Unit in mm

TENTATIVE·RESTRICTIVE DATA

TOSHIBA AC SWITCH OPTICALLY ISOLATED AC SWITCH

TSA3100G, TSA3100J

R.M.S. On-State Current

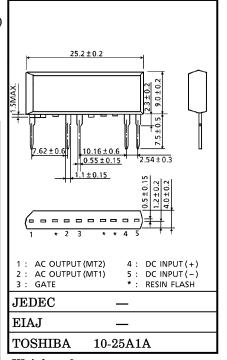
 $: I_{T(RMS)} = 0.1 \sim 3A$

Repetitive Peak Off-State Voltage

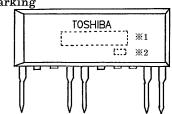
 $: V_{DRM} = 400, 600V$

Isolation Voltage between Input to Output: 3000VAC (t=1min.)

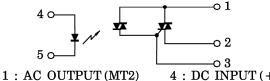
Thickness of Inner Insulation Material : 0.8mm (Min.)


Creepage Distances, Clearances for Insulation between Input and Output Side

: 6mm (Min.)


TTL drive is Available

MAXIMUM	RATINGS ($Ta = 25^{\circ}C$
----------------	-----------	--------------------


	CHARACTERISTIC			RATING	UNIT	
	Control Input Curre	I _{F (IN)}	50	mA		
PUT	Forward Current De (Ta≥53°C)	ΔI _F /°C	-0.7	mA/°C		
INI	Peak Forward Curre (100 µs pulse, 100 pp	I_{FP}	1	A		
	Reverse Voltage	v_{R}	5	V		
	Repetitive Peak	TSA3100G	37	400	v	
	Off-State Voltage	TSA3100J	$V_{ m DRM}$	600	1 °	
UT	Nominal AC Line	TSA3100G	37	80~125	V	
PU	Voltage (Note 1)	TSA3100J	V_{AC}	80~250		
OUT	R.M.S On-State Cur (Sine Waveform, R.I	I _{T(RMS)}	0.1~3	A		
	Peak One Cycle Sur	Peak One Cycle Surge On-State			_	
•	Current (Non-Repeti	ITSM	33 (60Hz)	A		
	I ² t Limit Value	I ² t	4.5	A^2s		
Ope	Operating Frequency Range			45~65	Hz	
Op	Operating Temperature Range			-40~100	°C	
Sto	Storage Temperature Range			-40~100	°C	
	Isolation Voltage (Input to Output) Note 2			3000	V	

Weight: 2g Marking

EQUIVALENT CIRCUIT

2 : AC OUTPUT (MT1) 3 : GATE

4 : DC INPUT(+) 5: DC INPUT(-)

NUMBER		SYMBOL	MARK		
% 1	TYPE	TSA3100G	TYPE	TSA3100G	
×1	TYPE	TSA3100J	TIPE	TSA3100J	
※ 2		Month (Staring from) Alphabet A Year (Last Number of the Christian era	3B : Fe		

(The cutted pins near by Pin No.1 & No.3 is connecting in electrically with output terminal)

Note 1: When the voltage larger than applied AC voltage is applied to the device such as 2

phase motor and others, please derating for this maximum rating value. TEST CONDITION...AC, t=60s, $RH \le 60\%$

Note 3: Soldering of printed wiring board should be used under 260°C and 10 seconds.

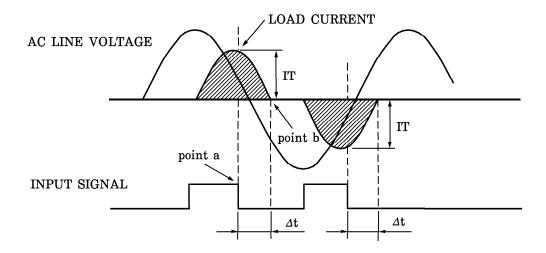
TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

