

SCAN25100

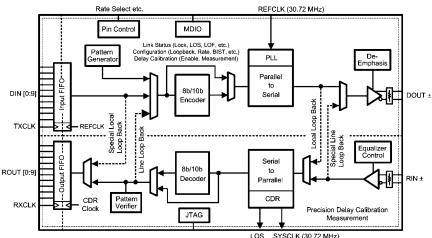
2457.6, 1228.8, and 614.4 Mbps CPRI SerDes with Auto RE Sync and Precision Delay Calibration Measurement

General Description

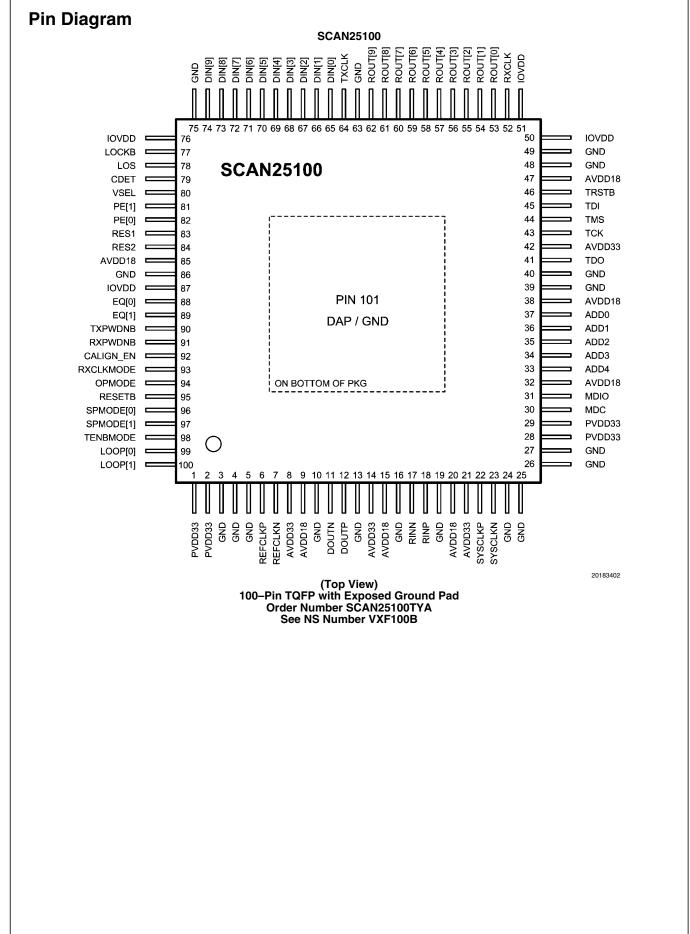
The SCAN25100 is a 2457.6, 1228.8, and 614.4 Mbps serializer/deseralizer (SerDes) for high-speed bidirectional serial data transmission over FR-4 printed circuit board backplanes, balanced cables, and optical fiber. The SCAN25100 integrates precision delay calibration measurement (DCM) circuitry that measures link delay components to better than \pm 800 ps accuracy.

The SCAN25100 features independent transmit and receive PLLs, on-chip oscillator, and intelligent clock management circuitry to automatically perform remote radio head synchronization and reduce the cost and complexity of external clock networks.

The SCAN25100 is programmable though an MDIO interface as well as through pins, featuring configurable transmitter deemphasis, receiver equalization, speed rate selection, internal pattern generation/verification, and loop back modes. In addition to at-speed BIST, the SCAN25100 includes IEEE 1149.1 and 1149.6 testability.


Note: For a full datasheet of the SCAN25100 please contact your local National Semiconductor representitive.

Features


- Exceeds LV and HV CPRI voltage and jitter requirements
- 2457.6, 1228.8, and 614.4 Mbps operation
- Integrated delay calibration measurement (DCM) directly measures T14 and Toffset delays to ≤ ± 800 ps

- DCM also measures chip and other delays to ≤ ± 1200 ps accuracy
- Deterministic chip latency
- Automatic receiver lock and RE synchronization without reference clock or external crystal
- Independent transmit and receive PLLs for seamless RE synchronization
- Low noise recovered clock output
- Requires no jitter cleaning in single-hop applications
- >8 kV ESD on the CML IO, >7 kV on all other pins, >2 kV CDM
- Hot plug protection
- LOS, LOF, 8b/10b line code violation, comma, and receiver PLL lock reporting
- Programmable hyperframe length and start of hyperframe character
- Programmable transmit de-emphasis and receive equalization with on-chip termination
- Advanced testability features
 - IEEE 1149.1 and 1149.6
 - At-speed BIST pattern generator/verifier
 - Multiple loopback modes
- 1.8V or 3.3V compatible parallel bus interface
- 100-pin TQFP package with exposed dap
- Industrial –40 to +85° C temperature range

Block Diagram

20183442

2

Pin Descriptions

Pin #	Pin Name	I/O, Type	Description
HIGH SPE	ED DIFFERENT	TIAL I/O	
12	DOUTP	O, CML	Inverting and non-inverting high speed CML differential outputs of the serializer. On
11	DOUTN		chip termination resistors connect from DO+ and DO- to an internal reference
18	RINP	I, CML	Inverting and non-inverting high speed differential inputs of the deseralizer. On-chip
17	RINN	,,	termination resistors connect from RI+ and RI- to an internal reference. On-chip
• •			termination resistors are configured for AC-coupled applications.
DADALLE	L DATA BUS		Tommation redictors are comigated for the coupled applications.
	1	1 1 1 1 7 7 7 1 1 0 1 1	I -
65	DIN [0]	I, LVTTL or 1.8V	Transmit data word.
66	DIN [1]	LVCMOS Internal	
67	DIN [2]	pull down	In 10-bit mode, the 10-bit code-group at DIN [0-9] is serialized with the internal 8b/
68	DIN [3]		10b encoder disabled. Bit 9 is the msb.
69	DIN [4]		
70	DIN [5]		The 8B/10B specification is defined in IEEE 802.3-2000 section 36.2.2
71	DIN [6]		
72	DIN [7]		
73	DIN [8]		
74	DIN [9]		
53	ROUT [0]	O, LVTTL or 1.8V	Deserialized receive data word.
54	ROUT [1]	LVCMOS Internal	
55	ROUT [2]	pull down	In 10-bit mode, ROUT [0-9] is the deserialized received data word in 10-bit code group
56	ROUT [3]	· '	Bit 9 is the msb.
57	ROUT [4]		The 8B/10B specification is defined in IEEE 802.3-2000 section 36.2.2
58	ROUT [5]		
59	ROUT [6]		
60	ROUT [7]		
61	ROUT [8]		
62	ROUT [9]		
CLOCK SI			
		L LVDC or	Investigation and non-investigated differential angularing reference plant. A law litter plant
6 7	REFCLKN	I, LVDS or	Inverting and non-inverting differential serializer reference clock. A low jitter clock
	REFCLKN	LVPECL	source should be connected to REFCLKP & REFCLKN.
64	TXCLK	I, LVTTL or 1.8V	Transmit clock. TXCLK must be synchronous to REFCLK to avoid FIFO under/
		LVCMOS Internal	overflow though it may differ in phase.
		pull down	
52	RXCLK	I/O, LVTTL or 1.8V	Write mode: RXCLK is a recovered clock output pin.
		LVCMOS	
			Read mode: RXCLK is an input pin. ROUT [9:0] are latched out on RXCLK rising and
			falling edges. RXCLK must be synchronous to the incoming serial data to avoid FIFC
			over/underflow, though it may differ in phase. See RXCLKMODE pin description for
			more details.
22	SYSCLKP	O, LVDS	30.72 MHz output clock. (OPMODE must be low.)
23	SYSCLKN	1	, , , , , , , , , , , , , , , , , , , ,
LINE STA		.1	ı
78	LOS	O, LVTTL or 1.8V	Receiver CPRI loss of signal (LOS) status (8-bit mode only).
70	1203	LVCMOS	Theodiver Of the loss of signal (LOS) status (o-bit mode only).
		LVCIVIOS	O signal detected (new CDD) standard\
			0 = signal detected (per CPRI standard)
			1 = signal lost (per CPRI standard)
			See "LOS Detection" under "Functional Description" for more details.
77	LOCKB	O, LVTTL or 1.8V	Receiver PLL lock status
• •	1	LVCMOS	0 = Receiver PLL locked
			1000.101.1 == 100.100

