Freescale Semiconductor

Technical Data

MMA26xxNWR2 Rev 1, 10/2010

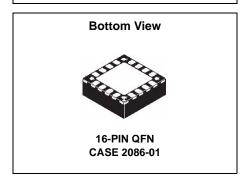
√RoHS

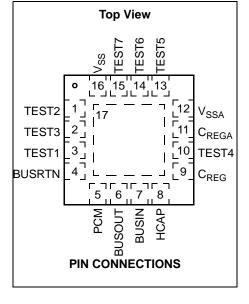
DSI Inertial Sensor

The MMA26xxNWR2 family of devices are DSI2.5 compatible overdamped X-axis satellite accelerometers.

Features

- ±25g to ±312.5g Nominal Full-Scale Range
- Selectable 180 Hz, 2-pole, 400Hz, 4-pole, or 800Hz, 4-pole LPF
- DSI2.5 Compatible with full support of Mandatory Commands
- 16μs internal sample rate, with interpolation to 1ms
- -40°C to 125°C Operating Temperature Range
- Pb-Free 16-Pin QFN-6x6 Package
- Qualified AEC-Q100, Revision G, Grade 1 (-40°C to +125°C)


Typical Applications


· Airbag Front and Side Crash Detection

	ORDERING INFORMATION										
Device	Axis	Range	Package	Shipping							
MMA2602NWR2	Х	25g	2086-01	Tape & Reel							
MMA2605NWR2	Х	50g	2086-01	Tape & Reel							
MMA2606NWR2	Х	62.5g	2086-01	Tape & Reel							
MMA2612NWR2	X	125g	2086-01	Tape & Reel							
MMA2618NWR2	Х	187g	2086-01	Tape & Reel							
MMA2631NWR2	Х	312g	2086-01	Tape & Reel							

MMA26xxNWR2

DSI INERTIAL SENSOR

Application Diagram

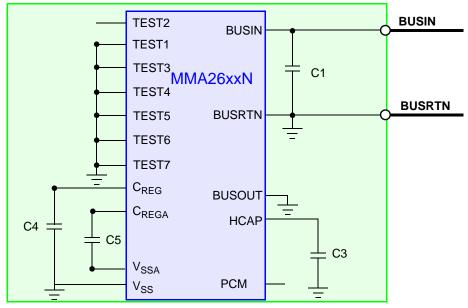


Figure 1. Application Diagram

		External Component Recomme	ndations
Ref Des	Туре	Description	Purpose
C1	Ceramic	100 pF ≤ C1 ≤ 1000 pF 10%, 50V, X7R	BUSIN Power Supply Decoupling, ESD
C3	Ceramic, Tantalum	$1 \mu F \le C3 \le 100 \mu F, 10\%, 50V, X7R$	Reservoir Capacitor for Keep Alive during Signaling
C4	Ceramic	1 μF, 10%, 10V, X7R	Voltage Regulator Output Capacitor (C _{REG})
C5	Ceramic	1 μF, 10%, 10V, X7R	Voltage Regulator Output Capacitor (C _{REGA})

Device Orientation

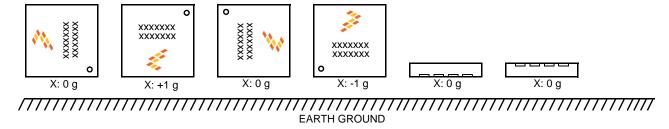


Figure 2. Device Orientation Diagram

Internal Block Diagram

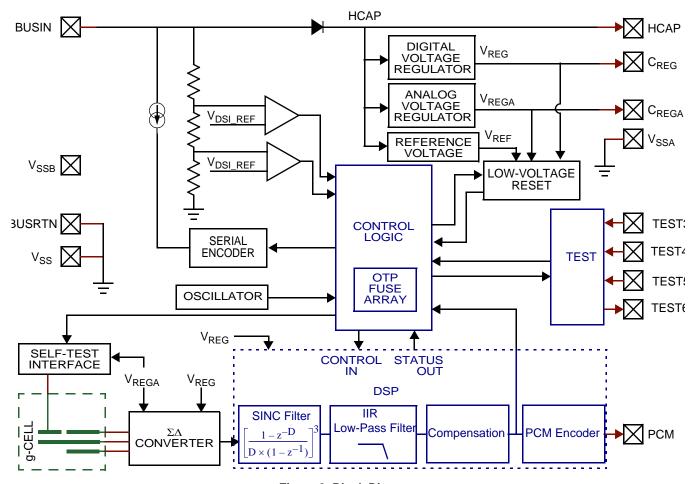


Figure 3. Block Diagram

1 Pin Connections

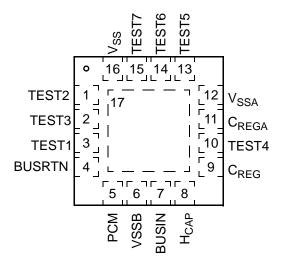


Figure 4. Block Diagram

Table 1. Pin Description

Pin	Pin Name	Formal Name	Definition
1	TEST2	Test Pin	This pin must be left unconnected in the application.
2	TEST3	Test Pin	This pin must be grounded in the application.
3	TEST1	Test Pin	This pin must be grounded in the application.
4	BUSRTN	Ground	This pin is the common return for power and signalling.
5	PCM	PCM Output	This pin provides a 4 MHz PCM signal proportional to the acceleration data for test purposes. The output can be enabled or disabled via OTP. If unused, this pin must be left unconnected in the application. Reference Section 3.5.3.6.
6	VSSB	Ground	This pin must be grounded in the application.
7	BUSIN	Supply / Comm	This pin is connected to the DSI positive bus node & provides the power supply & communication to the system master. An external capacitor must be connected to between this pin and the BUSRTN pin. Reference Figure 1.
8	HCAP	Hold Capacitor	This pin rectifies the supply voltage on the BUSIN pin to create the supply voltage for the device. An external capacitor must be connected between this pin and the BUSRTN pin to store energy for operation during master communication signalling. Reference Figure 1.
9	C _{REG}	Digital Supply	This pin is connected to the power supply for the internal digital circuitry. An external capacitor must be connected between this pin and V_{SS} . Reference Figure 1.
10	TEST4	Test Pin	This pin must be grounded in the application.
11	C _{REGA}	Analog Supply	This pin is connected to the power supply for the internal analog circuitry. An external capacitor must be connected between this pin and V_{SSA} . Reference Figure 1.
12	VSSA	Analog GND	This pin is the power supply return node for analog circuitry.
13	TEST5	Test Pin	This pin enables test mode, and provides the SPI programming voltage in test mode. This pin is must be grounded in the application.
14	TEST6	Test Pin	This pin must be grounded in the application.
15	TEST7	Test Pin	This pin must be grounded in the application.
16	V _{SS}	Digital GND	This pin is the power supply return node for the digital circuitry.
17	PAD	Die Attach Pad	This pin is the die attach flag, & should be connected to VSS in the application. Reference Section 5.

2 Electrical Characteristics

2.1 Maximum Ratings

Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it. Do not apply voltages higher than those shown in the table below.

#	Rating	Symbol	Value	Unit	
1 2	Supply Voltage (continuous) (BUSIN, HCAP) Supply Voltage (pulsed < 400 ms, repetition rate 60s) (BUSIN, HCAP)	V _{CC}	-0.3 to +30.0 -0.3 to +34.0	V	(3) (3)
3	C _{REG} , C _{REGA,} PCM, TEST1, TEST2, TEST3, TEST4, TEST5, TEST6, TEST7		-0.3 to +3.0	V	(3)
4 5	BUSIN, BUSRTN and H _{CAP} Current Maximum duration 1 s Continuous	I _{IN}	400 75	mA mA	(3) (3)
6	Powered Shock (six sides, 0.5 ms duration)	9 _{pms}	±2000	g	(5)
7	Unpowered Shock (six sides, 0.5 ms duration)	9 _{shock}	±2000	g	(5)
8	Drop Shock (to concrete, tile or steel surface, 10 drops, any orientation)	h _{DROP}	1.2	m	(5)
9 10 11	Electrostatic Discharge (per AEC-Q100) HBM (100pF, 1.5k Ω) CDM (R = 0 Ω) MM (200pF, 0 Ω)	V _{ESD} V _{ESD} V _{ESD}	±2000 ±500 ±200	V V	(5) (5) (5)
12 13	Temperature Range Storage Junction	T _{stg} T _J	-40 to +125 -40 to +150	°C °C	(3) (3)
14	Thermal Resistance	θЈС	2.5	°C/W	(11)

2.2 Operating Range

The operating ratings are the limits normally expected in the application.

 $V_L \leq (V_{CC} - V_{SS}) \leq V_H, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ \text{K/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	
15 16	Supply Voltage V _{HCAP} BUSIN	V _{HCAP} V _{BUS}	V _L 6.3 -0.3		V _H 30 30	V	(1,12) (1,12)
17	Programming Voltage Applied to BUSIN (DSI)	V _{PP}	14.0	_	30.0	٧	(3)
18	Programming Current BUSIN	I _{PP}	85	_	_	mA	(3)
19 20	Operating Temperature Range	T _A T _A	T _L -40 -40	_ _	T _H +105 +125	င့	(1) (3)

2.3 Electrical Characteristics - Supply and I/O

 $V_L \leq (V_{CC} - V_{SS}) \leq V_H, \, T_L \leq T_A \leq T_H, \, \Delta T \leq 25 \, \, \text{K/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	
21	Quiescent Supply Current *	I _{DD}	_	_	8.0	mA	(1)
22	Inrush Current (excluding HCAP Capacitor charge current) Power On until V _{REG} Stable	I _{INRUSH}	_	_	20	mA	(3)
23 24	Internally Regulated Voltages V _{REG} V _{REGA}	V _{REG} V _{REGA}	2.425 2.425	2.50 2.50	2.575 2.575	V	(1) (1)
25 26 27	V _{HCAP} Undervoltage Detection (See Figure 5) Under-Voltage Detection Threshold V _{HCAP} Recovery Threshold Hysteresis (V _{PORHCAP_r} - V _{PORHCAP_f})	VPORHCAP_f VPORHCAP_r VHYST_HCAP	5.8 — 70	6.0 — 100	6.2 6.3 140	V V mV	(3,6) (3,6) (3)
28 29	Internal Regulator Low Voltage Detection Threshold V _{REG} Falling V _{REGA} Falling Hysteresis	VPORVREG_f VPORVREGA_f	2.15 2.15	2.25 2.25	2.40 2.40	V V	(3.6) (3.6)
30 31	V _{REG} V _{REGA}	V _{HYST_VREG} V _{HYST_VREGA}	0.05 0.05	0.10 0.10	0.15 0.15	V	(3) (3)
32 33	External Capacitor (C _{REG} , C _{REGA}) Capacitance ESR (including interconnect resistance)	C _{REG} , C _{REGA} R _{CREGESR} , R _{CREGAESR}	500 —	1000 —	1500 200	nF mΩ	(9) (9)
34	Output High Voltage (PCM) $I_{Load} = 100 \mu A$	V _{OH}	V _{REG} - 0.1	_	_	V	(9)
35	Output Low Voltage (PCM) I _{Load} = 100 μA	V _{OL}	_	_	0.1	٧	(9)
36 37		T _{UNDER} T _{OVER}	 155		-55 —	°C °C	(9) (9)

2.4 Electrical Characteristics - DSI

 $V_L \leq (V_{CC} - V_{SS}) \leq V_H, \, T_L \leq T_A \leq T_H, \, \Delta T \leq 25 \, \, \text{K/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	
38	HCAP Rectifier Leakage Current V _{BUSIN} = 0 V, V _{HCAP} = 9.0V *	I _{RLKG}	_	_	100	μА	(1)
39 40	BUSIN to HCAP Rectifier Voltage Drop (V _{BUSIN} = 7 V) I_{HCAP} = -15 mA I_{HCAP} = -100 mA	V _{RECT} V _{RECT}		0.75 0.9	1.0 1.2	>	(1) (1)
41 42	BUSIN Bias Current $V_{BUSIN}=8.0 \text{ V, } V_{HCAP}=9.0 \text{V} \\ V_{BUSIN}=4.5 \text{ V, } V_{HCAP}=24 \text{ V, No Response Current} $	I _{BUSIN_BIAS} I _{BUSIN_BIAS}	-100 -100	 _	100 100	μΑ μΑ	(1) (1)
43	BUSIN Response Current V _{BUSIN} = 4.0 V	I _{RESP}	9.9	11	12.1	mA	(1)
44 45	BUSIN Logic Thresholds Signal Threshold Frame Threshold *	V _{THS} V _{THF}	2.8 5.5	3.0 6.0	3.2 6.5	> >	(1) (1)
46 47	BUSIN Logic Hysteresis Signal * Frame *	V _{HYSS} V _{HYSF}	30 100	_ _	90 300	mV mV	(3) (3)

2.5 Electrical Characteristics - Signal Chain

 $V_L \le (V_{CC} - V_{SS}) \le V_H, T_L \le T_A \le T_H, \Delta T \le 25$ K/min, unless otherwise specified.

#	Characteristic		Symbol	Min	Тур	Max	Units	
	Sensitivity (10-bit @ 100Hz referenced to 0Hz)							
48	25g Range	*	SENS	_	20.48	_	LSB/g	(1,14)
49	50g Range	*	SENS	_	10.24	_	LSB/g	(1,14)
50	62.5g Range	*	SENS	_	8.192	_	LSB/g	(1,14)
51	125g Range	*	SENS	_	4.096	_	LSB/g	(1,14)
52	187g Range	*	SENS	_	2.731	_	LSB/g	(1,14)
53	1 3 3 3	*	SENS	_	1.638	_	LSB/g	(1,14)
	Total Sensitivity Error (including non-linearity)							
54	$T_A = 25^{\circ}C$	*	∆SENS_25	-5 -7	_	+5	%	(1)
55	$T_L \le T_A \le T_H$	*	ΔSENS	-7	_	+7	%	(1)
	Digital Offset							
56	10-bit output	*	OFF _{10Bit}	460	512	564	LSB	(1)
	Range of Output (10-Bit Mode)							
57	Acceleration		RANGE _{ACC}	1	_	1023	LSB	(3)
58	Internal Error		RANGEERR	_	0	_	LSB	(3)
	Cross-Axis Sensitivity							
59	Z-axis to X-axis		V_{ZX}	-5	_	+5	%	(3)
60	Y-axis to X-axis		V_{YX}	-5	_	+5	%	(3)
61	ADC Output Noise Peak (1Hz - 1kHz, 10-Bit)		n _{SD}	-4	_	+4	LSB	(3)
62	System Output Noise (10-Bit, RMS, All Ranges)		n			+1.2	LSB	(3)
02	Oystem Output Noise (10-bit, Nillo, All Nanges)		n _{RMS}	_	_	71.2	LOD	(3)
	Non-linearity (all ranges)							
63			NL _{OUT_sub50g}	-2 -2	<u> </u>	+2	%	(3)
64	10-bit output, 50g ≤ Range ≤ 312.5g		NL _{OUT_sub250g}	-2	_	+2	%	(3)

2.6 Electrical Characteristics - Self Test and Overload

 $V_L \leq (V_{CC} - V_{SS}) \leq V_H, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ \text{K/min, unless otherwise specified.}$

#	Characteristic	Symbol	Min	Тур	Max	Units	
65	Acceleration (without hitting internal g-cell stops) ±25g, ±50g, ±62.5g, ±125g	gg-cell_Clip60X	400	456	500	g	(9)
66	Acceleration (without hitting internal g-cell stops) ±187g, ±312g	gg-cell_Clip240X	1750	2065	2300	g	(9)
67	ΣΔ and Sinc Filter Clipping Limit ±25g	9ADC_Clip60X	98	108	121	g	(9)
68	$\Sigma\Delta$ and Sinc Filter Clipping Limit $\pm 50g$	9ADC_Clip60X	191	210	232	g	(9)
69	Σ∆ and Sinc Filter Clipping Limit ±62.5g	9ADC_Clip60X	191	210	232	g	(9)
70	Σ∆ and Sinc Filter Clipping Limit ±125g	9ADC_Clip120X	353	379	409	g	(9)
71	Σ∆ and Sinc Filter Clipping Limit ±187g	9ADC_Clip240X	1690	1876	2106	g	(9)
72	Σ∆ and Sinc Filter Clipping Limit ±312g	9ADC_Clip480X	1690	1876	2106	g	(9)
73 74 75 76 77 78	Deflection, 10-Bit, Self Test - Offset, 30sample ave, T _A = 25°C) 25g Range 50g Range 62.5g Range 125g Range 187g Range 312g Range *	ADFLCT_X25 ADFLCT_X50 ADFLCT_X62 ADFLCT_X125 ADFLCT_X187 ADFLCT_X312		246 123 98 49 82 49	_ _ _ _ _	LSB LSB LSB LSB LSB	(1) (1) (1) (1) (1) (1))
79	Self-test deflection range, T _A = 25 °C	ΔDFLCT	-10	_	+10	%	(1)
80	Self-test deflection range, $T_L \le T_A \le T_H$	ΔDFLCT	-20	_	+20	%	(1)

2.7 Dynamic Electrical Characteristics - DSI

 $V_L \leq (V_{CC} - V_{SS}) \leq V_H, \, T_L \leq T_A \leq T_H, \, \Delta T \leq 25 \, \, \text{K/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	
81 82 83 84	Reset Recovery (See Figure 20) POR negated to 1st DSI Command (Initialization Command) POR negated to Acceleration Data Valid (Including LPF Init) DSI Clear Command to 1st DSI Command (Initialization Command) DSI Clear Command to Acceleration Data Valid (Including LPF Init)	t _{DSI_INIT} t _{DSP_INIT} t _{DSI_INIT} t _{DSP_INIT}	_ _ _ _	400 / f _{OSC} — 400 / f _{OSC}	10000 / f _{OSC}	s s s	(7) (7) (7) (7)
85	HCAP Undervoltage Reset Delay (See Figure 5) V _{HCAP} < V _{PORHCAP_f} to POR assertion	t _{HCAP_POR}	_	880 / f _{OSC}	_	s	(7)
86	V _{REG} Undervoltage Re <u>set D</u> elay (See Figure 6) V _{REG} < V _{PORVREG_f} to POR assertion	t _{VREG_POR}	_	_	5	μS	(3)
87	V _{REGA} Undervoltage Res <u>et De</u> lay (See Figure 7) V _{REGA} < V _{PORVREGA_f} to POR assertion	t _{VREGA_POR}	_	_	5	μS	(3)
88 89 90	V _{REG} , V _{REGA} Capacitor Monitor POR to first Capacitor Test Disconnect Disconnect Time () Disconnect Rate ()	tPOR_CAPTEST tCAPTEST_TIME tCAPTEST_RATE		12000 / f _{OSC} 6 / f _{OSC} 256 / f _{OSC}	 	s s s	(7) (7) (7)
91	Communication Data Rate	D _{RATE}	100	_	200	kbps	(7)
92	Loss of Signal Reset Time Maximum time below frame threshold	t _{TO}	2.00	_	4.00	ms	(7)
93	BUSIN Response Current Slew Rate 1.0 mA to 9.0 mA, 9.0 to 1.0 mA	t _{ITR}	0.33	_	10.0	mA/μs	(3)
94 95	BUSIN Timing to Response Current BUSIN Negative Voltage Transition =3.0V to I _{RSP} = 7.0mA rise BUSIN Negative Voltage Transition =3.0V to I _{RSP} = 5.0mA fall	t _{RSP_R} t _{RSP_F}	_	_	2.50 2.50	μ s μ s	(7) (7)
96 97	DSI BUSIN Signal Duty Cycle Logic '0' Logic '1' *	D _{CL} D _{CH}	10 60	33 67	40 90	% %	(7) (7)
98 99 100	Inter-frame Separation Time (See Figure 8) Following Read Write NVM Command Following Initialization Following other DSI bus commands	t _{IFS} t _{IFS} t _{IFS}	2 20 20	_ _ _	 	ms μs μs	(7) (7) (7)
101	DSI Data Latency	t _{LAT_DSI}	4 / f _{OSC}	_	5 / f _{OSC}	S	(7)
102	OTP Program Timing Time to program one OTP bit	t _{PROG_BIT}	64	_	256	μS	(7)
103 104 105 106 107 108	Self Test Response Time Self Test Activation time (EOF_Slave to 90% $\Delta DFLCT_xxx$, 180Hz LPF) Self Test Deactivation time (EOF_Slave to 10% $\Delta DFLCT_xxx$, 180Hz LPF) Self Test Activation time (EOF_Slave to 90% $\Delta DFLCT_xxx$, 400Hz LPF) Self Test Deactivation time (EOF_Slave to 10% $\Delta DFLCT_xxx$, 400Hz LPF) Self Test Activation time (EOF_Slave to 90% $\Delta DFLCT_xxx$, 800Hz LPF) Self Test Deactivation time (EOF_Slave to 10% $\Delta DFLCT_xxx$, 800Hz LPF) Self Test Deactivation time (EOF_Slave to 10% $\Delta DFLCT_xxx$, 800Hz LPF)	tst_act_180 tst_deact_180 tst_act_400 tst_deact_400 tst_deact_800 tst_deact_800	2.00 2.00 1.00 1.00 0.50 0.50		5.00 5.00 2.50 2.50 1.75 1.75	ms ms ms ms ms ms	(7) (7) (7) (7) (7) (7)
109	Error Detection Response Time Mirror Register CRC Error to Status Flag (S) set (Factory or User Array)	t _{CRC_Err}	_	75 / f _{OSC}	_	s	(7)

2.8 Dynamic Electrical Characteristics - Signal Chain

 $V_L \leq (V_{CC} - V_{SS}) \leq V_H, \ T_L \leq T_A \leq T_H, \ \Delta T \leq 25 \ \text{K/min, unless otherwise specified}$

#	Characteristic	Symbol	Min	Тур	Max	Units	
110	Internal Oscillator Frequency *	f _{OSC}	3.80	4	4.20	MHz	(1)
111	Data Interpolation Latency	t _{LAT_INTERP}	64 / f _{OSC}	_	65 / f _{OSC}	s	(7)
112 113 114 115 116 117	DSP Low-Pass Filter Cutoff frequency LPF0 (referenced to 0 Hz) Filter Order LPF0 Cutoff frequency LPF1 (referenced to 0 Hz) Filter Order LPF1 Cutoff frequency LPF2 (referenced to 0 Hz) Filter Order LPF2	fc_LPF0 OLPF0 fc_LPF1 OLPF1 fc_LPF2 OLPF2	171 — 380 — 760	180 2 400 4 800 4	189 — 420 — 840 —	Hz 1 Hz 1 Hz 1	(7) (7) (7) (7) (7) (7)
118 119	Sensing Element Rolloff Frequency (-3db) ±25g, ±50g, ±62.5g, ±125g ±187g, ±312g	fgcell_3dB_xlo fgcell_3dB_xhi	938 3952	1591 6770	2592 14370	Hz Hz	(9) (9)
120 121	Sensing Element Natural Frequency ±25g, ±50g, ±62.5g, ±125g ±187g, ±312g	f _{gcell_xlo} f _{gcell_xhii}	12651 26000	13274 27413	13871 28700	Hz Hz	(9) (9)
122 123	Sensing Element Damping Ratio ±25g, ±50g, ±62.5g, ±125g ±187g, ±312g	ζgcell_xlo ζgcell_xhi	2.760 1.260	4.220 2.280	6.770 3.602		(9) (9)
124 125	Sensing Element Delay (@100Hz) ±25g, ±50g, ±62.5g, ±125g ±187g, ±312g	fgcell_delay100_xlo	63 13	101 25	170 40	μs μs	(9) (9)
126	Package Resonance Frequency	f _{Package}	100	_	_	kHz	(9)

Notes:

- 1. Parameters tested 100% at final test at -40°C, 25°C, and 105°C.
- 2. Parameters tested 100% at probe.
- 3. Verified by characterization.
- 4. * Indicates critical characteristic.
- 5. Verified by qualification testing, not tested in production.
- 6. Parameters verified by pass/fail testing in production.
- 7. Functionality verified 100% via boundary scan. (Timing is directly determined by internal oscillator frequency.)
- 8. Verified by user system level characterization, not tested in production, or at component level.
- 9. Verified by Simulation.
- 10. Measured at final test. Self-test activation occurs under control of the test program.
- 11. Thermal resistance between the die junction and the exposed pad; cold plate is attached to the exposed pad.
- 12. Maximum voltage characterized. Minimum voltage tested 100% at final test. Maximum voltage tested 100% to 24 V at final test.
- 13.N/A
- 14. Sensitivity, and overload capability specifications will be reduced when 800Hz filter is selected.
- 15. Filter cut-off frequencies are directly dependent upon the internal oscillator frequency
- 16. Target values. Actual values to be determined during device characterization

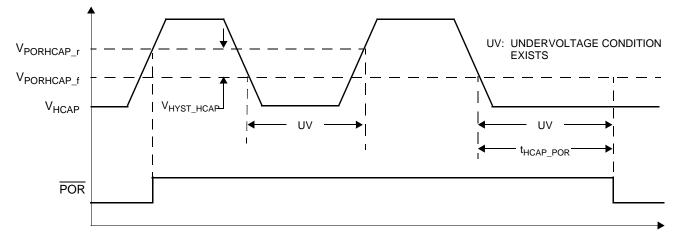


Figure 5. $V_{\mbox{\scriptsize HCAP}}$ Under Voltage Detection

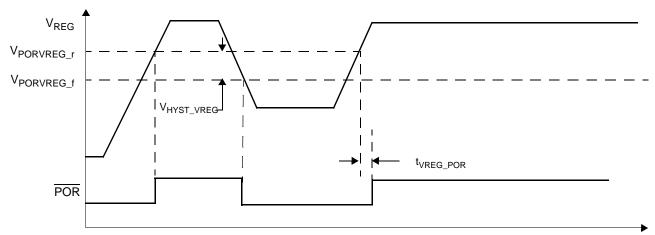


Figure 6. V_{REG} Under Voltage Detection

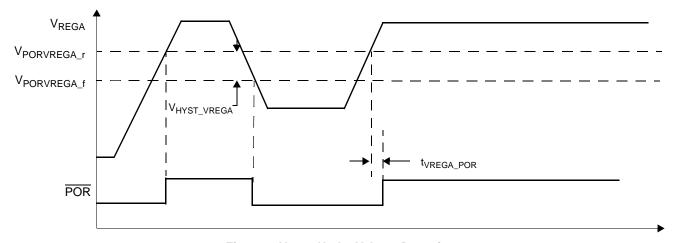


Figure 7. V_{REGA} Under Voltage Detection

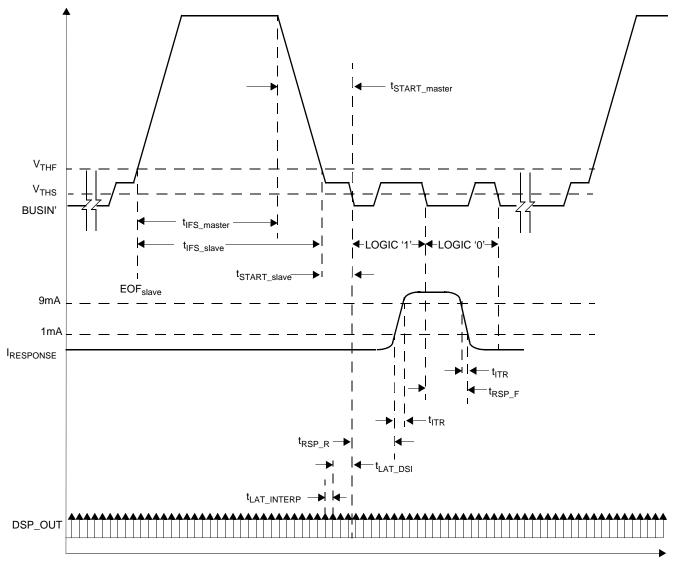


Figure 8. DSI Bus Inter-frame Timing

3 Functional Description

3.1 User Accessible Data Array

A user accessible data array allows for each device to be customized. The array consists of an OTP factory programmable array, an OTP user programmable array, and read only registers for device status. The OTP arrays incorporate independent CRC circuitry for fault detection (reference Section 3.2). Portions of the factory programmable array are reserved for factory-programmed trim values. The user accessible data is shown in the table below.

