Balanced Three-chip SIDACtor Device

This balanced protector is a surface mount alternative to the modified TO-220 package. Based on a six-pin surface mount SOIC package, it uses Teccor's patented "Y" (US Patent 4,905,119) configuration. It is available in surge current ratings up to 500 A.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	Vτ	I _{DRM}	Is	lτ	lμ	Co
Number *	Pins 1-3, 1-4		Pins 3-4		Volts	μAmps	mAmps	Amps	mAmps	pF
P1553U_	130	180	130	180	8	5	800	2.2	150	80
P1803U_	150	210	150	210	8	5	800	2.2	150	80
P2103U_	170	250	170	250	8	5	800	2.2	150	80
P2353U_	200	270	200	270	8	5	800	2.2	150	80
P2703U_	230	300	230	300	8	5	800	2.2	150	60
P3203U_	270	350	270	350	8	5	800	2.2	150	60
P3403U_	300	400	300	400	8	5	800	2.2	150	60
P5103U_	420	600	420	600	8	5	800	2.2	150	60
A2106U_3 **	170	250	50	80	8	5	800	2.2	120	80
A5030U_3 **	400	550	270	340	8	5	800	2.2	150	60

^{*} For individual "UA", "UB", and "UC" surge ratings, see table below.

General Notes:

- All measurements are made at an ambient temperature of 25 °C. I_{PP} applies to -40 °C through +85 °C temperature range.
- IPP is a repetitive surge rating and is guaranteed for the life of the product.
- Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.
- V_{DRM} is measured at I_{DRM}.
- V_S is measured at 100 V/µs.
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance is measured between Pins 1-3 and 1-4 at 1 MHz with a 2 V bias and is a typical value for "UA", "UB", and "UC" products.
- Device is designed to meet balance requirements of GTS 8700 and GR 974.

Surge Ratings

Series	l _{PP} 2x10 μs Amps	I _{PP} 8x20 μs Amps	I _{PP} 10x160 μs Amps	I _{PP} 10x560 μs Amps	I _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
Α	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

Downloaded from Elcodis.com electronic components distributor

^{**} Asymmetrical

t_r = rise time to peak value t_d = decay time to half value

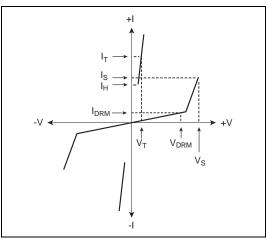
Half Value

t - Time (µs)

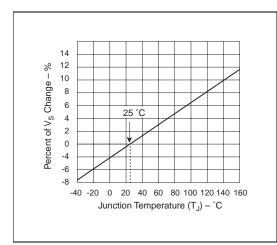
Peak

Value Waveform = t_r x t_d

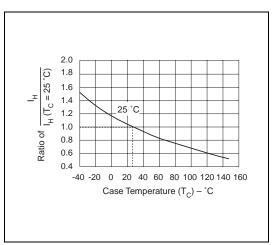
Thermal Considerations


Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +125	°C
1 2 3 4	T _S	Storage Temperature Range	-65 to +150	°C
	$R_{ hetaJA}$	Thermal Resistance: Junction to Ambient	60	°C/W

Ipp - Peak Pulse Current - %Ipp


100

50


0 L

V-I Characteristics $t_r \times t_d$ Pulse Wave-form

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature