequency (fT) with temperature

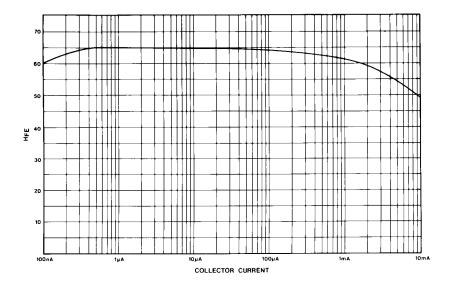


Fig.5 DC current gain v. collector current

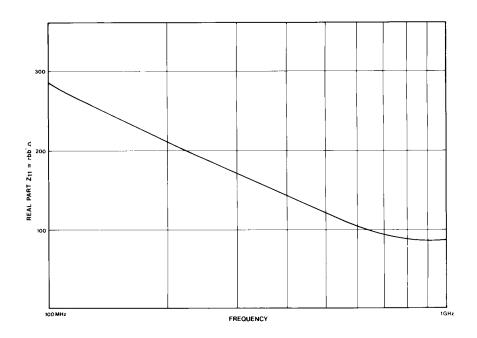


Fig.6 Z₁₁ (derived from scattering parameters) v. frequency (Z₁₁ __<rb)

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon, Wiltshire SN2 2QW, United Kingdom.

Tel: (0793) 518000 Fax: (0793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017 1500 Green Hills Road, Scotts Valley, California 95067-0017, United States of America.

Tel: (408) 438 2900 Fax: (408) 438 5576

CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 64 46 23 45 Fax: (1) 64 46 06 07
- GERMANY Munich Tel: (089) 3609 06-0 Fax: (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel (408) 438 2900 Fax: (408) 438 7023.
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- **SWEDEN** Stockholm, Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
- UK, EIRE, DENMARK, FINLAND & NORWAY Swindon Tel: (0793) 518510 Fax: (0793) 518582

These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1994

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior knowledge the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.