Table 2. User Accessible Data

Byte		Nibble Addr		Bit Fu	nction		Nibble Addr		Bit Fu	ınction		_	
Addr RA[3:0]	Register	Register	WA[3:0]	7	6	5	4	(WA[3:0])	3	2	1	0	Туре
\$00	SN0		SN[7]	SN[6]	SN[5]	SN[4]		SN[3]	SN[2]	SN[1]	SN[0]		
\$01	SN1		SN[15]	SN[14]	SN[13]	SN[12]		SN[11]	SN[10]	SN[9]	SN[8]	F	
\$02	SN2		SN[23]	SN[22]	SN[21]	SN[20]		SN[19]	SN[18]	SN[17]	SN[16]	' I	
\$03	SN3		SN[31]	SN[30]	SN[29]	SN[28]		SN[27]	SN[26]	SN[25]	SN[24]		
\$04	TYPE		LPF[1]	LPF[0]	1	0		RNG[3]	RNG[2]	RNG[1]	RNG[0]		
\$05	DEVCFG		1	UNUSED	UNUSED	UNUSED		UNUSED	CRC_U[2]	CRC_U[1]	CRC_U[0]		
\$06	DEVCFG1		UD00[5]	UD00[4]	UD00[3]	UD00[2]		UD00[1]	UD00[0]	AT_OTP[1]	AT_OTP[0]		
\$07	DEVCFG2		LOCK_U	UNUSED	PCM	RESERVED	-	ADDR[3]	ADDR[2]	ADDR[1]	ADDR[0]		
\$08	UD01		UD01[7]	UD01[6]	UD01[5]	UD01[4]		UD01[3]	UD01[2]	UD01[1]	UD01[0]		
\$09	UD02	Reference	UD02[7]	UD02[6]	UD02[5]	UD02[4]	Reference	UD02[3]	UD02[2]	UD02[1]	UD02[0]	U/F	
\$0A	UD03	Table 39	UD03[7]	UD03[6]	UD03[5]	UD03[4]	Table 39	UD03[3]	UD03[2]	UD03[1]	UD03[0]	0/1	
\$0B	UD04		UD04[7]	UD04[6]	UD04[5]	UD04[4]		UD04[3]	UD04[2]	UD04[1]	UD04[0]		
\$0C	UD05		UD05[7]	UD05[6]	UD05[5]	UD05[4]	-	UD05[3]	UD05[2]	UD05[1]	UD05[0]		
\$0D	UD06		UD06[7]	UD06[6]	UD06[5]	UD06[4]	-	UD06[3]	UD06[2]	UD06[1]	UD06[0]		
\$0E	UD07		UD07[7]	UD07[6]	UD07[5]	UD07[4]		UD07[3]	UD07[2]	UD07[1]	UD07[0]		
\$0F	UD08		UD08[7]	UD08[6]	UD08[5]	UD08[4]		UD08[3]	UD08[2]	UD08[1]	UD08[0]		

Type codes

Note: Unused and Unprogrammed Spare bits always read '0'.

3.1.1 Device Serial Number Registers

A unique serial number is programmed into the serial number registers of each device during manufacturing. The serial number is composed of the following information:

Bit Range	Content
SN[12:0]	Serial Number
SN[31:13]	Lot Number

Serial numbers begin at 1 for all produced devices in each lot, and are sequentially assigned. Lot numbers begin at 1 and are sequentially assigned. No lot will contain more devices than can be uniquely identified by the 13-bit serial number. Depending on lot size and quantities, all possible lot numbers and serial numbers may not be assigned.

The serial number registers are included in the factory programmed OTP CRC verification. Reference Section 3.2.1 for details regarding the CRC verification. Beyond this, the contents of the serial number registers have no impact on device operation or performance, and are only used for traceability purposes.

F: Freescale programmed OTP locationU/F:User and/or Freescale programmed OTP location

R: Read-only registerU:User Programmed OTP location

3.1.2 Device Type Register (TYPE)

The Device Type Register is an OTP configuration register which contains device configuration information. Bit 5 - Bit 0 are factory programmed and are included in the factory programmed OTP CRC verification. These bits are read only to the user. Bit 7 - Bit 6 are user programmable OTP bits and are included in the user programmable OTP CRC verification.

Table 3. Factory Configuration Register

Loca	ation		Bit								
RA[3:0]	Register	WA[3:0]	7	6	5	4	WA[3:0]	3	2	1	0
\$04	TYPE	Bnk0 \$08	LPF[1]	LPF[0]	1	0		RNG[3]	RNG[2]	RNG[1]	RNG[0]
Factory	Default		0	0	1	0		0	0	0	0

3.1.2.1 Low-Pass Filter Selection Bits (LPF[1:0]) (TYPE[7:6])

The Low Pass Filter selection bit selects between one of three low pass filter options. These bits can be factory or user programmed.

LPF[1]	LPF[0]	Low Pass Filter Selected
0	0	400 Hz, 4 Pole
0	1	Not Enabled ¹
1	0	180 Hz, 2 Pole
1	1	800 Hz, 4 Pole

This filter option is not implemented. LPF[1:0] must not be set to this value to guarantee proper operation and performance.

3.1.2.2 Range Selection Bits (RNG[3:0]) (TYPE[3:0])

The Range Selection Bits indicate the full scale range of the device, as shown below. These bits are factory programmed.

RNG[3]	RNG[2]	RNG[1]	RNG[0]	Full-Scale Range	g-Cell Design
0	0	0	0	N/A	N/A
0	0	0	1	25g	M64S
0	0	1	0	50g	M64S
0	0	1	1	62g	M64S
0	1	0	0	125g	M64S
0	1	0	1	187g	M95V
0	1	1	0	312g	M95V
0	1	1	1	N/A	N/A
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1	Reserved	N/A
1	1	0	0	i Neserveu	19/75
1	1	0	1		
1	1	1	0		
1	1	1	1		

3.1.3 Device Configuration Register (DEVCFG)

The Device configuration register is a user programmable OTP register which contains device configuration information. This register is included in the user register CRC check. Refer to Section 3.2.2 for details regarding the CRC for the user programmable OTP array.

Table 4. Device Control Register

Loca	ation		Bit								
RA[3:0]	Register	WA[3:0]	7	6	5	4	WA[3:0]	3	2	1	0
\$05	DEVCFG	Bnk0 \$0A	1	0	0	0	Bnk0 \$09	0	CRC_U[2]	CRC_U[1]	CRC_U[0]
Factory	Default		1	0	0	0		0	0	0	0

3.1.3.1 Unused Bit (DEVCFG[7])

The DEVCFG[7] bit is unused. Writes to DEVCFG[7] will be ignored. Reads of DEVCFG[7] will always return '1'.

3.1.3.2 User Configuration CRC (CRC_U[2:0], DEVCFG[2:0])

The User Configuration CRC bits contain the 3-bit CRC used for verification of the user programmable OTP array. Reference Section 3.2.2 for details regarding the CRC for the user programmable OTP array. These bits can be factory or user programmed.

3.1.4 Device Configuration Register 1 (DEVCFG1)

The Device configuration register is a user programmable OTP register which contains device configuration information. This register is included in the user register CRC check. Refer to Section 3.2.2 for details.

Table 5. Device Control Register 1

Loca	ation		Bit								
RA[3:0]	Register	WA[3:0]	7	6	5	4	WA[3:0]	3	2	1	0
\$06	DEVCFG1	Bnk2 \$06	UD00[5]	UD00[4]	UD00[3]	UD00[2]	Bnk1 \$06	UD00[1]	UD00[0]	AT_OTP[1]	AT_OTP[0]
Factory	Default		0	0	0	0		0	0	0	0

3.1.4.1 User Specific Data 00 Bits (UD00[5:0], DEVCFG1[7:2])

The User Specific Data bits have no impact on the device function or performance. The bits can be programmed with user or assembly specific information. These bits can be factory or user programmed.

3.1.4.2 Attribute Bits (AT_OTP[1:0], DEVCFG1[1:0])

The Attribute Bits are user defined bits which are transmitted in response to the Request Status, Disable Self-Test Stimulus or Enable Self-Test Stimulus DSI commands. The transmitted values are qualified by the LOCK_U bit as shown in the table below. These bits can be factory or user programmed.

LOCK_U	DEVCFG	1 Values	DSI Transmitted Values			
LOOK_0	AT_OTP[1]	AT_OTP[0]	AT[1]	AT[0]		
0	Х	Х	1	0		
	0	0	0	0		
1	0	1	0	1		
•	1	0	1	0		
	1	1	1	1		

3.1.5 Device Configuration 2 Register (DEVCFG2)

Device configuration register 2 is a user programmable OTP register which contains device configuration information. This register is included in the user register CRC check. Refer to Section 3.2.2 for details regarding the CRC for the user programmable OTP array.

Table 6. Device Control Register

Loca	ation		Bit								
RA[3:0]	Register	WA[3:0]	7	6	5	4	WA[3:0]	3	2	1	0
\$07	DEVCFG2	Bnk0 \$07 Bnk2 \$07 Bnk3 \$07 Bnk3 \$0F	LOCK_U	UNUSED	РСМ	RESERVED	Bnk1 \$07	ADDR[3]	ADDR[2]	ADDR[1]	ADDR[0]
Factory	Default		0	0	0	0		0	0	0	0

3.1.5.1 User Configuration Lock Bit (LOCK_U, DEVCFG2[7])

The LOCK_U bit is a factory or user programmed OTP bit which inhibits writes to the user configuration array when active. Reference Section 3.2.2 for details regarding the LOCK_U bit and CRC verification.

3.1.5.2 PCM Bit (DEVCFG2[5])

The PCM Bit enables the PCM output pin. When the PCM bit is set, the PCM output pin is active and outputs a Pulse Code Modulated signal proportional to the acceleration response. Reference Section 3.5.3.6 for more information regarding the PCM output. When the PCM output is cleared, the PCM output pin is actively pulled low. This bit can be factory or user programmed.

3.1.5.3 Device Address (ADDR[3:0], DEVCFG2[3:0])

The Device Address bits define the pre-programmed DSI Bus device address. If the Device Address bits are programmed to '0000', there is not pre-programmed address, and the address must be assigned via the Initialization DSI command. Reference Section 4.2.1.1 for more details regarding the Initialization DSI command. These bits can be factory or user programmed.

3.1.6 User Data Registers (UDx)

The User Data Registers are user programmable OTP register which can be programmed with user or assembly specific information. These registers have no impact on the device performance, but are included in the user register CRC check. Refer to Section 3.2.2 for details regarding the user register CRC check. These registers can be factory or user programmed.

Loca	ation		Bit								
RA[3:0]	Register	WA[3:0]	7	6	5	4	WA[3:0]	3	2	1	0
\$08	UD01	Bnk2 \$08	UD01[7]	UD01[6]	UD01[5]	UD01[4]	Bnk1 \$08	UD01[3]	UD01[2]	UD01[1]	UD01[0]
\$09	UD02	Bnk2 \$09	UD02[7]	UD02[6]	UD02[5]	UD02[4]	Bnk1 \$09	UD02[3]	UD02[2]	UD02[1]	UD02[0]
\$0A	UD03	Bnk2 \$0A	UD03[7]	UD03[6]	UD03[5]	UD03[4]	Bnk1 \$0A	UD03[3]	UD03[2]	UD03[1]	UD03[0]
\$0B	UD04	Bnk2 \$0B	UD04[7]	UD04[6]	UD04[5]	UD04[4]	Bnk1 \$0B	UD04[3]	UD04[2]	UD04[1]	UD04[0]
\$0C	UD05	Bnk2 \$0C	UD05[7]	UD05[6]	UD05[5]	UD05[4]	Bnk1 \$0C	UD05[3]	UD05[2]	UD05[1]	UD05[0]
\$0D	UD06	Bnk2 \$0D	UD06[7]	UD06[6]	UD06[5]	UD06[4]	Bnk1 \$0D	UD06[3]	UD06[2]	UD06[1]	UD06[0]
\$0E	UD07	Bnk2 \$0E	UD07[7]	UD07[6]	UD07[5]	UD07[4]	Bnk1 \$0E	UD07[3]	UD07[2]	UD07[1]	UD07[0]
\$0F	UD08	Bnk2 \$0F	UD08[7]	UD08[6]	UD08[5]	UD08[4]	Bnk1 \$0F	UD08[3]	UD08[2]	UD08[1]	UD08[0]
Factory	Default		0	0	0	0		0	0	0	0

3.2 OTP Array Lock and CRC Verification

3.2.1 Factory Programmed OTP Array Lock and CRC Verification

The Factory programmed OTP array is verified for errors with a 3-bit CRC. The CRC verification is enabled only when the Factory programmed OTP array is locked and the lock is active. The lock is active only after an automatic OTP readout in which the internal lock bit is read as '1'. Automatic OTP readouts occur only after POR or a DSI Clear Command is received.

Factory Lock Bit Value in Fuse Array	Lock Bit Value in Mirror Register After Automatic Readout	Lock Bit Active?	CRC Verification Enabled?
0	N/A	NO	NO
1	0	NO	NO
1	1	YES	YES

The Factory programmed OTP array is locked by Freescale and will always be active after POR. The CRC is continuously calculated on the factory programmed OTP array, which includes the registers listed below:

Register Name	Register Addresses	Included in Factory CRC?		
Serial Number Registers	SN0, SN1, SN2, SN3	Yes		
Type Register	TYPE[5:0]	Yes		
Factory Programmable Device Configuration Bits	Internal Register Map	Yes		
Factory OTP Array CRC	CRC_F[2:0]	No		
Factory OTP Array Lock Bit	LOCK_F	No		

Bits are fed in from right to left (LSB first), and top to bottom (lower addresses first) in the register map. The CRC verification uses a generator polynomial of $g(x) = X^3 + X + 1$, with a seed value = '111'. The calculated CRC is compared against the CRC_F[2:0] bits. If a CRC mismatch is detected, an internal data error is set and the device responds to DSI messages as specified in Section 4.3. The CRC verification is completed on the memory registers which hold a copy of the fuse array values, not the fuse array values.

3.2.2 User Programmable OTP Array Lock and CRC Verification

The User Programmable OTP array is independently verified for errors with a 3-bit CRC. The CRC verification is enabled only when the User Programmable OTP array is locked and the lock is active. The lock is active only after an automatic OTP readout in which the LOCK_U bit is read as '1'. Automatic OTP readouts occur only after POR or a DSI Clear Command is received.

Factory Lock Bit Value in Fuse Array	Lock Bit Value in Mirror Register After Automatic Readout	Lock Bit Active?	CRC Verification Enabled?	
0	N/A	NO	NO	
1	0	NO	NO	
1	1	YES	YES	

Once the LOCK_U bit is active, the CRC is continuously calculated on the user programmable OTP Array, which includes the registers listed below:

Register Name	Register Addresses	Included in User CRC?
Type Register	TYPE[7:6]	Yes
Device ID Bit	DEVCFG[7]: 1	Yes
User Data Register 0	DEVCFG1[7:2]: UD00[5:0]	Yes
Attribute Bits	DEVCFG1[1:0]: AT_OTP[1:0]	Yes
PCM Bit	DEVCFG2[5]: PCM	Yes
RESERVED Bit	DEVCFG2[4]	Yes
Device Address	DEVCFG2[3:0]: ADDR[3:0]	Yes
User Data Registers 1 - 8	UD01 - UD08	Yes
User Programmable OTP Array CRC	DEVCFG[2:0]: CRC_U[2:0]	No
User Programmable OTP Array Lock Bit	DEVCFG2[7]: LOCK_U	No

Bits are fed in from right to left (LSB first), and top to bottom (lower addresses first) in the register map. The CRC verification uses a generator polynomial of $g(x) = X^3 + X + 1$, with a seed value = '111'. The calculated CRC is compared against the user programmed CRC, CRC_U[2:0], which is also included in the user programmable array. If a CRC mismatch is detected, an internal data error is set, and the device responds to DSI messages as specified in Section 4.3. The CRC verification is completed on the memory registers which hold a copy of the fuse array values, not the fuse array values. Writes to the User Programmable OTP array using the Write NVM Command will update the mirror registers and result in a change to the CRC calculation regardless of the state of the LOCK_U bit. A CRC mismatch will only be detected if the LOCK_U bit is active.

3.3 VOLTAGE REGULATORS

The device derives its internal supply voltage from the HCAP supply voltage. The device includes separate internal voltage regulators for the analog (V_{REGA}) and digital circuitry (V_{REGA}). External filter capacitors are required, as shown in Figure 1.

The voltage regulator module includes voltage monitoring circuitry which holds the device in reset following power-on until the HCAP and internal voltages have stabilized sufficiently for proper operation. The voltage monitor asserts internal reset when the HCAP supply or internally regulated voltages fall below predetermined levels. A reference generator provides a stable voltage which is used by the $\Sigma\Delta$ converter.

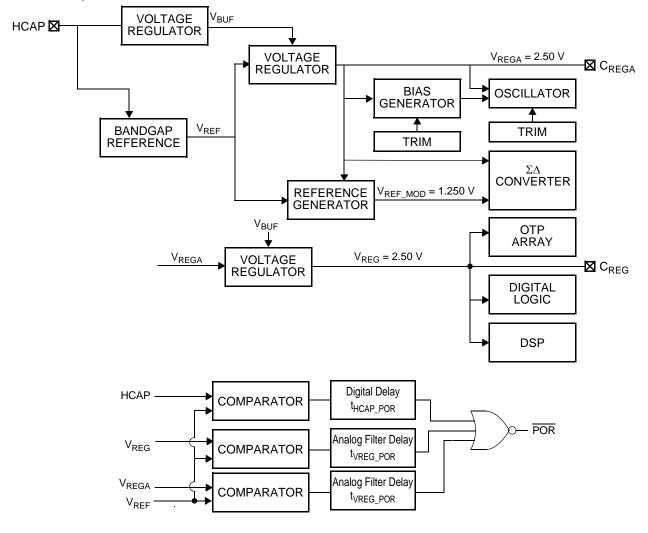


Figure 9. Voltage Regulation and Monitoring

3.3.1 C_{REG} and C_{REGA} Regulator Capacitor

The internal regulator requires an external capacitor between the C_{REG} pin and V_{SS} pin, and the C_{REGA} pin and V_{SSA} pin for stability. Figure 1 shows the recommended types and values for each of these capacitors.

3.3.2 V_{HCAP} Voltage Monitor

The device includes a circuit to monitor the voltage on the HCAP pin. If the voltage falls below the specified threshold in Section 2, the device will be reset within the reset delay time (t_{HCAP POR}) specified in Section 2.7.

3.3.3 V_{REG} and V_{REGA} Undervoltage Monitor

The device includes a circuit to monitor the internally regulated voltages (V_{REG} and V_{REGA}). If either of the internal regulator voltages fall below the specified thresholds in Section 2, the device will be reset within the reset delay time (t_{VREG_POR} , t_{VREGA_POR}) specified in Section 2.7.

3.3.4 V_{REG} and V_{REGA} Capacitance Monitor

A monitor circuit is incorporated to ensure predictable operation if the connection to the external C_{REG} or C_{REGA} capacitor becomes open. At a continuous rate specified in Section 2.7 ($t_{CAPTEST_RATE}$), both regulators are simultaneously disabled for a short duration ($t_{CAPTEST_TIME}$). If either of the external capacitors are not present, the associated regulator voltage will fall below the internal reset threshold, forcing a device reset.

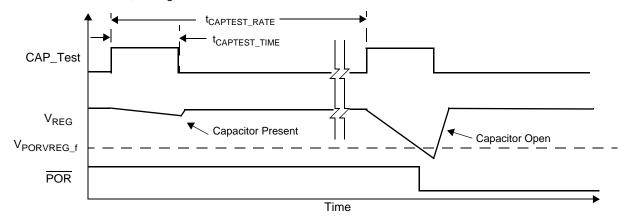


Figure 10. V_{REG} Capacitor Monitor

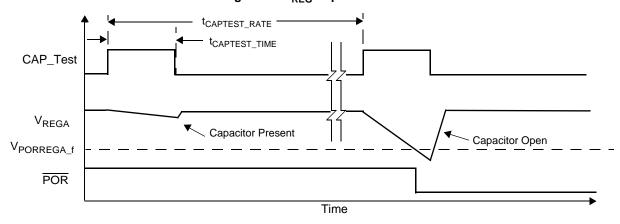


Figure 11. V_{REGA} Capacitor Monitor

3.4 Internal Oscillator

The device includes a factory trimmed oscillator as specified in Section 2.8.

3.5 Acceleration Signal Path

3.5.1 Transducer

The device transducer is an overdamped mass-spring-damper system described by the following transfer function:

$$H(s) = \frac{\omega_n^2}{s^2 + 2 \cdot \xi \cdot \omega_n \cdot s + \omega_n^2}$$

where:

 ζ = Damping Ratio

 ω_n = Natural Frequency = $2*\Pi*f_n$

Reference Section 2.8 for transducer parameters.

3.5.2 $\Sigma\Delta$ Converter

The sigma delta converter provides the interface between the g-cell and the DSP block. The output of the $\Sigma\Delta$ converter is a data stream at a nominal frequency of 1 MHz.

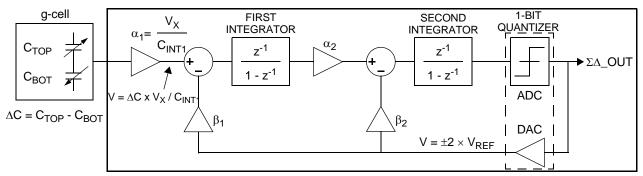


Figure 12. ΣΔ Converter Block Diagram

3.5.3 Digital Signal Processing Block

A digital signal processing (DSP) block is used to perform signal filtering and compensation operations. A diagram illustrating the signal processing flow within the DSP block is shown in Figure 13.

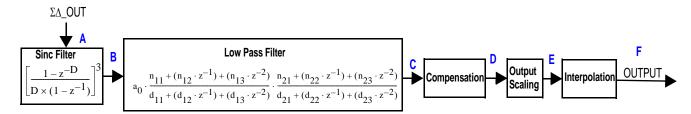


Figure 13. Signal Chain Diagram

Table 7. Signal Chain Characteristics

	Description	Sample Time (μs)	Data Width (Bits)	Over Range (Bits	Signal Width (Bits)	Signal Noise (Bits)	Signal Margin (Bits)	Typical Block Latency	Reference
Α	ΣΔ	1	1		1			112/f _{osc}	Section 3.5.2
В	SINC Filter	16	20		12	4		112/1 _{OSC}	Section 3.5.3.1
С	Low Pass Filter	16	26	1	12	4	9	Reference Section 3.5.3.2	Section 3.5.3.2
D	Compensation	16	26	4	10	3	9	24/f _{osc}	Section 3.5.3.3
Е	DSP Sampling	16			10			4/f _{osc}	Section 3.5.3.5
_	10-Bit Output Scaling	10			10			4/1osc	3ection 3.3.3.3
F	Interpolation	1			10			64/f _{osc}	Section 3.5.3.5

3.5.3.1 Decimation Sinc Filter

The serial data stream produced by the $\Sigma\Delta$ converters is decimated and converted to parallel values by a 3rd order 16:1 sinc filter with a decimation factor of 16.

$$H(z) = \left[\frac{1 - z^{-16}}{16 \times (1 - z^{-1})}\right]^3$$

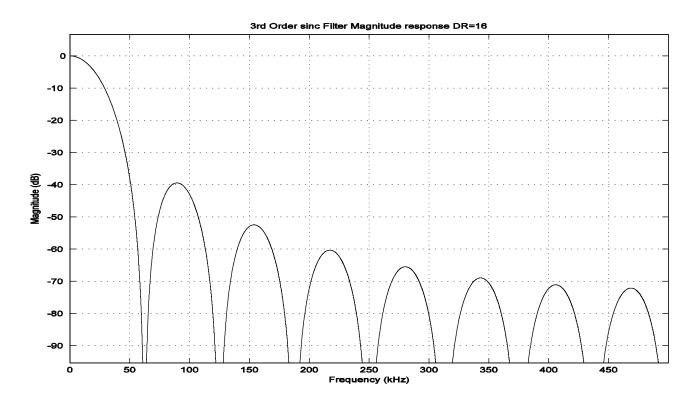


Figure 14. Sinc Filter Response, t_S = 16 μs

3.5.3.2 Low Pass Filter

Data from the Sinc filter is processed by an infinite impulse response (IIR) low pass filter.

$$H(z) = a_0 \cdot \frac{(n_{11} \cdot z^0) + (n_{12} \cdot z^{-1}) + (n_{13} \cdot z^{-2})}{(d_{11} \cdot z^0) + (d_{12} \cdot z^{-1}) + (d_{13} \cdot z^{-2})} \cdot \frac{(n_{21} \cdot z^0) + (n_{22} \cdot z^{-1}) + (n_{23} \cdot z^{-2})}{(d_{11} \cdot z^0) + (d_{22} \cdot z^{-1}) + (d_{23} \cdot z^{-2})}$$

The device provides the option for one of three low-pass filters. The filter is selected with the LPF[1:0] bits in the TYPE register. The filter selection options are listed in Section 3.1.2.1, Table 8. Response parameters for the low-pass filter are specified in Section 2.8. Filter characteristics are illustrated in the figures below.

