FEATURES

■ Conversion Gain: 8.7dB at 900MHz

- IIP3: 26 dBm at 900 MHz
- Noise Figure: 9.7 dB at 900 MHz
- 15.6dB NF Under 5dBm Blocking
- High Input P1dB
- 53 dB Channel Isolation at 900 MHz
- 1.3W Power Consumption at 3.3V
- Low Power Mode for <0.8W Consumption
- Enable Pins for Each Channel
- 50Ω Single-Ended RF and LO Inputs
- LO Input Matched In All Modes
- OdBm LO Drive Level
- Small Package and Solution Size
- $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ Operation

APPLICATIONS

- 3G/4G Wireless Infrastructure Diversity Receivers (LTE, CDMA, GSM)
- MIMO Infrastructure Receivers
- High Dynamic Range Downmixer Applications
$\boldsymbol{\boxed { T }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Dual 600 MHz to 1.7 GHz High Dynamic Range Downconverting Mixer DESCRIPTIOn

The LTC ${ }^{\circledR} 590$ is part of a family of dual-channel high dynamic range, high gain downconverting mixers covering the 600 MHz to 4.5 GHz RF frequency range. The LTC5590 is optimized for 600 MHz to 1.7 GHz RF applications. The LO frequency must fall within the 700 MHz to 1.5 GHz range for optimum performance. A typical application is a LTE or GSM receiver with a 700 MHz to 915 MHz RF input and high side LO.

The LTC5590's high conversion gain and high dynamic range enable the use of lossy IF filters in high selectivity receiver designs, while minimizing the total solution cost, board space and system-level variation. A low current mode is provided for additional power savings and each of the mixer channels has independent shutdown control.

High Dynamic Range Dual Downconverting Mixer Family

PART NUMBER	RF RANGE	LO RANGE
LTC5590	$\mathbf{6 0 0 M H z}$ to 1.7 GHz	$\mathbf{7 0 0 M H z}$ to 1.5 GHz
LTC5591	1.3 GHz to 2.3 GHz	1.4 GHz to 2.1 GHz
LTC5592	1.6 GHz to 2.7 GHz	1.7 GHz to 2.5 GHz
LTC5593	2.3 GHz to 4.5 GHz	2.1 GHz to 4.2 GHz

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATIOGS
(Note 1)
Supply Voltage (VCC) 4.0V
IF Supply Voltage (VCIF) 5.5 V
Enable Voltage (ENA, ENB)

\qquad
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Bias Adjust Voltage (IFBA, IFBB).. -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Power Select Voltage (ISEL) -0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$
LO Input Power (300MHz to 3GHz).. 9dBmLO Input DC Voltage
$\pm 0.1 \mathrm{~V}$
RFA, RFB Input Power (300MHz to 3GHz) 15dBm
RFA, RFB Input DC Voltage $\pm 0.1 \mathrm{~V}$
Operating Temperature Range (T_{C})

\qquad
$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature $\left(T_{J}\right)$$150^{\circ} \mathrm{C}$PIn CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC5590IUH\#PBF	LTC5590IUH\#TRPBF	5590	$24-$ Lead $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

DC ELECTRICAL CHARACTERISTICS
 $V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CCIF }}=3.3 \mathrm{~V}, \mathrm{ENA}=\mathrm{ENB}=\mathrm{High}, \mathrm{I}_{\mathrm{SEL}}=\mathrm{LOW}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$,
 unless otherwise noted. Test circuit shown in Figure 1. (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Requirements ($\mathrm{VCCA}, \mathrm{V}_{\text {CCB }}, \mathrm{V}_{\text {CCIFA }}, \mathrm{V}_{\text {CCIFB }}$)					
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$ Supply Voltage (Pins 12, 19)		3.1	3.3	3.5	V
$\mathrm{V}_{\text {CCIFA }}, \mathrm{V}_{\text {CCIFB }}$ Supply Voltage (Pins 9, 10, 21, 22)		3.1	3.3	5.3	V
Mixer Supply Current (Pins 12, 19)	Both Channels Enabled		188	242	mA
IF Amplifier Supply Current (Pins 9, 10, 21, 22)	Both Channels Enabled		191	242	mA
Total Supply Current (Pins 9, 10, 12, 19, 21, 22)	Both Channels Enabled		379	484	mA
Total Supply Current - Shutdown	ENA = ENB = Low			500	$\mu \mathrm{A}$

Enable Logic Input (ENA, ENB) High = On, Low = Off

ENA, ENB Input High Voltage (On)		2.5	V
ENA, ENB Input Low Voltage (Off)			0.3
ENA, ENB Input Current	-0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$	V	
Turn On Time		-20	30
Turn Off Time		$\mu \mathrm{A}$	
		$\mu \mathrm{s}$	

unless otherwise noted. Test circuit shown in Figure 1. (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Low Current Mode Logic Input (ISEL) High = Low Power, Low = Normal Power Mode					
ISEL Input High Voltage		2.5			
$I_{\text {SEL }}$ Input Low Voltage			0.3	V	
ISEL Input Current	-0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$	-20	30	$\mu \mathrm{~A}$	