Pin #	Pin Name	I/O, Type			Description				
79	CDET	O, LVTTL or 1.8V	Comma Dete	ct.					
		LVCMOS	0 = no comma yet detected in the incoming serial stream or receiver PLL no						
			1 = the receive	er PLL is locked	and a positive or negative comma bit sequence detected				
			in the incoming bit stream. The serial to parallel converter is aligned to the proper 10						
			bit word boun	idary when com	ma alignment is enabled (CALIGN_EN = 1).				
CONTROL	PINS		*						
82	PE [0]	I, LVTTL or 1.8V	Transmitter de-emphasis configuration.						
81	PE [1]	LVCMOS Internal	Pulling both pins low enables MDIO control, default is no de-emphasis.						
		pull down	PE1	PE0					
			0	0	No de-emphasis				
			0	1	Low de-emphasis				
			1	0	Medium de-emphasis				
			1	1	Maximum de-emphasis				
88	EQ [0]	I, LVTTL or 1.8V	Receive input	t equalization co	onfiguration.				
89	EQ [1]	LVCMOS Internal	Pulling both p	oins low enables	MDIO control, default is no receive equalization.				
		pull down	EQ1	EQ0					
			0	0	No receive equalization				
			0	1	Low receive equalization				
			1	0	Medium receive equalization				
			1	1	Maximum receive equalization				
90	TXPWDNB	I, LVTTL or 1.8V	Power down control signals.						
91	RXPWDNB	LVCMOS Internal	=						
		pull down	0 = Transmitter is powered down and DOUT± pins are high impedance.						
			1 = Transmitt	er is powered up	0.				
				is nowered dow	n and ROUT [9:0] as well as LOS, LOCKB, CDET,				
				SYSCLK are hig					
				is powered up.	·····				
92	CALIGN_EN	I, LVTTL or 1.8V	Comma align						
		LVCMOS Internal	_	lignment circuitr	y disabled.				
		pull down		•	nent circuitry enabled. Receiver aligns 10-bit data to				
			incoming con	nma character a	nd flags comma detect through CDET pin.				
93	RXCLKMODE	I, LVTTL or 1.8V		overed clock mo					
				•	s a recovered clock output.				
		pull down	(RXCLK = ou		s the ROUT [9:0] bus read input strobe.				
			(RXCLK = inp	· · · · · · · · · · · · · · · · · · ·	s the NOOT [9:0] bus read input strobe.				
80	VSEL	I, LVTTL or 1.8V	<u> </u>		data and control pins are 3.3V LVTTL or 1.8V LVCMOS.				
		LVCMOS Internal		•	to ground and power IOVDD at 1.8 V.				
		pull down			IOVDD supply and power IOVDD at 3.3 V.				
94	OPMODE	I, LVTTL or 1.8V	Selects SerD	es mode.					
		LVCMOS Internal							
		pull down	0 = Base stat						
			1 = Reserved	I for future use					
95	RESETB	I, LVTTL or 1.8V	Hardware Se	rDes reset. Res	ets PLLs and MDIO registers.				
		LVCMOS Internal	l						
		pull down		SerDes reset					
		1	1 = Normal o	peration					