Table 8. Low Pass Filter Coefficients

Description		Filter Coe	fficie	ents	Group Delay
	a ₀	0.000534069200512			
	n ₁₁	0.25	d ₁₁	1	
	n ₁₂	0.499999985098839	d ₁₂	-1.959839582443237	
180 Hz LPF	n ₁₃	0.25	d ₁₃	0.960373640060425	4608/f _{osc}
	n ₂₁	1	d ₂₁	1	
	n ₂₂	0	d ₂₂	0	
	n ₂₃	0	d ₂₃	0	
	a ₀	0.003135988372378			
	n ₁₁	0.000999420881271	d ₁₁	1.0	
	n ₁₂	0.001998946070671	d ₁₂		
400 Hz LPF	n ₁₃	0.000999405980110	d ₁₃	0.89558845758438	3392/f _{osc}
	n ₂₁	0.250004753470421	d ₂₁	1.0	
	n ₂₂	0.499986037611961	d ₂₂	-1.919075012207031	
	n ₂₃	0.250009194016457	d ₂₃	0.923072755336761	
	a ₀	0.011904109735042			
	n ₁₁	0.003841564059258	d ₁₁	1.0	
	n ₁₂	0.007683292031288	d ₁₂	-1.790004611015320	
800 Hz LPF	n ₁₃	0.003841534256935	d ₁₃	0.801908731460571	1728/f _{osc}
	n ₂₁	0.250001862645149	d ₂₁	1.0	
	n ₂₂	0.499994158744812	d ₂₂	-1.836849451065064	
	n ₂₃	0.250003993511200	d_{23}	0.852215826511383	

Note: Low Pass Filter Figures do not include g-cell frequency response.

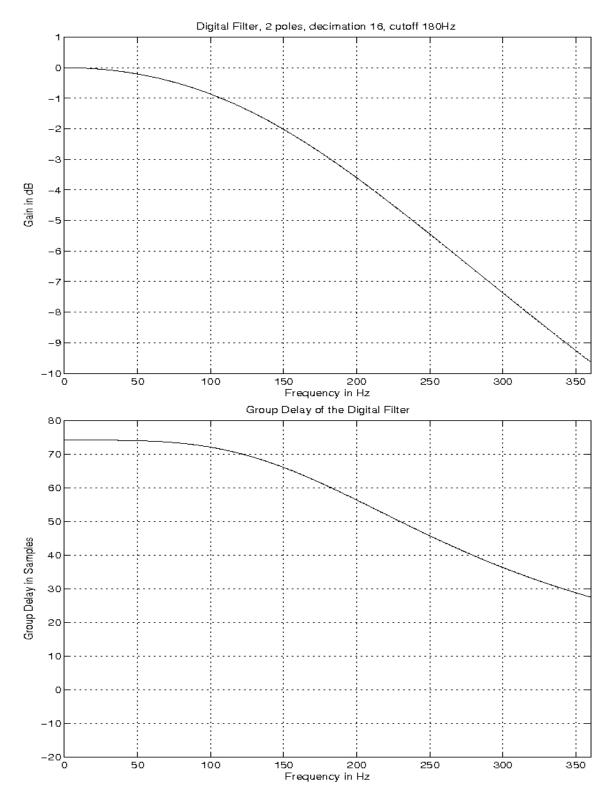


Figure 15. Low-Pass Filter Characteristics: f_{C} = 180 Hz, 2-Pole, t_{S} = 16 μs

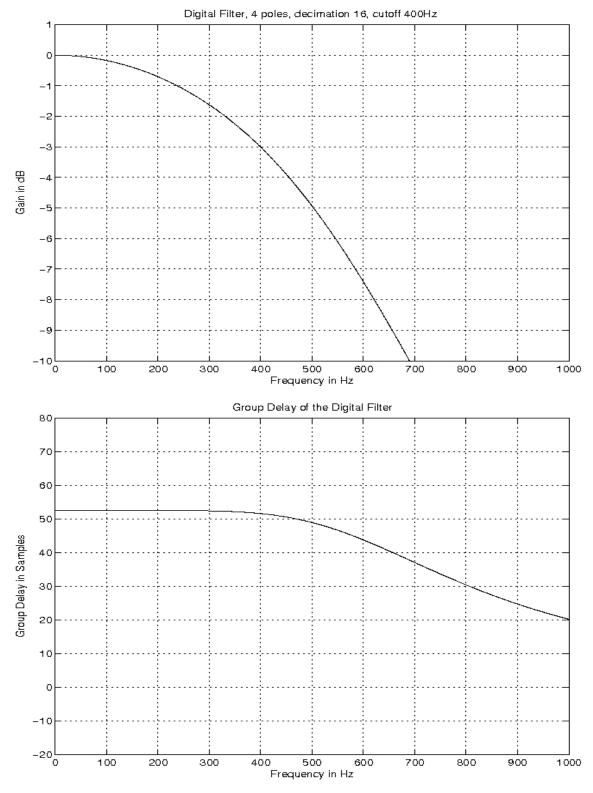


Figure 16. Low-Pass Filter Characteristics: f_{C} = 400 Hz, 4-Pole, t_{S} = 16 μs

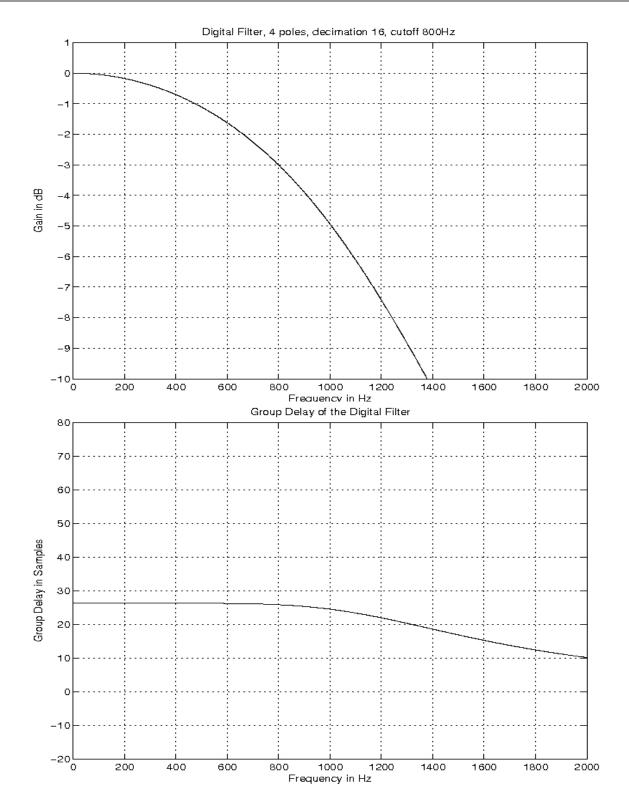


Figure 17. Low-Pass Filter Characteristics: f_{C} = 800 Hz, 4-Pole, t_{S} = 16 μs

3.5.3.3 Compensation

The device includes internal compensation circuitry to compensate for sensor offset, sensitivity and non-linearity.

3.5.3.4 Data Interpolation

The device includes 16 to 1 linear data interpolation to minimize the system sample jitter. Each result produced by the digital signal processing chain is delayed one sample time. On reception of an acceleration data request, the transmitted data is interpolated from the 2 previous samples, resulting in a latency of one sample time, and a maximum signal jitter of $\pm 1/16$ of a sample time. Reference Figure 8 for more information regarding interpolation and data latency.

3.5.3.5 Output Scaling

The 26 bit digital output from the DSP is clipped and scaled to a 10-bit or 8-Bit word which covers the acceleration range of the device. Figure 18 shows the method used to establish the acceleration data word from the 26-bit DSP output.

(Over I	Range	•					Sig	nal			Noise					Margin				
D25	D24	D23	D22	D21	D20	D19	D18	D17	7 D16 D15 D14 D13 D12 D11 D10 D9 D8 D2					D1	D0						
10	Bit Da	ata Wo	ord	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12			Us	ing Tr	uncati	ion		
9 Bit Data Word																					
8	Bit Da	ta Wo	rd	D21	D20	D19	D18	B D17 D16 D15 D14 Using Truncation													

Figure 18. Output Scaling Diagram

3.5.3.6 PCM Output Function

The device provides the option for a PCM output function. The PCM output is activated if the PCM bit is set in the DEVCFG2 register. When the PCM function is enabled, a 4 MHz Pulse Code Modulated signal proportional to the upper 9 bits of the acceleration response is output onto the PCM pin. The PCM output is intended for test use only. A block diagram of the PCM output is shown in Figure 19.

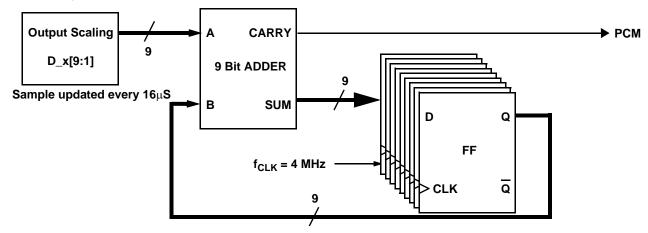


Figure 19. PCM Output Function Block Diagram

3.6 Device Initialization

Following power-up, under-voltage reset or reception of a DSI Clear Command, the device proceeds through an initialization process as described in the following tables:

Table 9. Power-up or Under-Voltage Reset Initialization Process

#	Description	Time	S Flag	ST Flag	DSI Response
1	Power up to a Known State	0	N/A	N/A	No Response
3	Read Fuse Array and Copy to Memory Array (Mirror Registers)		1	0	No Response
4	Initialize DSI State Machine (the device is ready for DSI Messages)	t _{DSI_INIT}	1	0	DSI Read Acceleration Data Short response = zero. DSI Read Acceleration Data Long response = invalid data.
5	Initialize the DSP (Acceleration Data is Valid)	t _{DSP_INIT}	0	0	Normal

Table 10. DSI Clear Command Initialization Process

#	Description	Time	S Flag	ST Flag	DSI Response
1	the device logic comes out of reset	0	1	0	No Response
3	Read Fuse Array and Copy to Memory Array (Mirror Registers)		1	0	No Response
4	Initialize DSI State Machine (the device is ready for DSI Messages)	t _{DSI_INIT}	1	0	DSI Read Acceleration Data Short response = zero. DSI Read Acceleration Data Long response = invalid data.
5	Initialize the DSP (Acceleration Data is Valid)	t _{DSP INIT}	0	0	Normal

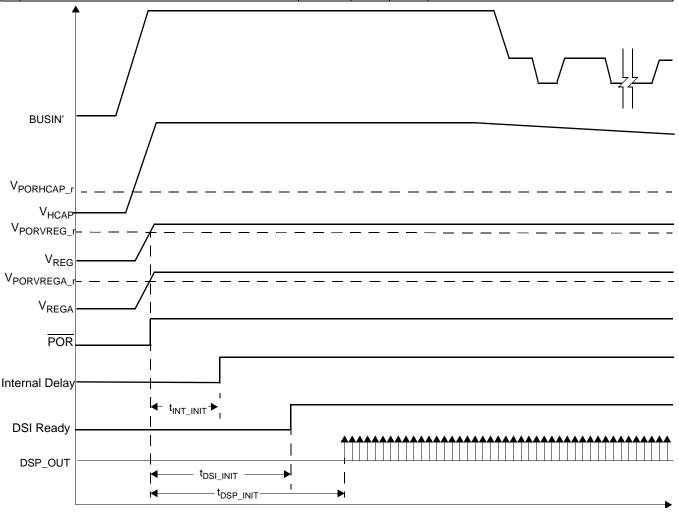


Figure 20. Initialization Timing

3.7 Overload Response

3.7.1 Overload Performance

The device is designed to operate within a specified range. however, acceleration beyond that range (overload) impacts the operating range output of the sensor. Acceleration beyond the range of the device can generate a DC shift at the output of the device that is dependent upon the overload frequency and amplitude. The device g-cell is overdamped, providing the optimal design for overload performance. However, the performance of the device during an overload condition is affected by many other parameters, including:

- · g-cell damping
- Non-linearity
- · Clipping limits
- Symmetry

Figure 21 shows the g-cell, Sigma Delta, and output clipping of the device over frequency. The relevant parameters are specified in Section 2.

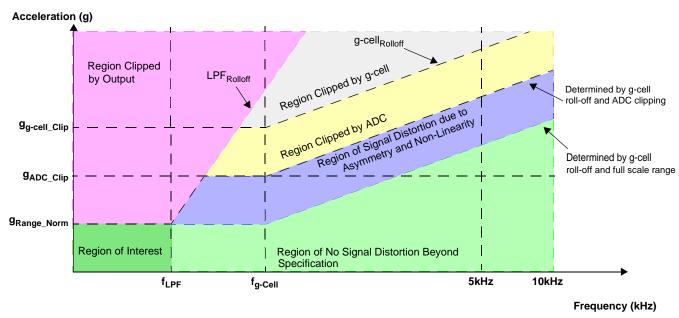


Figure 21. Output Clipping Vs. Frequency

3.7.2 Sigma Delta Overrange Response

Overrange conditions exist when the signal level is beyond the full-scale range of the device but within the computational limits of the DSP. The $\Sigma\Delta$ converter can saturate at levels above those specified in Section 2 (G_{ADC_CLIP}). The DSP operates predictably under all cases of overrange, although the signal may include residual high frequency components for some time after returning to the normal range of operation due to non-linear effects of the sensor.

4 DSI Protocol layer

4.1 Communication Interface Overview

The device is compatible compatible with the DSI Bus Standard V2.5.

4.1.1 DSI Physical Layer

Reference DSI Bus Standard V2.5, Section 3 for information regarding the physical layer.

4.1.2 DSI Data Link Layer

Reference DSI Bus Standard, V2.5, Section 4 for information regarding the DSI data link layer. The sections below describe the DSI data link layer features supported.

4.2 DSI Protocol

4.2.1 DSI Bus Commands

DSI Bus Commands are summarized in Table 11. The device supports only the command formats specified in Section 4.2.1. The device will ignore commands of any other format. If a CRC error is detected, or a reserved or un-implemented command is received, the device will not respond.

