
OM961/OM991

DESCRIPTION

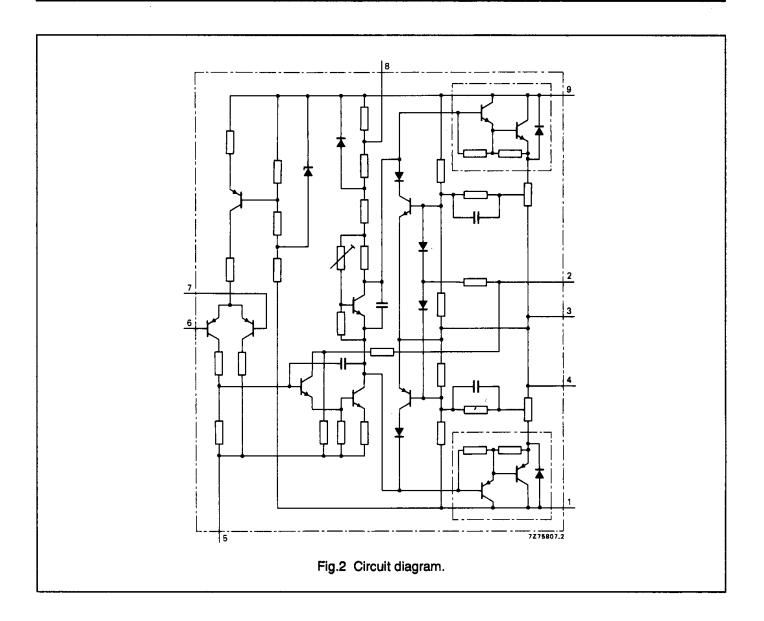
The OM961 and OM991 are thin film hybrid integrated circuit hi-fi audio amplifiers for sinusoidal output power up to 60 W and 120 W respectively. The modules offer maximum design possibilities regarding amplification, ripple rejection, stability for complex loads etc. The amplifiers have built in short-circuit protection (SOAR protected) and are specially designed for low transient and harmonic distortion. All built in resistors are dynamically adjusted for optimum performance over a wide temperature range.

PIN CONFIGURATION

PINNING

PIN	DESCRIPTION
1	supply (-)
2	ground
3	output
4	output
5	driver supply (-)
6	non inverting input
7	inverting input
8	boot strap
9	supply (+)

QUICK REFERENCE DATA


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	UNIT
P _o	sinusoidal output power OM961	$d_{tot} < 0.2\%;$ f = 20 Hz to 20 kHz; $R_L = 4 \Omega;$ $V_S = \pm 31 \text{ V}$	60	-	W
		$d_{tot} < 0.2\%;$ f = 20 Hz to 20 kHz; $R_L = 8 \Omega;$ $V_S = \pm 35 \text{ V}$	60	_	W
	sinusoidal output power OM991	$d_{tot} < 0.2\%;$ f = 20 Hz to 20 kHz; $R_L = 4 \Omega;$ $V_S = \pm 45$ V	60	-	W
		$d_{tot} < 0.2\%;$ f = 20 Hz to 20 kHz; $R_L = 8 \Omega;$ $V_S = \pm 50 \text{ V}$	60	-	W
d _{tot}	total harmonic distortion	P _o = 1 W; f = 1 kHz	-	0.02	%

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\overline{v_s}$	symmetrical supply voltage			
-	OM961	-	±45	V
	OM991	-	±50	V
T _{stg}	storage temperature range	-30	100	°C
T _{mb}	mounting base operating temperature range	_	95	°C

OM961/OM991

OM961/OM991

CHARACTERISTICS

Measured in circuit shown in Fig.3; $T_{mb} = 25$ °C.

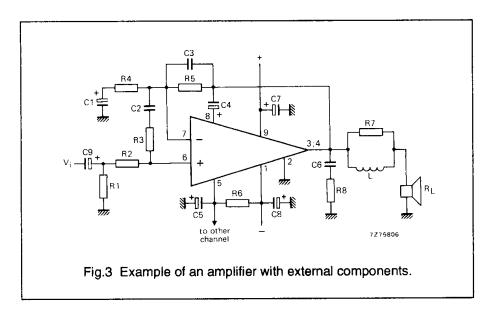
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _s	symmetrical supply voltage					
	OM961		±31	-	±35	V
	OM991	22.2	±40	_	±45	V
tot	total supply current	zero signal	-	100		mA
P _o	sinusoidal output power OM961	$d_{tot} < 0.2\%;$ f = 20 Hz to 20 kHz; $R_L = 4 \Omega;$ note 1 note 2	60	-	_	W
		$d_{tot} < 0.2\%;$ f = 20 Hz to 20 kHz; $R_L = 8 \Omega$ note 2	-	-	60	W
	sinusoidal output power OM991	$d_{tot} < 0.2\%;$ f = 20 Hz to 20 kHz; $R_L = 4 \Omega$	120	-	_	W
		$d_{tot} < 0.2\%;$ f = 20 Hz to 20 kHz; $R_L = 8 \Omega$	-	-	90	W
	clipping level	$d_{tot} = 0.7\%;$ f = 1 kHz; $R_L = 4 \Omega$				
	OM961		-	75	-	w
	OM991		100	_	135	w
d _{tot}	total harmonic distortion	P _o = 1 W; f = 1 kHz	-	0.02	-	%
d _{im}	intermodulation distortion	$f_1 = 250 \text{ Hz};$ $f_2 = 8 \text{ kHz}$ amplitude ratio $V_{f1}/V_{f2} = 4/1$				
		P _o = 1 W	-	0.05	-	%
		P _o = rated value	-	0.1	-	%
V _i	input sensitivity	P _o = rated value				
	OM961		1	-	1.4	V
	OM991		1.4		1.7	V
R _i	input impedance	determined by input circuitry	_	10	_	kΩ
G _o	open loop gain		-	80	T-	dB

Notes

- 1. Federal trade commission U.S.A.
- 2. Po is stated as rated value.

OM961/OM991

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
G _c	closed loop gain		_	24	1-	dB
f	frequency response	P _o = rated value -10 dB (-1 dB)	30	-	40000	Hz
f _p	power bandwidth	–3 dB	20	-	40000	Hz
S/N	signal to noise ratio	wide band; P _o = 50 mW; unweighted	_	75	_	dB
		A-curve; P _o = 50 mW; weighted	_	87	_	dB
V _{off}	DC output offset voltage		_	±20	_	mV
RR	ripple rejection		65	_	-	dB
Z _o	output impedance		-	0.05	-	Ω


THERMAL CHARACTERISTICS

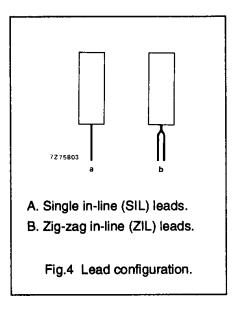
SYMBOL	PARAMETER	CONDITIONS	NOM.	UNIT
R _{th h-a}	from heatsink to ambient	heatsink length a = 50 mm (note 1)	1.0	K/W
R _{th h-a}	from heatsink to ambient	heatsink length a = 75 mm (note 1)	0.7	K/W
R _{th h-a}	from heatsink to ambient	heatsink length a = 100 mm (note 1)	0.6	K/W
R _{th h-a}	from heatsink to ambient	heatsink length a = 150 mm (note 1)	0.4	K/W
R _{th mb-h}	from mounting base to heatsink	using heatsink compound	0.2	K/W

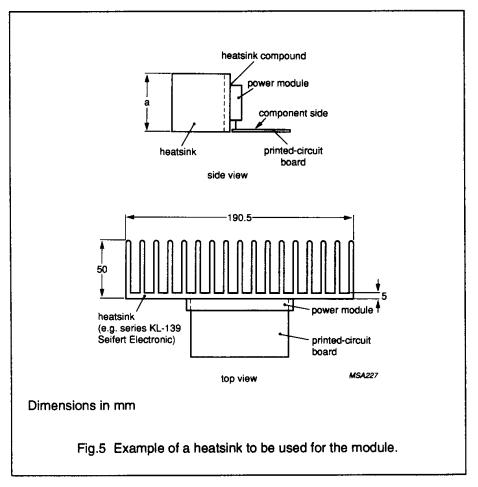
Note

1. See Fig.5

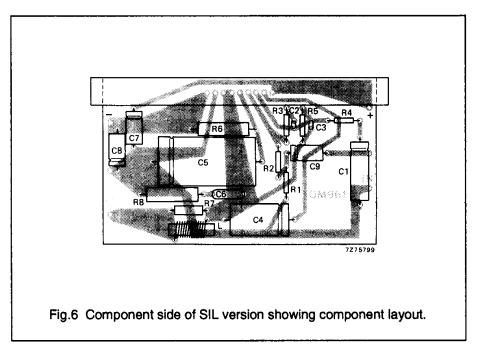
OM961/OM991

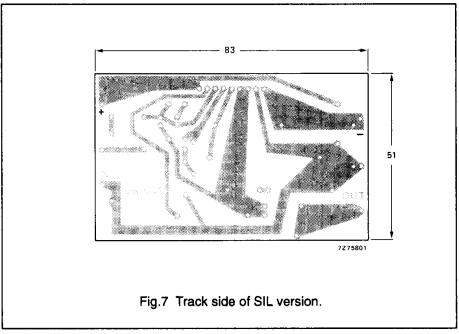
List of components

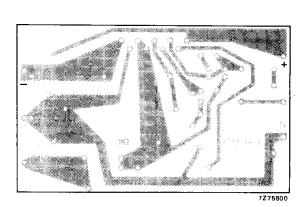

Philips Semiconductors


COMPONENT	DESCRIPTION	VALUE
R1	0.25 W resistor	10 kΩ
R2	0.25 W resistor	4.7 kΩ
R3	0.25 W resistor	300 Ω
R4	0.25 W resistor	680 Ω
R5	0.25 W resistor	10 kΩ
R6	0.5 W resistor	22 Ω
R7	0.25 W resistor	2.2 Ω
R8	0.5 W resistor	10 Ω
C1	10 V capacitor	47 μF
C2	capacitor (10%)	270 pF
C3	capacitor (10%)	120 pF
C4	100 V capacitor	100 μF
C5	63 V capacitor	470 μF
C6	100 V capacitor	100 nF
C7	63 V capacitor	10 μF
C8	63 V capacitor	10 μF
C9	63 V capacitor	1 μF
L	inductor	4 μΗ
R _L	load resistance	4 or 8 Ω

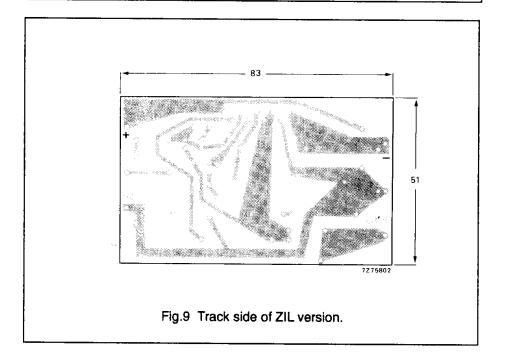
OM961/OM991


MOUNTING RECOMMENDATIONS


The modules are delivered with SIL (single in-line) leads but may also be bent to ZIL (zig-zag in-line) configuration.



OM961/OM991



OM961/OM991

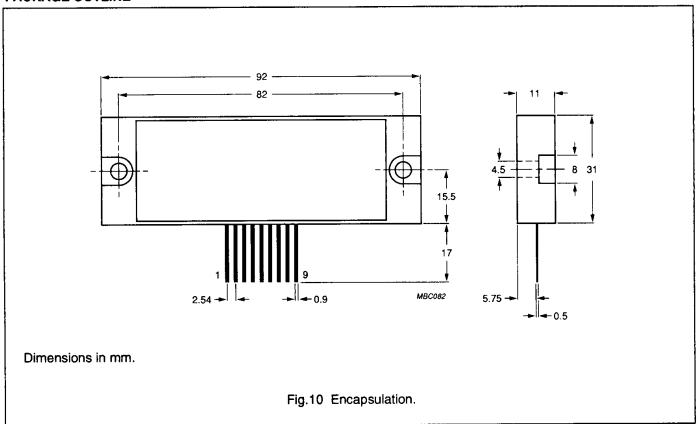

For component layout see Fig.6.

Fig.8 Component side of ZIL version.

OM961/OM991

PACKAGE OUTLINE