Pin # Pin Name						
Part						
Pull down SPMODE [1] SPMODE [0]						
O						
Section Page Pag						
1						
1						
TENBMODE						
LVCMOS, Internal pull down Dull down Dull down Selects 8-bit mode. Enables the internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Duling policies Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder Duling policies Duli						
Pull down 0 = Selects 8-bit mode. Enables the internal 8b/10b encoder and decoder.)					
1 = Selects 10-bit mode. Bypasses internal 8b/10b encoder and decoder.						
100						
LOOP [1] LVCMOS, Internal pull down Pulling both pins low enables MDIO control. Note: During Special line (remote) loop back mode, output de-emphasis of disabled. LOOP [1] LOOP [0]	<u> </u>					
D D Normal mode—no loop back	control is					
O						
1						
1 1 Special line (remote) loop back mode MDC/MDIO						
MDC/MDIO 3.3V LVTTL Internal pull up on ADDR pins ADDR pins ADDR pins Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible. Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible. Protocol per IEEE 802.2ae-202 MDC/MDIO Clause 45. These pins are 3 compatible. Protocol per IEEE 802.2ae-202 MDC/MDIO Clause 45. These pins are 3 c						
30 MDC 3.3V LVTTL Internal pull up on ADDR pins Protocol per IEEE 802.2ae-2002 MDC/MDIO Clause 45. These pins are 3 compatible, not 1.2V signal compatible.	de et					
31						
31						
36 ADD1 35 ADD2 34 ADD3 33 ADD4 IEEE 1149.1 (JTAG) 45 TDI	3.3V LVTTL					
35 ADD2 34 ADD3 33 ADD4 IEEE 1149.1 (JTAG) 45 TDI 3.3V LVTTL Internal pull up on TDI, TMS, and TRSTB 46 TRSTB RESERVED PINS 83 RES1 I Reserved. 84 RES2 Tie with 5 KΩ resistor to ground. POWER 9, 15, 20, AVDD18 I, Power 1.8V analog supply. 32, 38, 47,						
34 ADD3 33 ADD4						
State						
IEEE 1149.1 (JTAG) 3.3V LVTTL JTAG test bus for IEEE 1149.1 and 1149.6 support. Internal pull up on TDI, TMS, and 43 TCK TRSTB TRSTB RESERVED PINS 83 RES1 RES2 Tie with 5 KΩ resistor to ground. POWER 9, 15, 20, 32, 38, 47, I Power 1.8V analog supply. 1.8V ana						
45 TDI 3.3V LVTTL Internal pull up on TDI, TMS, and 43 TCK TRSTB TR						
41 TDO Internal pull up on TDI, TMS, and TRSTB 44 TMS TRSTB 43 TCK TRSTB RESERVED PINS 83 RES1 I 84 RES2 Tie with 5 KΩ resistor to ground. POWER 9, 15, 20, 38, 47, AVDD18 I, Power 1.8V analog supply.						
44 TMS TDI, TMS, and TRSTB 46 TRSTB RESERVED PINS 83 RES1 I Reserved. Tie with 5 KΩ resistor to ground. POWER 9, 15, 20, AVDD18 I, Power 1.8V analog supply.						
43 TCK TRSTB 46 TRSTB RESERVED PINS 83 RES1 I Reserved. 84 RES2 Tie with 5 KΩ resistor to ground. POWER 9, 15, 20, AVDD18 I, Power 1.8V analog supply. 32, 38, 47,						
46 TRSTB RESERVED PINS 83 RES1 RES2 Tile with 5 KΩ resistor to ground. POWER 9, 15, 20, AVDD18 RES2 Tile with 5 KΩ resistor to ground. 1.8V analog supply. 32, 38, 47, RES2 RES1 RES2 Tile with 5 KΩ resistor to ground.						
RESERVED PINS 83 RES1 I Reserved. 84 RES2 Tie with 5 KΩ resistor to ground. POWER 9, 15, 20, AVDD18 I, Power 1.8V analog supply. 32, 38, 47, 1.8V analog supply.						
83 RES1 I Reserved. 84 RES2 Tie with 5 KΩ resistor to ground. POWER 9, 15, 20, 32, 38, 47, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48						
84 RES2 Tie with 5 KΩ resistor to ground. POWER 9, 15, 20, 32, 38, 47, 32, 38, 47, 32, 38, 47, 32, 38, 47, 32, 38, 47, 32, 38, 47, 32, 38, 47, 32, 38, 47, 32, 38, 47, 33, 34, 34, 34, 34, 34, 34, 34, 34, 34						
POWER 9, 15, 20, 32, 38, 47, AVDD18 I, Power 1.8V analog supply.						
9, 15, 20, AVDD18 I, Power 1.8V analog supply. 32, 38, 47,						
32, 38, 47,						
85						
8, 14, 21, AVDD33 I, Power 3.3V analog supply.						
42						
1, 2, 28, 29 PVDD33 I, Power 3.3V PLL supply (minimize supply noise to < 100 mV peak-to-peak).						
50, 51, 76, IOVDD I, Power 1.8V or 3.3V parallel I/O bus and control pin supply.						
87 See VSEL pin description for additional information.						
GROUND 2 4 5 10 CND						
3, 4, 5, 10, GND I, Ground Device ground.						
13, 16, 19, 24, 25, 26,						
24, 25, 26, 27, 39, 40, 27, 39, 40, 27, 39, 40, 27, 39, 40, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28						
27, 39, 40, 48, 49, 63, 40, 48, 49, 63, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40						
75, 86						
,						

Pin # Pin Name I/O, Type Description							
Pin #	Pin Name	I/O, Type	Description				
GROUND	DAP						
101	GND	I, Ground	Device ground. Pad must be soldered and contected to GND plane with a minimum of 8 thermal vias to achieve specified thermal performance.				