Following all messages, the device requires a minimum inter-frame separation (t_{IFS}). As long as the minimum inter-frame separation times defined in Section 4.2.1 are met, all supported commands are guaranteed to be executed, and the device will be ready for the next message. The device will respond as appropriate during the subsequent DSI transfer. Exactly one response is attempted.

Table 11. DSI Bus Command Summary

			(Comma	and	Command Format				Da	ita			
C3	C2	C1	C0	Hex	Description		D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	\$0	Initialization	Standard Long Only	NV	BS	Bnk[1]	Bnk[0]	PA[3]	PA[2]	PA[1]	PA[0]
0	0	0	1	\$1	Request Status	Standard/Enhanced L/S	_	_	_	_	_	_		_
0	0	1	0	\$2	Read Acceleration Data	Standard/Enhanced L/S	_	_	_	_	_	_	_	_
0	0	1	1	\$3	Not Implemented	Not Implemented		•	•	Not Impl	emented		•	
0	1	0	0	\$4	Request ID Information					_				
0	1	0	1	\$5	Not Implemented	Not Implemented				Not Impl	emented			
0	1	1	0	\$6	Not Implemented	Not Implemented				Not Impl	emented			
0	1	1	1	\$7	Clear	Standard/Enhanced L/S	_	_	_	_	_	_	_	_
1	0	0	0	\$8	Not Implemented	Not Implemented				Not Impl	emented			
1	0	0	1	\$9	Read Write NVM	Standard/Enhanced L	WA[3]	WA[2]	WA[1]	WA[0]	RD[3]	RD[2]	RD[1]	RD[0]
1	0	1	0	\$A	Format Control	Standard/Enhanced L	R/W	FA[2]	FA[1]	FA[0]	FD[3]	FD[2]	FD[1]	FD[0]
1	0	1	1	\$B	Read Register Data	Standard/Enhanced L	0	0	0	0	RA[3]	RA[2]	RA[1]	RA[0]
1	1	0	0	\$C	Disable Self-Test	Standard/Enhanced L/S	_	_	_	_	_	_	_	_
1	1	0	1	\$D	Activate Self-Test	Standard/Enhanced L/S	_	_	_	_	_	_	_	_
1	1	1	0	\$E	Not Implemented	Not Implemented				Not Impl	emented			
1	1	1	1	\$F	Reverse Initialization	Not Implemented	Not Implemented							

4.2.1.1 Initialization Command

The initialization command conforms to the description provided in Section 6.1.1 of the DSI Bus Standard V2.5. The initialization command is only supported as a standard long command. No other commands are recognized by the device until a valid standard long initialization command is received.

Table 12. Initialization Command

	Data								Add	ress			CRC			
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[3]	A[2]	A[1]	A[0]	C[3]	C[2]	C[1]	C[0]	CICO
NV	BS	Bnk[1]	Bnk[0]	PA[3]	PA[2]	PA[1]	PA[0]	A[3]	A[2]	A[1]	A[0]	0	0	0	0	4 bits

Table 13. Initialization Command Bit Definitions

Bit Field			Definition
C[3:0]	Initialization Command	= '0000'	
A[3:0]	DSI device address. Thi has been assigned.	s address is set to the	pre-programmed device address following reset, or to '0000' if no pre-programmed address
PA[3:0]	DSI Address to be progr	rammed.	
Bnk[1:0]		B1 and B0 result in no	er writable data registers. Bank selection affects the Read/Write NVM command operation. o response from the device to the associated initialization. Refer to Section 4.2.1.10 for furned bank selection.
BS	No bus switch is include 1 - the device is Reset. 0 - Normal Operation		
NV	NVM Program Enable. I device during subseque 1 - Enable OTP progran 0 - Disable OTP prograr	nt Read Write NVM comming	amming of the user-programmed OTP locations. Data to be programmed is transferred to the ommands.

If the BS bit is set in the initialization command, the device will be reset within t_{BSOPEN}.

If the device has been pre-programmed, PA[3:0] and A[3:0] must match the pre-programmed address.

If no device address has been previously programmed into the OTP array, PA[3:0] contains the device address, and A[3:0] must be zero. If either addressing condition is not met, the device address is not assigned, and the device will not respond to the Initialization command. If the addressing conditions are met, the new device address is assigned to A[3:0]. Once the device address is assigned, the new address (A[3:0]) is not protected by the User Programmable OTP Array CRC Verification. The User Programmable OTP array CRC is calculated and verified using the OTP programmed values of A[3:0] = '0000'.

Once initialized, the device will no longer recognize or respond to Initialization commands.

Table 14. Initialization Command Response

Response															CRC	
D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	ONO
PA[3]	PA[2]	PA[1]	PA[0]	0	0	0	BF	NV	0	Bnk[1]	Bnk[0]	PA[3]	PA[2]	PA[1]	PA[0]	4 bits

Table 15. Initialization Response Bit Definitions

Bit Field		Definition
PA[3:0]		evice address. If the device is unprogrammed when the initialization command is issued, the is the programmed address. An Initialization command which attempts to assign a device
Bnk[1:0]		er writable data registers. Bank selection affects the Read/Write NVM command operation. o response from the device to the associated initialization. Refer to Section 4.2.1.10 for furning bank selection.
NV	NVM Program Enable. This bit indicates if pr 1 - OTP programming Enabled 0 - OTP programming Disabled	ogramming of the user-accessible OTP is enabled.
BF	This bit indicates the success or failure of the 1 - Bus fault detected 0 - Bus test passed	bus test performed as part of the Initialization command.

4.2.1.2 Request Status Command

The Request Status command is supported in the following command formats:

- · Standard Long Command
- Standard Short Command
- Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)
- Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)

The device ignores the Request Status command if the DSI device address is set to the DSI Global Device Address of '0000'. The data bits D[7:0] in the command are only used in the CRC calculation.

Table 16. Request Status Command

	Data								Address				Command				
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[3]	A[2]	A[1]	A[0]	C[3]	C[2]	C[1]	C[0]	CRC	
_	_	_	_		_			A[3]	A[2]	A[1]	A[0]	0	0	0	1	0 to 8 bits	

Table 17. Request Status Command Bit Definitions

Bit Field	Definition
C[3:0]	Request Status Command = '0001'
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.
D[7:0]	Used for CRC calculation only

Table 18. Short Response - Request Status Command

	Response										CRC				
D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	OICO
0	0	0	0	0	0	0	NV	U	ST	0	AT[1]	AT[0]	S	0	0 to 8 bits

Table 19. Long Response - Request Status Command

	Data								CRC							
D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	OKO
A[3]	A[2]	A[1]	A[0]	0	0	0	0	NV	U	ST	0	AT[1]	AT[0]	S	0	0 to 8 bits

Table 20. Request Status Response Bit Definitions

Bit Field	Definition
S	This bit indicates whether the device has detected an internal device error. 1 - Internal Error detected. 0 - No Internal Error detected Reference Table 59 for conditions that set the S bit.
AT[1:0]	Attribute bits located in Register DEVCFG1 (Reference Section 3.1.4.2)
ST	This bit indicates whether internal self-test circuitry is active 1 - Self-test active 0 - Self-test disabled
U	This bit is set if the voltage at HCAP is below the threshold specified in Section 2. Refer to Section 3.3.2 for details.
NV	NVM Program Enable. This bit indicates whether programming of the user-programmable OTP locations is enabled. 1 - OTP programming Enabled 0 - OTP programming Disabled
A[3:0]	DSI device address. This field contains the device address.
	Shaded bits are transmitted to meet the response message length of the received message

4.2.1.3 Read Acceleration Data Command

The Read Acceleration Data command is supported in the following command formats:

- · Standard Long Command
- · Standard Short Command
- Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)
- Enhanced Short Command as configured by the Form at Control Command (Reference Section 4.2.1.11)

The device ignores the Request Status command if the DSI device address is set to the DSI Global Device Address of '0000'. The data bits D[7:0] in the command are only used in the CRC calculation.

Table 21. Read Acceleration Data Command

	Data Drei Drei Drei Drei									ress			CRC			
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[3]	A[2]	A[1]	A[0]	C[3]	C[2]	C[1]	C[0]	OKO
_	_		_		_		_	A[3]	A[2]	A[1]	A[0]	0	0	1	0	0 to 8 bits

Table 22. Read Acceleration Data Command Bit Definitions

Bit Field	Definition
C[3:0]	Read Acceleration Data Command = '0010'
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.
D[7:0]	Used for CRC calculation only

Table 23. Short Response - Read Acceleration Data Command

Response		Response								CRC						
Length	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	OKO
8								AD[9]	AD[8]	AD[7]	AD[6]	AD[5]	AD[4]	AD[3]	AD[2]	
9							AD[9]	AD[8]	AD[7]	AD[6]	AD[5]	AD[4]	AD[3]	AD[2]	AD[1]	
10																
11																0 to 8 bits
12						AD[9]	AD[8]	AD[7]	AD[6]	AD[5]	AD[4]	AD[3]	AD[2]	AD[1]	AD[0]	o to o bito
13				0	S	/\D[0]	/\D[0]	7.0[7]	/\D[0]	/\D[0]	ال ۱۸	/\D[0]	/\D[Z]	رازا	/\D[0]	
14		AT_OTP[0]	ST													
15	AT_OTP[1]	A1_011 [0]														

Table 24. Long Response - Read Acceleration Data Command

	Response										CRC					
D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	OICO
A[3]	A[2]	A[1]	A[0]	0	S	AD[9]	AD[8]	AD[7]	AD[6]	AD[5]	AD[4]	AD[3]	AD[2]	AD[1]	AD[0]	0 to 8 bits

Table 25. Read Acceleration Response Bit Definitions

Bit Field	Definition
AD[9:0]	Ten-bit acceleration result produced by the device.
S	This bit indicates whether the device has detected an internal device error. 1 - Internal Error detected. 0 - No Internal Error detected Reference Table 59 for conditions that set the S bit.
ST	This bit indicates whether internal self-test circuitry is active 1 - Self-test active 0 - Self-test disabled
A[3:0]	DSI device address. This field contains the device address.
AT_OTP[1:0]	Attribute bits located in Register DEVCFG1 (Reference Section 3.1.4.2)
	Shaded bits are transmitted to meet the response message length of the received message

The device truncates the LSBs for Acceleration Data Responses of length less than 10. If the result of the truncation is 0, the minimum acceleration value is transmitted as defined in Table 26.

Table 26. Acceleration Data Values

8-Bit Dat	a Value	9-Bit Dat	a Value	10-Bit Da	ıta Value	Description				
Decimal	Hex	Decimal	Hex	Decimal	Hex	Description				
255	0xFF	511	0x1FF	1023	0x3FF	Maximum positive acceleration value				
•	•	•	•	•	•					
•	•	•	•	•	•					
•	•	•	•	•	•					
131	0x83	259	0x103	515	0x203	Positive acceleration values				
130	0x82	258	0x102	514	0x202					
129	0x81	257	0x101	513	0x201					
128	0x80	256	0x100	512	0x200	Typical 0 g level				
127	0x7F	127	0x0FF	511	0x1FF					
126	0x7E	126	0x0FE	510	0x1FE	Negative acceleration values				
125	0x7D	125	0x0FD	509	0x1FD					
•	•	•	•	•	•					
•	•	•	•	•	•					
•	•	•	•	•	•					
1	1	1	1	1	1	Maximum negative acceleration value Sensor Error				
0	0	0	0	0	0					

4.2.1.4 DSI Command #3

DSI Command '0011' is not implemented. The device ignores all command formats with a command ID of '0011'.

4.2.1.5 Request ID Information Command

The Request ID Information command is supported in the following command formats:

- · Standard Long Command
- · Standard Short Command
- Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)
- Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)

The device ignores the Request ID Information command if the DSI device address is set to the DSI Global Device Address of '0000'. The data bits D[7:0] in the command are only used in the CRC calculation.

Table 27. Request ID Information Command

	Data									ress			CRC			
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[3]	A[2]	A[1]	A[0]	C[3]	C[2]	C[1]	C[0]	OKO
_	_		_		_		_	A[3]	A[2]	A[1]	A[0]	0	1	0	0	0 to 8 bits

Table 28. Request ID Information Command Bit Definitions

Bit Field	Definition
C[3:0]	Request ID Information Data Command = '0100'
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.
D[7:0]	Used for CRC calculation only

Table 29. Short Response - Request ID Information Command

						R	espons	е							CRC
D[14]	D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]														
0	0 0 0 0 0 0 0 0 V2 V1 V0 0 1 1 1 0 0														0 to 8 bits

Table 30. Long Response - Request ID Information Command

							Resp	onse								CRC
D[15]	D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]														CICC	
A[3]	A[3] A[2] A[1] A[0] 0 0 0 0 V[2] V[1] V[0] 0 1 1 1 0 0													0 to 8 bits		

Table 31. Request ID Response Bit Definitions

Bit Field	Definition
D[4:0] = {5'b01110}	Device Identifier: '01110'
_[] (5.55.1.5)	
V[2:0]	Version ID. This field indicates the device / silicon revision of the device.
A[3:0]	DSI device address. This field contains the device address.
	Shaded bits are transmitted to meet the response message length of the received message

4.2.1.6 DSI Command #5

DSI Command '0101' is not implemented. The device ignores all command formats with a command ID of '0101'.

4.2.1.7 DSI Command #6

DSI Command '0110' is not implemented. The device ignores all command formats with a command ID of '0110'.