Low Current Mode Current Consumption (ISEL $=$ High)							
Mixer Supply Current (Pins 12, 19)	Both Channels Enabled	123	159	mA			
IF Amplifier Supply Current (Pins 9, 10, 21, 22)	Both Channels Enabled	116	146	mA			
Total Supply Current (Pins 9, 10, 12, 19, 21, 22)	Both Channels Enabled	239	305	mA			

AC ELECTRICAL CHARACTERISTICS $\quad V_{C C}=3.3 V, V_{C C I F}=3.3 V, E N A=E N B=H i g h, I_{\text {SEL }}=L o w, T_{C}=25^{\circ} \mathrm{C}$, $P_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}$ ($\Delta \mathrm{f}=2 \mathrm{MHz}$ for two tone IIP3 tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)

High Side LO Downmixer Application: $\mathrm{I}_{\text {SEL }}=$ Low, RF $=700 \mathrm{MHz}$ to $1100 \mathrm{MHz}, \mathrm{IF}=190 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\mathrm{f}_{\mathrm{RF}}+\mathrm{f}_{\mathrm{IF}}$

PARAMETER	CONDITIONS	MIN	TYP
Conversion Gain	$\mathrm{RF}=700 \mathrm{MHz}$	8.6	UNITS
	$\mathrm{RF}=900 \mathrm{MHz}$	dB	
	$\mathrm{RF}=1100 \mathrm{MHz}$	8.0	dB
Conversion Gain Flatness	$\mathrm{RF}=900 \pm 30 \mathrm{MHz}, \mathrm{LO}=1090 \mathrm{MHz}, \mathrm{IF}=190 \pm 30 \mathrm{MHz}$	8.5	dB
Conversion Gain vs Temperature	$\mathrm{T}=-40^{\circ} \mathrm{C}+10105^{\circ} \mathrm{C}, \mathrm{RF}=1950 \mathrm{MHz}$	± 0.25	dB
Input 3rd Order Intercept	$\mathrm{RF}=700 \mathrm{MHz}$	-0.006	$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$
	$\mathrm{RF}=900 \mathrm{MHz}$	25.3	dBm
	$\mathrm{RF}=1100 \mathrm{MHz}$	23.5	26.0
SSB Noise Figure	$\mathrm{RF}=700 \mathrm{MHz}$	24.8	dBm
	$\mathrm{RF}=900 \mathrm{MHz}$	9.3	dB
	$\mathrm{RF}=1100 \mathrm{MHz}$	9.7	dB

 $P_{R F}=-3 \mathrm{dBm}(\Delta f=2 \mathrm{MHz}$ for two tone IIP3 tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3)
High Side LO Downmixer Application: $I_{\text {SEL }}=L o w, R F=700 \mathrm{MHz}$ to $1100 \mathrm{MHz}, \mathrm{IF}=190 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\mathrm{f}_{\mathrm{RF}}+\mathrm{f}_{\mathrm{IF}}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SSB Noise Figure Under Blocking	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1090 \mathrm{MHz}, \mathrm{f}_{\text {BLOCK }}=800 \mathrm{MHz} \\ & \mathrm{P}_{\text {BLOCK }}=5 \mathrm{dBm} \\ & \mathrm{P}_{\text {BLOCK }}=10 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 15.6 \\ & 21.2 \end{aligned}$		dB dB
2LO-2RF Output Spurious Product $\left(f_{\mathrm{RF}}=f_{\mathrm{LO}}-f_{\mathrm{IF}} / 2\right)$	$\begin{aligned} & \begin{array}{l} f_{R F}=995 \mathrm{MHz} \text { at }-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=1090 \mathrm{MHz}, \\ \mathrm{f}_{\mathrm{IF}}=190 \mathrm{MHz} \end{array} \end{aligned}$		-77		dBC
3L0-3RF Output Spurious Product $\left(f_{R F}=f_{L O}-f_{f /} / 3\right)$	$\begin{aligned} & f_{\mathrm{RF}}=1026.67 \mathrm{MHz} \text { at }-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=1090 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{IF}}=190 \mathrm{MHz} \end{aligned}$		-77		dBc
Input 1dB Compression	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{~V}_{\text {CCIF }}=3.3 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CCIF}}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10.7 \\ & 14.1 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$

Low Power Mode, High Side LO Downmixer Application: $I_{\text {SEL }}=$ High, RF $=700 \mathrm{MHz}$ to $1100 \mathrm{MHz}, \mathrm{IF}=190 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=\mathrm{f}_{\mathrm{RF}}+\mathrm{f}_{\mathrm{IF}}$

PARAMETER	CONDITIONS	MIN	TYP
Conversion Gain	$\mathrm{RF}=900 \mathrm{MHz}$	7.7	UNITS
Input 3rd Order Intercept	$\mathrm{RF}=900 \mathrm{MHz}$	21.5	dB
SSB Noise Figure	$\mathrm{RF}=900 \mathrm{MHz}$	9.9	dBm
Input 1dB Compression	$\mathrm{RF}=900 \mathrm{MHz}, \mathrm{V}$ CCIF $=3.3 \mathrm{~V}$	10.4	dB
	$\mathrm{RF}=900 \mathrm{MHz}, \mathrm{V}$ CCIF $=5 \mathrm{~V}$	10.9	dBm

Low Side LO Downmixer Application: $I_{\text {SEL }}=$ Low, $R F=1100 \mathrm{MHz}$ to 1600 MHz , $I F=190 \mathrm{MHz}, f_{L O}=f_{R F}-f_{I F}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC5590 is guaranteed functional over the case operating temperature range of $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$. $\left(\theta_{\mathrm{JC}}=7^{\circ} \mathrm{C} / \mathrm{W}\right)$

Note 3: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 6dB matching pad on RF input, bandpass filter and 6 dB matching pad on the LO input, and no other RF signals applied.
Note 4: Channel A to channel B isolation is measured as the relative IF output power of channel B to channel A, with the RF input signal applied to channel A. The RF input of channel B is 50Ω terminated and both mixers are enabled.

TYPICAL AC PGRFORMANCE CHARACTERISTICS

High Side LO
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCIF}}=3.3 \mathrm{~V}, \mathrm{ENA}=\mathrm{ENB}=$ High, $\mathrm{I}_{\mathrm{SEL}}=\mathrm{Low}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}(-3 \mathrm{dBm} /$ tone for two-tone IIP3 tests, $\Delta f=2 M H z), I F=190 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1.

700MHz Conversion Gain, IIP3 and NF vs LO Power

5590 G04
Conversion Gain, IIP3 and NF vs Supply Voltage (Single Supply)

5590607

SSB NF vs RF Frequency

5590 G02
900MHz Conversion Gain, IIP3 and NF vs LO Power

5590 G05

Conversion Gain, IIP3 and NF vs Supply Voltage (Dual Supply)

5590608

Channel Isolation vs RF Frequency

5590 G03
1100MHz Conversion Gain, IIP3 and NF vs LO Power

5590 G06
Conversion Gain, IIP3 and RF Input P1dB vs Temperature

TYPICAL AC PGRFORMANCE CHARACTERISTICS
High Side LO
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCIF}}=3.3 \mathrm{~V}, \mathrm{ENA}=\mathrm{ENB}=$ High, $\mathrm{I}_{\mathrm{SEL}}=\mathrm{Low}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}(-3 \mathrm{dBm} /$ tone for two-tone IIP3 tests, $\Delta f=2 M H z), I F=190 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1.

SSB Noise Figure vs RF Blocker Power

5590 G13

Conversion Gain Distribution

Single-Tone IF Output Power, 2×2 and 3×3 Spurs vs RF Input Power

LO Leakage vs LO Frequency

IIP3 Distribution

2×2 and 3×3 Spur Suppression vs LO Input Power

RF Isolation vs RF Frequency

SSB Noise Figure Distribution

5590 G18

TYPICAL AC PGRFORMANCE CHARACTERISTICS
Low Power Mode, High Side LO
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CCIF }}=3.3 \mathrm{~V}, \mathrm{ENA}=\mathrm{ENB}=\mathrm{High}, \mathrm{I}_{\mathrm{SEL}}=\mathrm{High}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}(-3 \mathrm{dBm} /$ tone for two-tone IIP3 tests, $\Delta f=2 M H z), I F=190 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1.

TYPICAL AC PERFORMANCE CHARACTERISTICS
Low Side LO
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CCIF }}=3.3 \mathrm{~V}, E N A=E N B=$ High, $\mathrm{I}_{\mathrm{SEL}}=$ Low, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}(-3 \mathrm{dBm} /$ tone for two-tone IIP3 tests, $\Delta f=2 M H z), I F=190 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1 .

1200MHz Conversion Gain, IIP3 and NF vs LO Power

5590 G31

SSB NF vs RF Frequency

5590 G29
1400MHz Conversion Gain, IIP3 and NF vs LO Power

5590 G32

Conversion Gain, IIP3 and NF vs Supply Voltage (Dual Supply)

SSB Noise Figure vs RF Blocker Level

5590 G30

1600MHz Conversion Gain, IIP3 and NF vs LO Power

Conversion Gain, IIP3 and RF Input P1dB vs Temperature

TYPICAL DC PERFORMANCE CHARACTERISTICS

$I_{\text {SEL }}=$ Low, ENA $=$ ENB $=$ High, test circuit shown in Figure 1.
Vcc Supply Current vs Supply Voltage (Mixer and LO Amplifier)

$V_{\text {ccif }}$ Supply Current vs Supply Voltage (IF Amplifier)

5590 G39
$I_{\text {SEL }}=$ High, ENA = ENB $=$ High, test circuit shown in Figure 1.
$V_{\text {CC }}$ Supply Current vs Supply Voltage (Mixer and LO Amplifier)

$V_{\text {cIIF }}$ Supply Current vs Supply Voltage (IF Amplifier)

Total Supply Current vs Temperature ($V_{\text {CC }}+V_{\text {CCIF }}$)

PIn fUnCTIOnS

RFA, RFB (Pins 1, 6): Single-Ended RF Inputs for Channels A and B. These pins are internally connected to the primary sides of the RF input transformers, which have low DC resistance to ground. Series DC-blocking capacitors should be used to avoid damage to the integrated transformer when DC voltage is present at the RF inputs. The RF inputs are impedance matched when the LO input is driven with a $0 \pm 6 \mathrm{dBm}$ source between 700 MHz and 1.5 GHz and the channels are enabled.