Note: I= input O = output Internal pull down = input pin is pulled low by an internal resistor Internal pull up = input pin is pulled high by an internal resistor

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

MDC/MDIO/ADD[0:4], VSEL Input Voltage

 $\begin{array}{c} -0.3 \text{V to (AV}_{\text{DD33}} + 0.5 \text{V)} \\ \text{MDIO Output Voltage} & -0.3 \text{V to (AV}_{\text{DD33}} + 0.5 \text{V)} \\ \text{CML Receiver Input Voltage} & -0.3 \text{V to (AV}_{\text{DD}3} + 0.5 \text{V)} \\ -0.3 \text{V to (AV}_{\text{DD}} + 0.3 \text{V to (AV}_{\text{DD}} + 0.3 \text{V)} \\ \end{array}$

CML Receiver Output Voltage -0.3V to (AV_{DD} + 0.3V)

Junction Temperature +125°C
Storage Temperature -65°C to +150°C
Lead Temperature

Soldering, 10–20 sec Lead-free +260°C flow is available

Maximum Package Power Dissipation at 25°C 100-pin TQFP with Exposed Pad 4.16 W

Note: This is the maximum TQFP-100 package power dissipation capability. For SCAN25100 power dissipation, see the information in the Electrical Characteristics section.

Derating above 25°C	41.6 mW/°C
Thermal Resistance , θ_{JA} (0 airflow)	24.0°C/W
ESD Rating CML RIN/DOUT Pins	
HBM, 1.5 kΩ, 100 pF	>8 kV
EIAJ, 0Ω, 200 pF	>250V
CDM	>2 kV
All Other Pins	
HBM, 1.5 kΩ, 100 pF	>7 kV
EIAJ, 0Ω, 200 pF	>250V
CDM	>2 kV

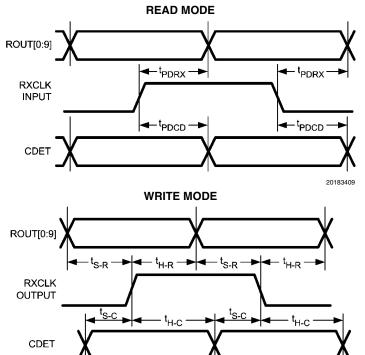
Recommended Operating Conditions

	Min	Тур	Max	Unit
Supply Voltage				
AV _{DD18}	1.7	1.8	1.9	V
AV _{DD33} , PV _{DD33}	3.135	3.3	3.465	V
IOV _{DD} (1.8V Mode)	1.7	1.8	1.9	V
IOV _{DD} (3.3V Mode)	3.135	3.3	3.465	V
Temperature	-40	25	85	°C
Junction temperature			125	°C
Supply Noise (Peak-to-Peak)			<100	mV

Electrical Characteristics Over recommended operating supply and temperature ranges unless other specified.