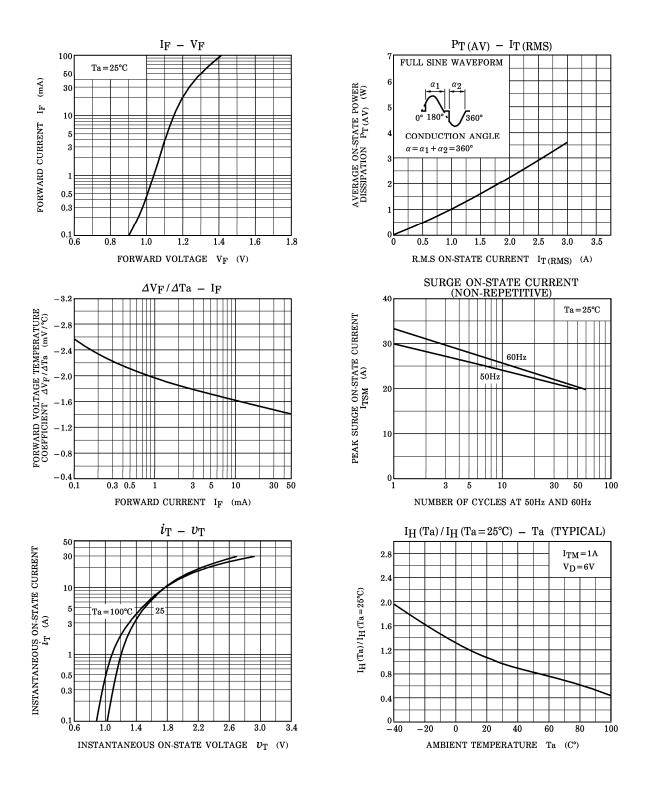
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

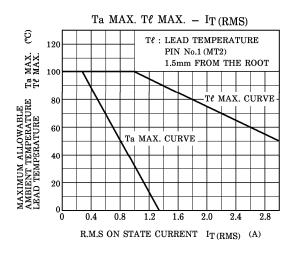
	CHARACT	ERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
UT	Forward Vo	oltage	$v_{ m F}$	I _F =10mA	1.0	1.15	1.3	V
NP	Reverse Cu	rrent	$I_{\mathbf{R}}$	$V_R = 5V$		_	10	μ A
I	Capacitance	е	C_{T}	$V_T=0V$, f=1MHz	_	20	_	pF
	Peak Off-State Current		$I_{ m DRM}$	$ m V_{DRM}\!=\!Rated$		_	10	μ A
	Peak On-State Voltage		V_{TM}	$I_{TM} = 4.5A$	_	_	1.5	V
	Holding Cu	rrent	$I_{ m H}$	V _D =6V, Beginning Current=1A		_	25	mA
OUTPUT	Critical Rate of Rise of Off-State Voltage		dv / dt	$V_{ m DRM} = { m Rated}$	_	2000	_	V/μs
	Critical Rate of Rise of Commutating Voltage		(dv / dt) c	V _D =400V, -di/dt=30A/ms	_	30	_	V/μs
	Thermal	Junction to Lead	$R_{ ext{th}\;(j-\ell)}$	AC	_	_	20	°C/W
	Resistance	Junction to Ambient	R _{th (j-a)}	AC	_	_	85	°C/W

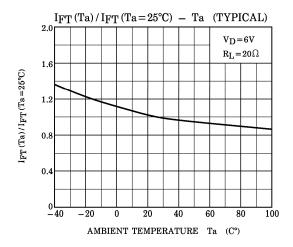
COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

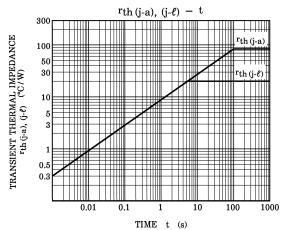
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Current	I_{FT}	$V_D=6V, R_L=20\Omega$	_	_	10	mA
Capacitance (Input to output)	c_{S}	$V_S=0V, f=1MHz$	_	0.5	_	pF
Isolation Resistance	$R_{\mathbf{S}}$	$V = 500V, RH \le 60\%$	109	_	_	Ω
Turn-off Time	${ m t}_{ m off}$	OUTPUT : Sine Waveform	_	_	3/4	cycle


980910EBA2


The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.


<REMARK>


PHASE CONTROL APPLICATION


In case of using in phase control application. Δt must be at least 1ms (Δt : The time starting from the end of INPUT SIGNAL "point a" to the point at which load current become ZERO "point b"). And, Load current "IT" at "point a" must be at least double the maximum Holding Current (IH) specification in each operating temperature.