CTA, CTB (Pins 2, 5): RF Transformer Secondary CenterTap on Channels A and B. These pins may require bypass capacitors to ground to optimize IIP3 performance. Each pin has an internally generated bias voltage of 1.2 V and must be DC-isolated from ground and V_{CC}.
GND (Pins 3, 4, 7, 13, 15, 24, Exposed Pad Pin 25): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board.
IFGNDB, IFGNDA (Pins 8, 23): DC Ground Returns for the IF Amplifiers. These pins must be connected to ground to complete the DC current paths for the IF amplifiers. Chip inductors may be used to tune LO-IF and RF-IF leakage. Typical DC current is 96 mA for each pin.

IFB ${ }^{+}$, IFB$^{-}$, IFA $^{-}$, IFA+ (Pins 9, 10, 21, 22): Open-Collector Differential Outputs for the IFAmplifiers of Channels B and A. These pins must be connected to a DC supply through impedance matching inductors, ortransformer center-taps. Typical DC current consumption is 48 mA into each pin.

IFBB, IFBA (Pins 11, 20): Bias Adjust Pins for the IF Amplifiers. These pins allow independent adjustment of the internal IF buffer currents for channels B and A, respectively. The typical DC voltage on these pins is 2.2 V . If not used, these pins must be DC isolated from ground and $V_{C C}$.
$V_{\text {CCB }}$ and $V_{\text {CCA }}$ (Pins 12, 19): Power Supply Pins for the LO Buffers and Bias Circuits. These pins must be connected to a regulated 3.3 V supply with bypass capacitors located close to the pins. Typical current consumption is 94 mA per pin.
ENB, ENA (Pins 14, 17): Enable Pins. These pins allow Channels B and A, respectively, to be independently enabled. An applied voltage of greater than 2.5 V activates the associated channel while a voltage of less than 0.3 V disables the channel. Typical input current is less than $10 \mu \mathrm{~A}$. These pins must not be allowed to float.

LO (Pin 16): Single-Ended Local Oscillator Input. This pin is internally connected to the primary side of the LO input transformer and has a low DC resistance to ground. Series DC-blocking capacitors should be used to avoid damage to the integrated transformer when DC voltage present at LO input. The LO input is internally matched to 50Ω for all states of ENA and ENB.

Isel (Pin 18): Low Current Select Pin. When this pin is pulled low ($<0.3 \mathrm{~V}$), both mixer channels are biased at the normal current level for bestRF performance. When greater than 2.5 V is applied, both channels operate at reduced current, which provides reasonable performance at lower power consumption. This pin must not be allowed to float.

BLOCK DIAGRAM

LTC5590

TEST CIRCUIT

L1, L2 vs IF FREQUENCIES	
IF (MHz)	L1, L2 (nH)
140	270
190	150
240	100
300	56
380	33
450	22

REF DES	VALUE	SIZE	VENDOR
C1A, C1B	100 pF	0402	AVX
C2	10 pF	0402	AVX
C3A, C3B C5A, C5B	22 pF	0402	AVX
C4, C6	$1 \mu \mathrm{~F}$	0603	AVX
C7A, C7B	1000 pF	0402	AVX
L1A, L1B, L2A, L2B	150 nH	0603	Coilcraft
T1A, T1B	TC4-1W-7ALN+		Mini-Circuits

Figure 1. Standard Downmixer Test Circuit Schematic (190MHz)

APPLICATIONS INFORMATION

Introduction

The LTC5590 consists of two identical mixer channels driven by a common LO input signal. Each high linearity mixer consists of a passive double-balanced mixer core, IF buffer amplifier, LO buffer amplifier and bias/enable circuits. See the Pin Functions and Block Diagram sections for a description of each pin. Each of the mixers can be shutdown independently to reduce power consumption and low current mode can be selected that allows a trade-off between performance and powerconsumption. The RFand LO inputs are single-ended and are internally matched to 50Ω. Low side or high side LO injection can be used. The IF outputs are differential. The evaluation circuit, shown in Figure 1, utilizes bandpass IF output matching and an IF transformer to realize a 50Ω single-ended IF output. The evaluation board layout is shown in Figure 2.

Figure 2. Evaluation Board Layout

RF Inputs

The RF inputs of channels A and B are identical. The RF input of channel A, shown in Figure 3, is connected to the primary winding of an integrated transformer. $\mathrm{A} 50 \Omega$ match is realized when a series external capacitor, C1A, is connected to the RF input. C1A is also needed for DC blocking if the source has DC voltage present, since the primary side of the RF transformer is internally DC-grounded. The DC resistance of the primary is approximately 4.5Ω.