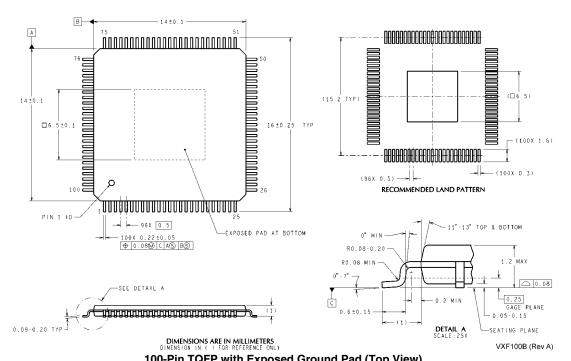
235 °C

Symbol	Parameter	Condition	Min	Typ (Note 2)	Max	Units
LVCMOS D	C SPECIFICATIONS (1.8V I/O)		,			
V _{IH}	High level input voltage		0.65V _{DD}			٧
V _{IL}	Low level input voltage				0.35V _{DD}	V
I _{IN}	Input Current	V _{IN} = 0V or 1.9V	-10		+50	μΑ
V _{OH}	High level output voltage	$I_{OH} = -2 \text{ mA}$	1.2			V
V _{OL}	Low level output voltage	I _{OL} = 2 mA			0.45	V
I _{OZ}	Power Down Output Current	Power down	-20		+20	μΑ
C _{IO}	Input/Output Capacitance	Typical		2.8		pF
LVCMOS D	C SPECIFICATIONS (3.3V I/O)	•	•			
V _{IH}	High level input voltage		2			V
V _{IL}	Low level input voltage				0.8	V
I _{IN}	Input Current	V _{IN} = 0V or 3.465V	-10		+50	μΑ
V _{OH}	High level output voltage	I _{OH} = −2 mA	2.4			V
V _{OL}	Low level output voltage	I _{OL} = 2 mA			0.4	V
l _{oz}	Power Down Output Current	Power down	-20		+20	μA
C _{IO}	Input/Output Capacitance	Typical		2.8		pF
JTAG DC S	PECIFICATIONS (3.3V I/O)	·				
V _{IH}	High level input voltage		2			V
V _{IL}	Low level input voltage				0.8	V
I _{IN}	Input Current	V _{IN} = 0V or 3.465V	-35		+35	μΑ
V _{OH}	High level output voltage	I _{OH} = −2 mA	2.4			V


Symbol	Parameter	Condition	Min	Typ (Note 2)	Max	Units
V _{OL}	Low level output voltage	I _{OL} = 2 mA			0.4	V
C _{IO}	Input/Output Capacitance	Typical		2.8		pF
MDIO/MDC/	/ADD0-4 DC SPECIFICATIONS					
V _{IH}	High level input voltage		2.0		3.465	V
V _{IL}	Low level input voltage		GND		0.8	V
I _{IN}	Input Current	V _{IN} = 0V or 3.465V	-150		+150	μA
V_{OH}	High level output voltage	$I_{OH} = -2 \text{ mA}$	2.4			V
V _{OL}	Low level output voltage	I _{OL} = 2 mA			0.4	V
l _{oz}	Power Down Output Current	Power down	-100		+100	μA
C _{IO}	Input/Output Capacitance	Typical		2.8		pF
	DNSUMPTION (Powerdown)					
P _{PDN}	Powerdown Mode	Rx and Tx Powerdown		25	40	mW
RECOMME	NDED REFCLK INPUT SPECIFICAT	TIONS				•
V _{IDSREFCLK}	Differential input voltage		± 100			mV _{P-P}
V _{ICM}	Common mode voltage		0.05V		2.4V	V
f _{REF}	REFCLK frequency	OPMODE = 0 (BTS SerDes Mode)	30	30.72	31.5	MHz
df _{REF}	REFCLK frequency variation	Variation from nominal frequency	-100		100	ppm
t _{REF-DC}	REFCLK duty cycle	Between 50% of the differential voltage across REFCLKP and	45		55	%
+	REFCLK transition time	REFCLKN Transition time between 20% and		300		pS
t _{REF-X}	THE OLK HAISHOFF HITE	80% of the differential voltage across REFCLKP and REFCLKN		300		po
SYSCLK DO	COUTPUT SPECIFICATIONS			1		1
V _{OD}	Differential Output Voltage	$R_L = 100\Omega$	± 250	± 330	± 450	mV
V _{OS}	Offset Voltage		1.125	1.20	1.375	l v
I _{os}	Output Short Circuit Current	Output pair shorted together and tied to GND			35	mA
I _{OZ}	Power Down Output Current	Power down	-30		+30	μA
	TER SERIAL TIMING SPECIFICATION				. 33	
V _{OD}	Output differential voltage swing	PE[1]=0, PE[0]=0	± 550	± 700	± 800	mVp-p
- 00	gaipar amerennar renage en ng	PE[1]=0, PE[0]=1		± 630		mVp-p
		PE[1]=1, PE[0]=0		± 500		mVp-p
		PE[1]=1, PE[0]=1	± 200	± 360	± 450	mVp-p
R _{DO}	Output differential resistance		80	100	120	Ω
R _O	Output Return Loss	Frequency = 1.229 GHz		-13.4		dB
t _R , t _F	Serial data output transition time (Notes 12, 16)	Measured between 20% and 80%	80	100	130	ps
JIT _{T-DJ}	Serial data output deterministic jitter (Notes 3, 12)	Output CJPAT with BER of 10 ⁻¹² (Note 4)			0.14	Ulp-p
JIT _{T-TJ}	Serial data output total jitter (Notes 3, 12)	Output CJPAT pattern with BER of 10-12 (Note 4)			0.279	Ulp-p
t _{LAT-T}	Transmit latency	614.4 Mbps		310		ns
LAI-I	(Notes 9, 7)	1.228 Gbps		155		1
		2.4576 Gbps		80		1
t _{DO-LOCK}	Maximum lock time	K28.5 pattern at 2457.6 Mbps		110	130	us
	SERIAL TIMING SPECIFICATIONS					1
V _{ID}	Input voltage	RINP - RINN	± 100		± 1100	mVp-p
				1		1