4.2.1.8 Clear Command

The Clear command is supported in the following command formats:

- · Standard Long Command
- · Standard Short Command
- Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)
- Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)

When the device successfully decodes a Clear Command, and the address field matches either the assigned device address (PA[3:0]) or the DSI Global address of '0000' the device logic is reset. Reference Section 3.6 for the initialization sequence following a Clear Command. The data bits D[7:0] in the command are only used in the CRC calculation. There is no response to the Clear Command.

Table 32. Clear Command

	Data DIS1 DIS1 DI31 DI31 DI31 DI31 DI31 DI31									ress			Comi	CRC		
D[7]	D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]							A[3]	A[2]	A[1]	A[0]	C[3]	C[2]	C[1]	C[0]	ONO
_	_		_	_	_		_	A[3]	A[2]	A[1]	A[0]	0	1	1	1	0 to 8 bits

Table 33. Clear Command Bit Definitions

Bit Field	Definition
C[3:0]	Clear Command = '0111'. When a Clear Command is successfully decoded and the address field matches either the assigned device address or the DSI Global Device Address of '0000' the device logic is reset. Reference Section 3.6 for the initialization sequence following a Clear Command.
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field or the Global Device Address of '0000'. Otherwise, the command is ignored.
D[7:0]	Used for CRC calculation only

4.2.1.9 DSI Command #8

DSI Command '1000' is not implemented. The device ignores all command formats with a command ID of '1000'.

4.2.1.10 Write NVM Command

The Write NVM command is supported in the following command formats:

- · Standard Long Command
- Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)

The device ignores the Write NVM command if the command is in any other format, or if the DSI device address is set to the DSI Global Device Address of '0000'.

The Write NVM command uses the nibble address definitions in Table 2 and summarized in Table 39.

Table 34. Write NVM Command

			Da	ıta					Add	ress			Comi	mand		CRC
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[3]	A[2]	A[1]	A[0]	C[3]	C[2]	C[1]	C[0]	OKO
WA[3]	WA[2]	WA[1]	WA[0]	RD[3]	RD[2]	RD[1]	RD[0]	A[3]	A[2]	A[1]	A[0]	1	0	0	1	0 to 8 bits

Table 35. Write NVM Command Bit Definitions

Bit Field	Definition
C[3:0]	Write NVM Command = '1001'
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.
RD[3:0]	RD[3:0] contains the data to be written to the OTP location addressed by WA[3:0] when the NV bit is set.
WA[3:0]	WA[3:0] contains the nibble address of the OTP register to be written to when the NV bit is set.

Table 36. Long Response - Write NVM Command (NV = 1)

							Da	ıta								CRC
D[15]	D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]														OKO	
A[3]	A[3] A[2] A[1] A[0] WA[3] WA[2] WA[1] WA[0] 1 1 Bnk[1] Bnk[0] RD[3] RD[2] RD[1] RD[0] C													0 to 8 bits		

Table 37. Long Response - Write NVM Command (NV = 0)

							Da	ıta								CRC
D[15]	D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]														CICC	
A[3]	A[2]	A[1]	A[0]	0	0	0	0	1	1	1	1	A[3]	A[2]	A[1]	A[0]	0 to 8 bits

Table 38. Write NVM Response Bit Definitions

Bit Field	Definition
Bnk[1:0]	These bits provide the bank address selected in the Initialization command.
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.
RD[3:0]	RD[3:0] contains the contents of the registers addressed by WA[3:0] after the execution of the NVM write.
WA[3:0]	WA[3:0] contains the nibble address of the OTP register to be written to when the NV bit is set.

Writes to OTP occur only if the NV bit is set. The NV bit is set by the Initialization Command (reference Section 4.2.1.1). If the NV bit is cleared when the command is executed, the mirror registers addressed by WA[3:0] are updated with the contents of RD[3:0] and the DSI Device Address is returned regardless of the WA[3:0] value. If the Write NVM command is a request to change the Device Address, the new Device Address is returned.

The DSI Bus idle voltage must exceed the minimum V_{PP} voltage when programming the OTP array. No internal verification of the VPP voltage is completed while writing is in process. To verify proper writes, it is recommend that the registers be read back after writes to verify proper contents. The total Execution time for the Write NVM command is t_{PROG_BIT} times the number of bits being programmed (1 - 4 bits). Inter-frame spacing between the Write NVM command and the subsequent DSI command must accommodate this timing.

Writes to the User Programmable OTP array using the Write NVM Command will update the mirror registers and result in a change to the CRC calculation regardless of the state of the NV bit and the LOCK_U bit. A CRC mismatch will only be detected if the LOCK_U bit is active (reference Section 3.2.2).

Table 39. OTP Register Nibble Address Assignments

Bank A	ddress	Regi	ster Add	ress (Nil	oble)	Dawleton.	Paradiation.					
Bnk[1]	Bnk[0]	WA[3]	WA[2]	WA[1]	WA[0]	Register	Description					
х	Х	0	0	0	0	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
х	Х	0	0	0	1							
х	х	0	0	1	0							
х	х	0	0	1	1	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
х	х	0	1	0	0							
х	х	0	1	0	1							
0	0	0	1	1	0	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
0	0	0	1	1	1	DEVCFG2[7]	Only RD[3] is written to the LOCK_U bit					
0	0	1	0	0	0	TYPE[7:6]	Only RD[3:2] is written to LPF[1:0]					
0	0	1	0	0	1	DEVCFG[3:0]	RD[3] is written to DEVCFG[3] - UNUSED, RD[2:0] is written to CRC_U[2:0]					
0	0	1	0	1	0	DEVCFG[7:4]	RD[3:0] is written to DEVCFG[7:4] - UNUSED					
0	0	1	0	1	1	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
0	0	1	1	0	0	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
0	0	1	1	0	1	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
0	0	1	1	1	0	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
0	0	1	1	1	1	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
0	1	0	1	1	0	DEVCFG1[3:0]	RD[3:2] is written to UD00[1:0], RD[1:0] is written to AT[1:0]					
0	1	0	1	1	1	DEVCFG2[3:0]	RD[3:0] is written to ADDR[3:0]					
0	1	1	0	0	0	UD01[3:0]	RD[3:0] is written to UD01[3:0]					
0	1	1	0	0	1	UD02[3:0]	RD[3:0] is written to UD02[3:0]					
0	1	1	0	1	0	UD03[3:0]	RD[3:0] is written to UD03[3:0]					
0	1	1	0	1	1	UD04[3:0]	RD[3:0] is written to UD04[3:0]					
0	1	1	1	0	0	UD05[3:0]	RD[3:0] is written to UD05[3:0]					
0	1	1	1	0	1	UD06[3:0]	RD[3:0] is written to UD06[3:0]					
0	1	1	1	1	0	UD07[3:0]	RD[3:0] is written to UD07[3:0]					
0	1	1	1	1	1	UD08[3:0]	RD[3:0] is written to UD08[3:0]					
1	0	0	1	1	0	DEVCFG1[7:4]	RD[3:0] is written to UD00[5:2]					
1	0	0	1	1	1	DEVCFG2[5]	Only RD[1] is written to the PCM bit					
1	0	1	0	0	0	UD01[7:4]	RD[3:0] is written to UD01[7:4]					
1	0	1	0	0	1	UD02[7:4]	RD[3:0] is written to UD02[7:4]					
1	0	1	0	1	0	UD03[7:4]	RD[3:0] is written to UD03[7:4]					
1	0	1	0	1	1	UD04[7:4]	RD[3:0] is written to UD04[7:4]					
1	0	1	1	0	0	UD05[7:4]	RD[3:0] is written to UD05[7:4]					
1	0	1	1	0	1	UD06[7:4]	RD[3:0] is written to UD06[7:4]					
1	0	1	1	1	0	UD07[7:4]	RD[3:0] is written to UD07[7:4]					
1	0	1	1	1	1	UD08[7:4]	RD[3:0] is written to UD08[7:4]					
1	1	0	1	1	0	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
1	1	0	1	1	1	DEVCFG2[6]	Only RD[2] is written to the DEVCFG2[6] bit (UNUSED)					
1	1	1	0	0	0	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
1	1	1	0	0	1	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR					
1	1	1	0	1	0	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
1	1	1	0	1	1	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
1	1	1	1	0	0	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
1	1	1	1	0	1	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
1	1	1	1	1	0	UNUSED	No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]					
1	1	1	1	1	1	DEVCFG2[4]	Only RD[0] is written to DEVCFG2[4]					

4.2.1.11 Format Control Command

The Format Control command is supported in the following command formats:

- Standard Long Command
- Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)

The device ignores the Format Control command if the command is in any other format. The device supports the Format Control command with the DSI Global Address of '0000', but does not provide a response.

Table 40. Format Control Command

			Da	ata					Add	ress				CRC		
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[3]	A[2]	A[1]	A[0]	C[3]	C[2]	C[1]	C[0]	OKO
R/W	FA[2]	FA[1]	FA[0]	FD[3]	FD[2]	FD[1]	FD[0]	A[3]	A[2]	A[1]	A[0]	1	0	1	0	0 to 8 bits

Table 41. Format Control Command Bit Definitions

Bit Field	Definition
C[3:0]	Format Control Command = '1010'
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.
FD[3:0]	Data to be written to the Format Control Register addressed by FA[2:0] if the R/W bit is set to '1'.
FA[2:0]	The Address of the Format Control Register to read or written.
R/W	Read/Write determines if the register at address FA[2:0] is to be read or written. 1 - Write FD[3:0] to the Format Control Register addressed by FA[2:0] 0 - Read the Format Control Register addressed by FA[2:0]

Table 42. Long Response - Format Control Command

	Response														CRC	
D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	ONO
A[3]	A[3] A[2] A[1] A[0] 0 1 1 0 R/W FA[2] FA[1] FA[0] FD[3] FD[2] FD[1] FD[0] 0													0 to 8 bits		

Table 43. Format Control Response Bit Definitions

Bit Field	Definition
FD[3:0]	The contents of the Format Control Register addressed by FA[2:0].
FA[2:0]	The Address of the Format Control Register that was read or written.
R/W	Read/Write indicates if the register at address FA[2:0] was read or written. 1 - FD[3:0] contains the data written to the Format Control Register addressed by FA[2:0] 0 - FD[3:0] contains the contents for the Format Control Register addressed by FA[2:0]
A[3:0]	DSI device address. This field contains the device address.

The format control registers defined in the DSI Bus Standard V2.5 are shown in Table 44. The reset values assigned to each register are also indicated.

Table 44. Format Control Register Values

Format Control Register	Regis	ster Ad	dress		Reset	Values		DSI	Standa	ard Val	Definition	
Tormat Control Register	FA[2]	FA[1]	FA[0]	FD[3]	FD[2]	FD[1]	FD[0]	FD[3]	FD[2]	FD[1]	FD[0]	Deminion
CRC Polynomial - Low Nibble	0	0	0	0	0	0	1	0	0	0	1	CRC Polynomial = X ⁴ +1
CRC Polynomial - High Nibble	0	0	1	0	0	0	1	0	0	0	1	ONO I diyildililal = X +1
Seed - Low Nibble	0	1	0	1	0	1	0	1	0	1	0	Seed = '1010'
Seed - High Nibble	0	1	1	0	0	0	0	0	0	0	0	3eeu = 1010
CRC Length (0 to 8)	1	0	0	0	1	0	0	0	1	0	0	CRC Length = 4
Short Word Data Length (8 to 15)	1	0	1	1	0	0	0	1	0	0	0	Short Command Length = 8
Reserved	1	1	0	0	0	0	0	0	0	0	0	N/A
Format Selection	1	1	1	0	0	0	0	0	0	0	0	N/A

The following restrictions apply to format control register operations:

- Writes to the CRC Length Register of values greater than 8 are ignored. The contents of the register are unchanged.
- Writes to the Short Word Data Length register of values less than 8 are ignored. The contents of the register are unchanged.

The contents of the Format Selection register determine whether the standard DSI values or the values in the format control registers are used. If the Format Selection register contains '1111', the Format Control register values are active. Any write to the Format Control registers will become active upon completion of the write. In this case, the response to a Format Control Command will maintain the format of the previous command resulting in an invalid response.

A write of '0000' to the Format Selection register activates the standard DSI values.

A write to the Format Selection register of any other value is ignored.

4.2.1.12 Read Register Data Command

The Read Register Data command is supported in the following command formats:

- · Standard Long Command
- Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)

The device ignores the Register Data command if the command is in any other format, or if the DSI device address is set to the DSI Global Device Address of '0000'.

The read register command uses the byte address definitions shown in Table 2. Readable registers along with their Byte addresses are shown in Table 2.

Table 45. Read Register Data Command

	Data Drei Drei Drei Drei Drei									ress			CRC			
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[3]	A[2]	A[1]	A[0]	C[3]	C[2]	C[1]	C[0]	OKO
0	0	0	0	RA[3]	RA[2]	RA[1]	RA[0]	A[3]	A[2]	A[1]	A[0]	1	0	1	1	0 to 8 bits

Table 46. Read Register Data Command Bit Definitions

Bit Field	Definition
C[3:0]	Read Register Data Command = '1011'
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.
RA[3:0]	RA[3:0] contains the byte address of the register to be read.

Table 47. Long Response - Read Register Data Command

							Da	ıta	Data													
D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	CRC						
A[3]	A[2]	A[1]	A[0]	RA[3]	RA[2]	RA[1]	RA[0]	RD[7]	RD[6]	RD[5]	RD[4]	RD[3]	RD[2]	RD[1]	RD[0]	0 to 8 bits						

Table 48. Read Register Data Response Bit Definitions

Bit Field	Definition
RD7:0]	RD[7:0] contains the data of the register addressed by RA[3:0].
RA[3:0]	RA[3:0] contains the byte address of the register to be read.
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.