The secondary winding of the RF transformer is internally connected to the channel A passive mixer core. The centertap of the transformer secondary is connected to Pin 2 (CTA) to allow the connection of bypass capacitor, C8A. The value of C8A is LO frequency-dependent and is not required for most applications, though it can improve IIP3 in some cases. When used, it should be located within 2 mm of Pin 2 for proper high frequency decoupling. The nominal DC voltage on the CTA pin is 1.2 V .

For the RF inputs to be properly matched, the appropriate LO signal must be present at the LO input. The RF input impedance is also dependent on the LO frequency, as shown in Figure 4, which shows the RF input return loss for various LO frequencies with a C1A value of 100 pF . A broadband impedance match is achieved over the 700 MHz to 1.4GHz range. Outside this frequency range, the desired impedance match can be obtained through adjustment of external component values.

Figure 3. Channel A RF Input Schematic

5590 F04
Figure 4. RF Port Return Loss

APPLICATIONS InFORMATION

The RF input impedance and input reflection coefficient, versus RF frequency, are listed in Table 1. The reference plane for this data is Pin 1 of the IC, with no external matching, and the LO is driven at 1.09 GHz .

Table 1. RF Input Impedance and S11
(at Pin 1, No External Matching, $\mathrm{f}_{\mathrm{L} 0}=1.09 \mathrm{GHz}$)

$\begin{aligned} & \text { FREQUENCY } \\ & \text { (GHz) } \end{aligned}$	RF INPUT IMPEDANCE	S11	
		MAG	ANGLE
0.6	$34.2+$ j24.5	0.33	107
0.7	$41.3+$ j22.4	0.26	97
0.8	$48.5+j 18.1$	0.18	84
0.9	$54.3+$ j10.1	0.10	61
1.0	54.2 - j4.6	0.06	-45
1.1	38.4 - j16	0.22	-116
1.2	29.3-j9.4	0.29	-149
1.3	27.7-j4.5	0.29	-165
1.4	27.4-j1.6	0.29	-175
1.5	27.8 - j0.1	0.28	-180
1.6	29.4 + 0.2	0.26	179
1.7	31.2-j0.5	0.23	-178

Figure 5. LO Input Schematic

LO Input

The LO input, shown in Figure 5, is connected to the primary winding of an integrated transformer. A 50Ω impedance match is realized at the LO port by adding an external series capacitor, C2. This capacitor is also needed for DC blocking if the LO source has DC voltage present, since the primary side of the LO transformer is DC-grounded internally. The DC resistance of the primary is approximately 4.5Ω.

The secondary of the transformer drives a pair of high speed limiting differential amplifiers for channels A and B. The LTC5590's LO amplifiers are optimized for the 700MHz to 1.5 GHz LO frequency range; however, LO frequencies outside this frequency range may be used with degraded performance.

The LO port is always 50Ω matched when $V_{C C}$ is applied, even when one or both of the channels is disabled. This helps to reduce frequency pulling of the LO source when the mixer is switched between different operating states. Figure 6 illustrates the LO port return loss for the different operating modes.

Figure 6. LO Input Return Loss
The nominal LO input level is OdBm, though the limiting amplifiers will deliver excellent performance overa $\pm 6 \mathrm{dBm}$ input power range. Table 2 lists the LO input impedance and input reflection coefficient versus frequency.

Table 2. LO Input Impedance vs Frequency
(at Pin 16, No External Matching, ENA = ENB = High)

FREQUENCY (GHz)	INPUT IMPEDANCE	S11	
		ANGLE	
0.7	$29.7+j 34.7$	0.46	97
0.8	$39.9+j 34.1$	0.37	86
0.9	$48.7+j 26.6$	0.26	78
1.0	$50.8+j 15.1$	0.15	78
1.1	$46.5+j 6.2$	0.07	116
1.2	$39.9+j 2.5$	0.12	165
1.3	$34.0+j 1.4$	0.19	174
1.4	$29.2+j 2.1$	0.26	173
1.5	$25.6+j 3.8$	0.33	168

APPLICATIONS INFORMATION

IF Outputs

The IF amplifiers in channels A and B are identical. The IF amplifier for channel A, shown in Figure 7, has differential open collector outputs (IFA+ and IFA ${ }^{-}$), a DC ground return pin (IFGNDA), and a pin for adjusting the internal bias (IFBA). The IF outputs must be biased at the supply voltage ($V_{\text {CCIFA }}$), which is applied through matching inductors L1A and L2A. Alternatively, the IF outputs can be biased through the center tap of a transformer (T1A). The common node of L1A and L2A can be connected to the center tap of the transformer. Each IF output pin draws approximately 48 mA of DC supply current (96 mA total). An external load resistor, R2A, can be used to improve impedance matching if desired.
IFGNDA (Pin 23) must be grounded or the amplifier will not draw DC current. Inductor L3A may improve LO-IF and RF-IF leakage performance in some applications, but is otherwise not necessary. Inductors should have small resistance for DC. High DC resistance in L3A will reduce the IF amplifier supply current, which will degrade RF performance.