Symbol	Parameter	Condition	Min	Typ (Note 2)	Max	Units
R _R	Differential Input Terminations		80	100	120	Ω
RLR	Input Return Loss (Note 12)	Frequency = 1.229 GHz		-20	-15	dB
LAT-R	Receive latency	614.4 Mbps		280		ns
	(Notes 10, 8)	1.228 Gbps		140		ns
		2.4576 Gbps		75		ns
JIT _{R-TOL}	Total input jitter tolerance (Note 12)	Input CJPAT with BER of 10 ⁻¹² (Note 4)			0.66	Ulp-p
R-LOCK	Receiver lock range	Input data rate reference to local transmit data rate.	-200		+200	ppm
R-LOCK	Maximum lock time	K28.5 pattern at 2457.6 Mbps			1	ms
RANSMIT	TER INPUT TIMING SPECIFICATION	NS		,		•
S-T	Setup Time	DIN [9:0] valid to TXCLK rising or falling edge	0.5			ns
н-т	Hold Time	TXCLK rising or falling edge to DIN [9:0] valid	0.5			ns
DC	Duty cycle	TXCLK duty cycle	45		55	%
TXCLK	TXCLK frequency		30		125	MHz
	OUTPUT TIMING SPECIFICATIONS	G (Read Mode RXCLKMODE=1, 122	8.8 and 61	4.4 Mbps on	ly)	1
PDRX	RXCLK Propagation Delay	RXCLK rising or falling edge to ROUT [9:0] valid	2	4	6	ns
DC	Duty cycle	RXCLK input duty cycle	45		55	%
RXCLKR	RXCLK input frequency	RXCLK input frequency	30		62.5	MHz
R, t _F	Output data transition time	For ROUT [0-9], LOCK, etc. pins. Measured between 20% and 80% levels		0.35		ns
RECEIVER	OUTPUT TIMING SPECIFICATIONS	6 (Write Mode RXCLKMODE=0)				1
S-R	Setup Time	ROUT [9:0] valid to RXCLK rising or falling edge (Note 11)	0.9	1.5		ns
H-R	Hold Time	RXCLK rising or falling edge to ROUT [9:0] valid (Note 11)	0.9	1.5		ns
DC	Duty cycle	RXCLK duty cycle	45		55	%
RXCLK	RXCLK frequency		30		125	MHz
R, t _F	Output data transition time	For ROUT [0-9], LOCK, etc. pins. Measured between 20% and 80% levels		0.35		ns
DET OUT	PUT TIMING SPECIFICATIONS (Rea	ad Mode RXCLKMODE=1, 1228.8 a	nd 614.4 M	bps only)		ų.
PDCD	CDET Propagation Delay	RXCLK rising or falling edge to CDET	2	4	6	ns
CDET OUT	PUT TIMING SPECIFICATIONS (Wr	ite Mode RXCLKMODE=0) (Note 5)				
S-C	Setup Time	CDET valid to RXCLK rising or falling edge	1			ns
H-C	Hold Time	RXCLK rising or falling edge to CDET valid	1.1			ns
SYSCLK L	DS OUTPUT TIMING SPECIFICATI	ONS				
SYSCLKNDC	Duty cycle		40		60	%
IIT _{SYSCLK}	Cycle to cycle jitter	(Note 12)		40	65	ps p-p
_R , t _F	Output transition time	Between 20% and 80% levels (Note 12)	0.1		0.3	ns
/IDC/MDIO	TIMING SPECIFICATIONS (Clause	45)				
	MDC Frequency		0		2.5	MHz

Symbol	Parameter	Condition	Min	Typ (Note 2)	Max	Units
t _{S-MDIO}	Setup Time	MDIO (input) valid to MDC rising clock	10			ns
t _{H-MDIO}	Hold Time	MDC rising edge to MDIO (input) invalid	10			ns
t _{D-MDIO}	Delay Time	MDIO (output) delay from MDC rising edge	0		300	ns
t _{X-MDIO}	Transition Time	Measured at MDIO when used as output, CL = 470 pF		1		ns
MINIMUM F	PULSE WIDTH, Hardware Reset (No	te 13)				
t _{TX-RST}	Transmiter Reset	TXPWDNB = 0		1		us
t _{RX-RST}	Receiver Reset	RXPWDNB = 0		1		us
t _{RST}	SerDes Reset	RESETB = 0		1		us
JTAG TIMII	NG SPECIFICATIONS			•	,	
f _{JTAG}	JTAG TCK Frequency	$R_L = 1000\Omega$, $C_L = 15 pF$	25			MHz
t _{R-J} t _{F-J}	TDO data transition time (20% to 80%)			2		ns
t _{s-TDI}	Setup Time TDI to TCK High or Low		2			ns
t _{H-TDI}	Hold Time TDI to TCK High or Low		2			ns
t _{s-TMS}	Setup Time TMS to TCK High or Low		2			ns
t _{H-TMS}	Hold Time TMS to TCK High or Low		2			ns
t _{w-TCK}	TCK Pulse Width		10			ns
t _{W-TRST}	TRSTB Pulse Width		2.5			ns
REC	Recovery Time TRSTB to TCK		14			ns
	LIBRATION MEASUREMENT (DCM)	(Notes 12, 14, 15)			•	
T ₁₄	T ₁₄ Delay Accuracy	Receive and Transmit PLLs locked			± 800	ps
T _{offset}	T _{offset} Delay Accuracy	to valid hyperframe data.			± 800	ps
T _{ser}	Serializer Delay Accuracy				± 1200	ps
T _{des}	Deserializer Delay Accuracy				± 1200	ps
T _{in-out}	T _{in-out} Delay Accuracy				± 1200	ps
T _{out-in}	T _{out-in} Delay Accuracy	Ī			± 1200	ps


- Note 1: "Absolute Maximum Ratings" are the ratings beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits.
- Note 2: Typical parameters are measured at nominal supply levels and T_A = 25°C. They are for reference purposes and are not production-tested.
- Note 3: Transmit Jitter testing methodology is defined in Appendix 48B of IEEE 802.2ae-2002. The SCAN25100 transmit output jitter is constant for all valid CPRI datarates. For 614.4 and 1228.8 Mbps rates, the transmit jitter is significantly less then the specified limits in terms of UI.
- Note 4: CJPAT is a stress pattern defined in IEEE 802.2ae-2002 Appendix 48A
- Note 5: CDET nominal valid duration is determined by the CPRI data rate. CDET timing is similar to the ROUT[0:9] timing.
- Note 6: Transmit or Receive K28.5 pattern. Assumes TXCLK is stable and toggles only after all SerDes clocks become synchronous.
- Note 7: Transmit latency is fixed once the link is established and is guaranteed by the Tser specification.
- Note 8: Receive latency is fixed once the link is established and is guaranteed by the Tdes specification.
- Note 9: Conditions: The TX PLL is locked, the TXCLK is stable and the TXCLK is synchronous.
- Note 10: Conditions: The RX PLL is locked to the incoming data and the SCAN25100 is in WRITE mode.
- Note 11: Receiver output timing specifications for TS-R and TH-R are tested at the CPRI rate of 2.4576 Gbps.
- Note 12: Limits are guaranteed by design and characterization over process, supply voltage, and temperature variations.
- Note 13: Limits are guaranteed by design.
- Note 14: Serial side DCM readings are referenced to the first bit of the K28.5 pattern {110000 0101 001111 1010}. Parallel side DCM readings are referenced to the TXCLK or RXCLK edge (not the data edge) that registers the K character as an input or output.
- Note 15: DCM readings have been validated when the RXCLK pin on the SCAN25100 is used as an output in "WRITE" mode (RXCLKMODE = 0) and IOVDD = 3.3V.
- Note 16: Edge rate characterization includes the loading effects of 1.0 uF AC-coupling capacitors and 4 inches of 100-Ohm differential microstrip.

AC Timing Diagrams

20183410

Physical Dimensions inches (millimeters) unless otherwise noted

100-Pin TQFP with Exposed Ground Pad (Top View)
Order Number SCAN25100TYA
NS Package Number VXF100B
See www.national.com/quality/marking_conventions.html for additional part marking information

Notes

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2006 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Customer Support Center Email:

new.feedback@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86

Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Customer Support Center** Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560