4.2.1.13 Disable Self-Test Command

The Disable Self Test command is supported in the following command formats:

- Standard Long Command
- Standard Short Command
- Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)
- Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)

The data bits D[7:0] in the command are only used in the CRC calculation. The device supports the Disable Self Test command with the DSI Global Address of '0000', but does not provide a response.

The Disable Self Test Command removes the voltage from the self test plate of the transducer which results in the acceleration output value returning to the 0g offset value within $t_{ST\ DEACT\ xxx}$, as specified in Section 2.

Table 49. Disable Self-Test Command

	Data DIG1 DIG1 DIG1 DIG1 DIG1 DIG1									ress			CRC			
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[3]	A[2]	A[1]	A[0]	C[3]	C[2]	C[1]	C[0]	OKO
_	_	_	_	_	_	_	_	A[3]	A[2]	A[1]	A[0]	1	1	0	0	0 to 8 bits

Table 50. Disable Self-Test Command Bit Definitions

Bit Field	Definition
C[3:0]	Disable Self-Test Command = '1100'
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.
D[7:0]	Used for CRC calculation only

Table 51. Short Response - Disable Self-Test Command

Response														CRC	
D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	CKC
0	0 0 0 0 0 0 NV U ST 0 AT[1] AT[0] S 0 C													0 to 8 bits	

Table 52. Long Response - Disable Self-Test Command

Data															CRC	
D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Onto
A[3]	A[3] A[2] A[1] A[0] 0 0 0 NV U ST 0 AT[1] AT[0] S 0 C														0 to 8 bits	

Table 53. Disable Self Test Response Bit Definitions

Bit Field	Definition
S	This bit indicates whether the device has detected an internal device error. 1 - Internal Error detected. 0 - No Internal Error detected Reference Table 59 for conditions that set the S bit.
AT[1:0]	Attribute bits located in Register DEVCFG1 (Reference Section 3.1.4.2)
ST	This bit indicates whether internal self-test circuitry is active 1 - Self-test active 0 - Self-test disabled
U	This bit is set if the voltage at HCAP is below the threshold specified in Section 2. Refer to Section 3.3.2 for details.
NV	NVM Program Enable. This bit indicates whether programming of the user-programmable OTP locations is enabled. 1 - OTP programming Enabled 0 - OTP programming Disabled
A[3:0]	DSI device address. This field contains the device address.

A self-test lockout is activated when the device receives two consecutive Disable Self-Test commands Once self-test lockout is activated, the internal self-test circuitry is disabled until one of the following conditions occurs:

- HCAP undervoltage
- A Clear command is received
- · Internal regulator undervoltage resulting in a reset.
- · A Frame Timeout resulting in a reset.

4.2.1.14 Enable Self-Test Command

The Enable Self Test command is supported in the following command formats:

- · Standard Long Command
- · Standard Short Command
- Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)
- Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)

The data bits D[7:0] in the command are only used in the CRC calculation. The device ignores the Enable Self Test command when it is sent to the DSI Global Address of '0000'.

The Enable Self Test Command applies a voltage to the self test plate of the transducer which results in a delta in the acceleration output value of $\Delta DFLCT_xxx$ within $t_{ST_ACT_xxx}$, as specified in Section 2. This remains present until the Disable Self Test command is received.

Activation of the self test circuit is inhibited if the self-test locking has been activated. If self-test locking is activated, the internal self test circuitry remains disabled, and the ST bit is cleared in the response. Self-test locking is described in Section 4.2.1.13.

Table 54. Enable Self-Test Command

Data						Address				Command				CRC		
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[3] A[2] A[1] A[0]				C[3]	C[2]	C[1]	C[0]	ONO
_	_		_	_	_	_	_	A[3]	A[2]	A[1]	A[0]	1	1	0	1	4 bits

Table 55. Enable Self-Test Command Bit Definitions

Bit Field	Definition
C[3:0]	Enable Self-Test Command = '1101'
A[3:0]	DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is ignored.
D[7:0]	Used for CRC calculation only

Table 56. Short Response - Enable Self-Test Command

Response											CRC				
D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]										ONO					
0	0	0	0	0	0	0	NV	U	ST	0	AT[1]	AT[0]	S	0	4 bits

Table 57. Long Response - Enable Self-Test Command

Data												CRC				
D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]											ONO					
A[3]	A[2]	A[1]	A[0]	0	0	0	0	NV	U	ST	0	AT[1]	AT[0]	S	0	4 bits

Table 58. Enable Self Test Response Bit Definitions

Bit Field	Definition
S	This bit indicates whether the device has detected an internal device error. 1 - Internal Error detected. 0 - No Internal Error detected Reference Table 59 for conditions that set the S bit.
AT[1:0]	Attribute bits located in Register DEVCFG1 (Reference Section 3.1.4.2)
ST	This bit indicates whether internal self-test circuitry is active 1 - Self-test active 0 - Self-test disabled
U	This bit is set if the voltage at HCAP is below the threshold specified in Section 2. Refer to Section 3.3.2 for details.
NV	NVM Program Enable. This bit indicates whether programming of the user-programmable OTP locations is enabled. 1 - OTP programming Enabled 0 - OTP programming Disabled
A[3:0]	DSI device address. This field contains the device address.

4.2.1.15 DSI Command #14

DSI Command '1110' is not implemented. The device ignores all command formats with a command ID of '1110'.

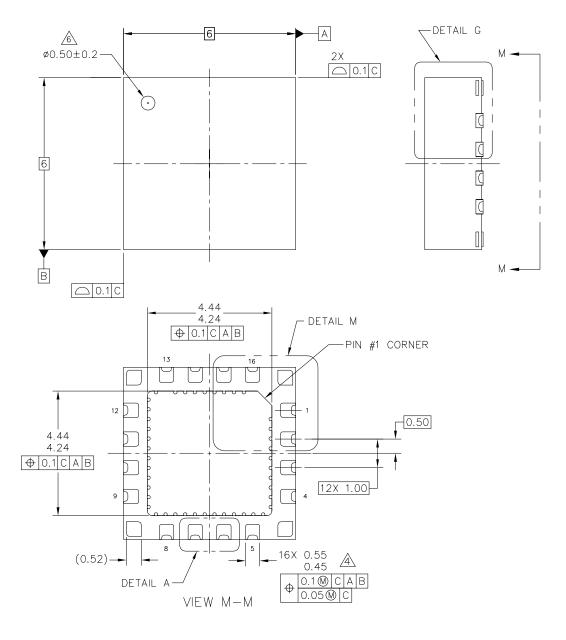
4.2.1.16 Reverse Initialization Command

The Reverse Initialization Command is not implemented. The device ignores all command formats with a command ID of '1111'.

4.3 Exception Handling

Table 59 summarizes the exception conditions detected by the device and the response for each exception.

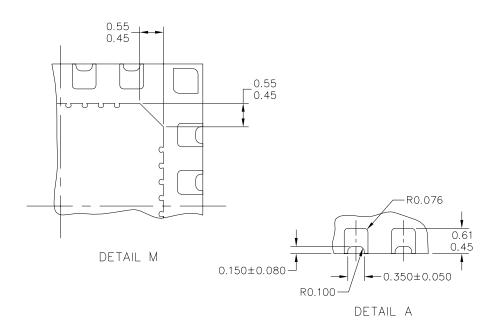
Table 59. Exception Handling

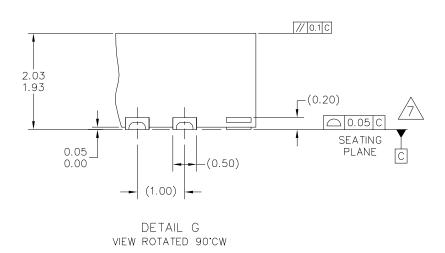

Condition											
Exception	Self Test Request	Description	S	ST	U	Response					
Power On Reset	N/A	Power Applied Clear Command	1	1	0	- Reference Section 3.6					
V _{REG} Undervoltage	N/A	V _{REG} < V _{PORCREG_f}				Device held in Reset. No response to DSI commands. Device must be re-initialized when V _{REG} returns above V _{PORCREG_r}					
V _{REGA} Undervoltage	N/A	V _{REGA} < V _{PORCREG_f}				Device held in Reset. No response to DSI commands. Device must be re-initialized when V _{REGA} returns above V _{PORCREGA_r}					
V _{HCAP} Undervoltage	Disabled	$V_{HCAP} < V_{PORCREG_f}$ for less than t_{HCAP_POR} , ST Disabled	0	0	1	 DSI Read Acceleration Data Short response = zero. DSI Read Acceleration Data Long response = normal. Device does not need to be re-initialized if V_{HCAP} returns above V_{PORHCAP_r} before t_{HCAP_POR} 					
Transient	Enabled	$V_{HCAP} < V_{PORCREG_f}$ for less than t_{HCAP_POR} , ST Enabled	0	1	1	 DSI Read Acceleration Data Short response = self test data. DSI Read Acceleration Data Long response = self test data. Device does not need to be re-initialized if V_{HCAP} returns above V_{PORHCAP_r} before t_{HCAP_POR} 					
V _{HCAP} Undervoltage	N/A	V _{HCAP} < V _{PORCREG_f} for longer than t _{HCAP_POR}				Device is Reset and will continue to Reset every t _{HCAP_POR} until VHCAP returns above V _{PORHCAP_r} , or an internal supply undervoltage condition occurs. No response to DSI commands. Device must be re-initialized when V _{HCAP} returns above V _{PORHCAP_r}					
Capacitor Test Failure	N/A					Device is Reset and will continue to be reset every t _{POR_CAPTEST} until the capacitor failure is removed. No response to DSI commands. Device must be re-initialized when capacitor failure is removed.					
DSI Frame Timeout	N/A	V _{BUSIN} < V _{THF} for longer than t _{TO}				Device is Reset and will continue to be reset every t _{TO} until the BUSIN voltage returns above V _{THF} or a supply undervoltage condition occurs. No response to DSI commands. Device must be re-initialized when V _{BUSIN} returns above V _{THF}					
Fuse CRC Fault	Disabled	CRC failure detected in factory programmed OTP array and the LOCK_F bit is set. ST Disabled	1	0	0	DSI Read Acceleration Data Short response = zero. DSI Read Acceleration Data Long response = normal.					
(Factory Array)	Enabled	CRC failure detected in factory programmed OTP array and the LOCK_F bit is set. ST Enabled	1	1	0	DSI Read Acceleration Data Short response = zero. DSI Read Acceleration Data Long response = self test data.					
Fuse CRC Fault	Disabled	CRC failure detected in User pro- grammed OTP array and the LOCK_U bit is set. ST Disabled	1	0	0	DSI Read Acceleration Data Short response = zero. DSI Read Acceleration Data Long response = normal.					
(User Array)	Enabled	CRC failure detected in User pro- grammed OTP array and the LOCK_U bit is set. ST Enabled	1	1	0	 DSI Read Acceleration Data Short response = zero. DSI Read Acceleration Data Long response = self test data. 					
Temperature	Disabled	Temperature out of range, ST Disabled.	1	0	0	DSI Read Acceleration Data Short response = zero. DSI Read Acceleration Data Long response = normal.					
Out of Range	Enabled	Temperature out of range, ST Enabled.	1	1	0	DSI Read Acceleration Data Short response = zero. DSI Read Acceleration Data Long response = self test data.					
Self Test Enabled	Enabled	ST Enabled	1	1	0	Internal self test circuitry enabled. DSI Read Acceleration Data Short response = self test data. DSI Read Acceleration Data Long response = self test data.					
Self Test Lockout	Disabled	2 consecutive Disable Self Test DSI commands received.	0	0	0	 Internal self test circuitry disabled. Enable Self Test DSI command does not enable Self Test. Normal response to Enable Self Test DSI command except the ST bit is not set. DSI Clear command or Reset disables lockout. 					

5 Recommended Footprint

Reference Freescale Application Note AN3111, latest revision:

http://www.freescale.com/files/sensors/doc/app_note/AN3111.pdf


PACKAGE DIMENSIONS



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE		
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO	REV: B			
FLAT NON-LEADED PACKAG	GE (QFN),	CASE NUMBER: 2086-01 05 MAR 2010				
16 TERMINAL, 1.0 PITCH (6 >	(6 X 1.98)	STANDARD: NON-JEDEC				

CASE 2086-01 ISSUE B 16 LEAD QFN

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE		
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO: 98ASA00090D REV: B				
FLAT NON-LEADED PACKAG	GE (QFN),	CASE NUMBER: 2086-01 05 MAR 2010				
16 TERMINAL, 1.0 PITCH (6)	(6 X 1.98)	STANDARD: NO	DN-JEDEC			

CASE 2086-01 ISSUE B 16 LEAD QFN

PACKAGE DIMENSIONS

NOTE:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.

4. THIS DIMENSION APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION 6 SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

5. MAX. PACKAGE WARPAGE IS 0.05 MM.

6. PIN #1 ID ON TOP WILL BE LASER MARKED.

BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

- 8. THIS IS NON JEDEC REGISTERED PACKAGE.
- 10. MIN. METAL GAP SHOULD BE 0.2 MM

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE		
TITLE: THERMALLY ENHANCED	QUAD	DOCUMENT NO: 98ASA00090D REV: B				
FLAT NON-LEADED PACKAC		CASE NUMBER	: 2086-01	05 MAR 2010		
16 TERMINAL, 1.0 PITCH (6 X	(6 X 1.98)	STANDARD: NO	N-JEDEC			

CASE 2086-01 ISSUE B 16 LEAD QFN

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Xtrinsic is a trademark of FreescaleSemiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