Figure 7. IF Amplifier Schematic with Bandpass Match

For optimum single-ended performance, the differential IF output must be combined through an external IF transformer or a discrete IF balun circuit. The evaluation board (see Figures 1 and 2) uses a 4:1 IF transformer for impedance transformation and differential to single-ended conversion. It is also possible to eliminate the IF transformer and drive differential filters or amplifiers directly.

At IFfrequencies, the IF output impedance can be modeled as 379Ω in parallel with 2.2 pF . The equivalent small-signal model, including bondwire inductance, is shown in Figure 8. Frequency-dependent differential IF output impedance is listed in Table 3. This data is referenced to the package pins (with no external components) and includes the effects of IC and package parasitics.

Figure 8. IF Output Small-Signal Model

Bandpass IF Matching

The bandpass IF matching configuration, shown in Figures 1 and 7, is best suited for IF frequencies in the 90 MHz to 500MHz range. Resistor R2A may be used to reduce the IF output resistance for greater bandwidth and inductors L1A and L2A resonate with the internal IF output capacitance at the desired IF frequency. The value of L1A, L2A can be estimated as follows:

$$
L 1 A=L 2 A=\frac{1}{\left[\left(2 \pi f_{I F}\right)^{2} \cdot 2 \cdot \mathrm{C}_{\mid F}\right]}
$$

where C_{IF} is the internal IF capacitance (listed in Table 3).

APPLICATIONS InFORMATION

Values of L1A and L2A are tabulated in Figure 1 for various IF frequencies. The measured IF output return loss for bandpass IF matching is plotted in Figure 9.

Table 3. IF Output Impedance vs Frequency

FREQUENCY (MHz)	DIFFERENTIAL OUTPUT IMPEDANCE $\left(\mathbf{R}_{\text {IF }} \\| \mathbf{X}_{\text {IF }}\left(\mathbf{C}_{\text {IF }}\right)\right)$
90	$403 \\|-\mathrm{j} 610(2.9 p F)$
140	$384 \\|-\mathrm{j} 474(2.4 \mathrm{pF})$
190	$379 \\|-j 381(2.2 \mathrm{pF})$
240	$380 \\|-\mathrm{j} 316(2.1 \mathrm{pF})$
300	$377 \\|-\mathrm{j} 253(2.1 \mathrm{pF})$
380	$376 \\|-\mathrm{j} 210(2.0 \mathrm{pF})$
450	$360 \\|-\mathrm{j} 177(2.0 \mathrm{pF})$

5590 F99
Figure 9. IF Output Return Loss with Bandpass Matching

Lowpass IF Matching

For IF frequencies below 90MHz, the inductance values become unreasonably high and the lowpass topology shown in Figure 9 is preferred. This topology also can provide improved RF to IF and LO to IF isolation. VCCIFA is supplied through the center tap of the 4:1 transformer. A lowpass impedance transformation is realized by shunt elements R2A and C9A (in parallel with the internal RIF and CIF), and series inductors L1A and L2A. Resistor R2A is used to reduce the IF output resistance for greater bandwidth, or it can be omitted for the highest conversion gain. The final impedance transformation to 50Ω is realized by transformer T1A. The measured return loss is shown in Figure 11 for different values of inductance (C9A = OpF). The case with 82nH inductors and R2A $=1 \mathrm{k}$ is also shown. The LTC5590 demo board (see Figure 2)

Figure 10. IF Output with Lowpass Matching

Figure 11. IF Output Return Loss with Lowpass Matching
has been laid out to accommodate this matching topology with only minor modifications.

IF Amplifier Bias

The IF amplifier delivers excellent performance with $\mathrm{V}_{\text {CCIF }}$ $=3.3 \mathrm{~V}$, which allows a single supply to be used for $\mathrm{V}_{C C}$ and $V_{\text {CCIF }}$. At $V_{\text {CCIF }}=3.3 \mathrm{~V}$, the RF input P1dB of the mixer is limited by the output voltage swing. For higher P1dB, in this case, resistor R2A (Figure 7) can be used to reduce the output impedance and thus the voltage swing, thus improving P1dB. The trade-off for improved P1dB will be lower conversion gain.
With $V_{\text {CCIF }}$ increased to 5 V the P1dB increases by over 3 dB , at the expense of higher power consumption. Mixer P1dB performance at 900 MHz is tabulated in Table 4 for $V_{\text {CCIF }}$ values of 3.3 V and 5 V . For the highest conversion gain, high-Q wire-wound chip inductors are recommended for L1A and L2A. Low cost multilayer chip inductors may be substituted, with a slight reduction in conversion gain.

APPLICATIONS InFORMATION

Table 4. Performance Comparison with $\mathrm{V}_{\text {CCIF }}=3.3 \mathrm{~V}$ and 5 V (RF = 900MHz, High Side LO, IF = 190MHz)

$\mathbf{V}_{\text {CCIF }}$ (\mathbf{V})	R2A $(\boldsymbol{\Omega})$	$\mathbf{I}_{\mathbf{C C I F}}$ $(\mathbf{m A})$	$\mathbf{G}_{\mathbf{C}}$ $(\mathbf{d B})$	$\mathbf{P 1 d B}$ $(\mathbf{d B m})$	IIP3 $(\mathbf{d B m})$	$\mathbf{N F}$ $(\mathbf{d B})$
3.3	0 pen	191	8.7	10.7	26.0	9.7
	1 k	191	7.5	11.4	26.0	9.75
5	0 pen	200	8.7	14.1	25.5	9.8

The IFBA pin (Pin 20) is available for reducing the DC current consumption of the IF amplifier, at the expense of IIP3. The nominal DC voltage at Pin 20 is 2.1 V , and this pin should be left open-circuited for optimum performance. The internal bias circuit produces a 4 mA reference for the IF amplifier, which causes the amplifier to draw approximately 96 mA . If resistor R1A is connected to Pin 20 as shown in Figure 7, a portion of the reference current can be shunted to ground, resulting in reduced IF amplifier current. For example, R1A $=1 \mathrm{k}$ will shunt away 1 mA from Pin 20 and the IF amplifier current will be reduced by 28% to approximately 69 mA . Table 5 summarizes RF performance versus IF amplifier current.

Table 5. Mixer Performance with Reduced IF Amplifier Current $R F=900 \mathrm{MHz}$, High Side LO, IF $=190 \mathrm{MHz}, \mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CCIF }}=3.3 \mathrm{~V}$

R1	$\mathbf{I}_{\mathbf{C C I F}}$ $(\mathbf{m A})$	$\mathbf{G}_{\mathbf{C}}$ $(\mathbf{d B})$	IIP3 $(\mathbf{d B m})$	P1dB $(\mathbf{d B})$	NF $(\mathbf{d B})$
Open	191	8.7	26.0	10.7	9.7
$4.7 \mathrm{k} \Omega$	173	8.7	25.6	10.6	9.7
$2.2 \mathrm{k} \Omega$	156	8.6	25.0	10.6	9.6
$1 \mathrm{k} \Omega$	137	8.5	24.1	10.5	9.6

$R F=1400 \mathrm{MHz}$, Low Side LO, IF $=190 \mathrm{MHz}, V_{C C}=V_{\text {CIF }}=3.3 \mathrm{~V}$

R1	$\mathbf{I} \mathbf{C C I F}$ $(\mathbf{m A})$	$\mathbf{G}_{\mathbf{C}}$ $(\mathbf{d B})$	IIP3 $(\mathbf{d B m})$	P1dB $(\mathbf{d B m})$	$\mathbf{N F}$ $(\mathbf{d B})$
Open	191	8.4	27.3	11	9.7
$4.7 \mathrm{k} \Omega$	173	8.5	26.8	10.9	9.6
$2.2 \mathrm{k} \Omega$	156	8.5	26.2	10.9	9.6
$1 \mathrm{k} \Omega$	137	8.4	25.1	10.8	9.6

Low Power Mode

Both mixer channels can be set to low power mode using the Isel pin. This allows flexibility to select a reduced current mode of operation when lower RF performance is acceptable, reducing power consumption by 37%. Figure 12 shows a simplified schematic of the I ISEL pin interface.

When $\mathrm{I}_{\text {SEL }}$ is set low $(<0.3 \mathrm{~V})$, both channels operate at nominal DC current. When ISEL is set high ($>2.5 \mathrm{~V}$), the DC current in both channels is reduced, thus reducing power consumption. The performance in low power mode and normal power mode are compared in Table 6.

Figure 12. ISEL Interface Schematic

Table 6. Performance Comparison Between Different Power Modes
RF $=900 \mathrm{MHz}$, High Side LO, IF $=190 \mathrm{MHz}, \mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CCIF }}=3.3 \mathrm{~V}$

I $_{\text {SEL }}$	$\mathbf{I}_{\text {ToTAL }}$ $(\mathbf{m A)}$	$\mathbf{G}_{\mathbf{C}}$ $(\mathbf{d B})$	IIP3 $(\mathbf{d B m})$	P1dB $(\mathbf{d B m})$	NF $(\mathbf{d B})$
Low	379	8.7	26.0	10.7	9.7
High	239	7.7	21.5	10.4	9.9

Enable Interface

Figure 13 shows a simplified schematic of the ENA pin interface (ENB is identical). To enable channel A, the ENA voltage must be greater than 2.5 V . If the enable function is not required, the enable pin can be connected directly to V_{cc}. The voltage at the enable pin should never exceed the power supply voltage ($V_{C C}$) by more than $0.3 V$. If this

Figure 13. ENA Interface Schematic

LTC5590

APPLICATIONS InFORMATION

should occur, the supply current could be sourced through the ESD diode, potentially damaging the IC.
The Enable pins must be pulled high or low. If left floating, the on/off state of the IC will be indeterminate. If a three-state condition can exist at the enable pins, then a pull-up or pull-down resistor must be used.

Supply Voltage Ramping

Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply volt-
age transient that exceeds the maximum rating. A supply voltage ramp time of greater than 1 ms is recommended.

Spurious Output Levels

Mixer spurious output levels versus harmonics of the RF and LO are tabulated in Tables 7 and 8 for frequencies up to 10 GHz . The spur levels were measured on a standard evalution board using the test circuit shown in Figure 1. The spur frequencies can be calculated using the following equation:

$$
f_{S P U R}=\left(M \bullet f_{R F}\right)-\left(N \bullet f_{L O}\right)
$$

Table 7. IF Output Spur Levels (dBc), High Side LO
$\left(\mathrm{RF}=900 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCIF}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$

N												
M		0	1	2	3	4	5	6	7	8	9	10
	0	-	-40.0	-42	-54.8	-55.7	-66.5	-81.4	-73.1	-74.3	-72.5	
	1	-31.8	0	-49.0	-47.4	-72.2	-64.0	-88.5	-70.3	-81.6	-81.2	*
	2	-68.6	-63.0	-78.6	-73.9	-87.7	-87.8	-82.3	*	*	*	*
	3	*	*	*	-81.5	*	*	*	*	*	*	*
	4	*	*	*	-78.0	*	*	*	*	*	*	*
	5	*	*	*	*	*	*	*	*	*	*	*
	6	*	*	*	*	*	*	*	*	*	*	*
	7	*	*	*	*	*	*	*	*	*	*	*
	8	*	*	*	*	*	*	*	*	*	*	*
	9	*	*	*	*	*	*	*	*	*	*	*
	10	*	*	*	*	*	*	*	*	*	*	*

*Less than -100 dBc
Table 8. IF Output Spur Levels (dBc), Low Side LO
$\left(\mathrm{RF}=1400 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-3 \mathrm{dBm}, \mathrm{P}_{\mathrm{L}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCIF}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$

M		0	1	2	3	4	5	6	7	8	9	10
	0	-	-46.2	-42.2	-55.9	-56.9	-71.3	-67.4	-85.3	-69.9		
	1	-40.8	0	-44.5	-52.2	-75.0	-67.5	-78.3	-73.4	*	*	
	2	-77.5	-74.4	-69.3	-71.7	*	-86.4	-83.2	*	-93.2	*	*
	3	*	-88.7	*	-76.8	-89.2	*	*	*	*	*	*
	4	*	*	*	*	*	*	*	*	*	*	*
	5	*	*	*	*	*	*	*	*	*	*	*
	6	*	*	*	*	*	*	*	*	*	*	*
	7	*	*	*	*	*	*	*	*	*	*	*
	8		*	*	-93.7	*	*	*	*	*	*	*
	9				*	*	-95.6	*	*	*	*	*
	10					*	-94.5	*	*	*	*	*

*Less than -100dBc

PACKAGE DESCRIPTION
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

UH Package
24-Lead Plastic QFN ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1747 Rev A)

NOTE:

1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

LTC5590

TYPICAL APPLICATION

Downconverting Mixer with 140MHz Lowpass IF Matching

Conversion Gain, NF and IIP3 vs RF Frequency

5590 TA02b

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
Infrastructure		
LTC5569	300 MHz to 4 GHz , Dual Active Downconverting Mixer	2dB Gain, 26.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/180mA Supply
LT5527	400MHz to 3.7GHz, 5V Downconverting Mixer	2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply
LT5557	400MHz to 3.8GHz, 3.3V Downconverting Mixer	2.9 dB Gain, 24.7 dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply
LTC6416	2GHz 16-Bit ADC Buffer	40.25 dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping
LTC6412	31dB Linear Analog VGA	35dBm OIP3 at 240MHz, Continuous Gain Range -14dB to 17dB
LTC554X	600MHz to 4GHz Downconverting Mixer Family	8dB Gain, >25dBm IIP3, 10dB NF, 3.3V/200mA Supply
LT5554	Ultralow Distort IF Digital VGA	48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125 dB Gain Steps
LT5578	400MHz to 2.7GHz Upconverting Mixer	27 dBm OIP3 at 900 MHz , 24.2dBm at 1.95 GHz , Integrated RF Transformer
LT5579	1.5 GHz to 3.8GHz Upconverting Mixer	27.3 dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports

RF Power Detectors

LTC5581	6GHz Low Power RMS Detector	40dB Dynamic Range, $\pm 1 \mathrm{~dB}$ Accuracy Overtemperature, 1.5mA Supply Current
LTC5582	10GHz RMS Power Detector	40 MHz to 10GHz, Up to 57dB Dynamic Range, $\pm 0.5 \mathrm{~dB}$ Accuracy Overtemperature
LTC5583	Dual 6GHz RMS Power Detector Measures VSWR	40 MHz to 6 GHz, Up to 60 dB Dynamic Range, $>40 \mathrm{~dB}$ Channel-to-Channel Isolation, Difference Output for vs WR Measurement

ADCs

LTC2285	14-Bit, 125Msps Dual ADC	72.4dB SNR, >88dB SFDR, 790mW Power Consumption
LTC2185	16-Bit, 125Msps Dual ADC Ultralow Power	$74.8 \mathrm{~dB} \mathrm{SNR}, \mathrm{185mW/Channel} \mathrm{Power} \mathrm{Consumption}$
LTC2242-12	12-Bit, 250Msps ADC	65.4 dB SNR, 78 dB SFDR, 740mW Power Consumption

