

LTC6400-14

2.4GHz Low Noise, Low Distortion Differential ADC Driver for 300MHz IF

The LTC®6400-14 is a high-speed differential amplifier

targeted at processing signals from DC to 300MHz. The

part has been specifically designed to drive 12-, 14- and

16-bit ADCs with low noise and low distortion, but can also

The LTC6400-14 is easy to use, with minimal support

circuitry required. The output common mode voltage is

set using an external pin, independent of the inputs, which

eliminates the need for transformers or AC-coupling ca-

pacitors in many applications. The gain is internally fixed

The LTC6400-14 saves space and power compared to

alternative solutions using IF gain blocks and transformers.

The LTC6400-14 is packaged in a compact 16-lead 3mm \times

3mm QFN package and operates over the -40°C to 85°C

T, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.

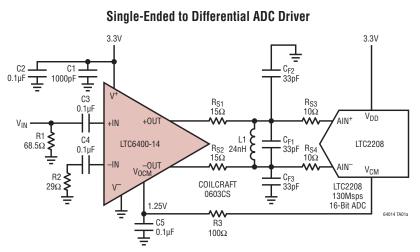
All other trademarks are the property of their respective owners.

be used as a general-purpose broadband gain block.

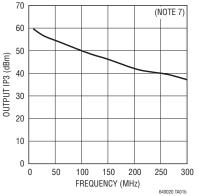
DESCRIPTION

at 14dB (5V/V).

temperature range.

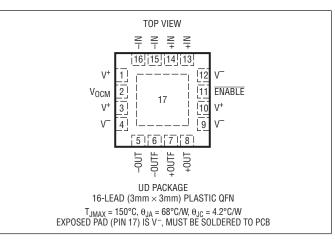

FEATURES

- 2.4GHz –3dB Bandwidth
- Fixed Gain of 5V/V (14dB)
- –97dBc IMD3 at 70MHz (Equivalent OIP3 = 52.4dBm)
- -66dBc IMD3 at 300MHz (Equivalent OIP3 = 36.9dBm)
- 1.1nV/√Hz Internal Op Amp Noise
- 2.5nV/√Hz Total Input Noise
- 7.5dB Noise Figure
- Differential Inputs and Outputs
- 200Ω Input Impedance
- 2.85V to 3.5V Supply Voltage
- 85mA Supply Current (255mW)
- 1V to 1.6V Output Common Mode Voltage, Adjustable
- DC- or AC-Coupled Operation
- Max Differential Output Swing 4.8V_{P-P}
- Small 16-Lead 3mm × 3mm × 0.75mm QFN Package


APPLICATIONS

- Differential ADC Driver
- Differential Driver/Receiver
- Single Ended to Differential Conversion
- IF Sampling Receivers
- SAW Filter Interfacing

TYPICAL APPLICATION



Downloaded from Elcodis.com electronic components distributor

(Note 1)	
Supply Voltage (V ⁺ – V ⁻)	3.6V
Input Current (Note 2)	±10mA
Operating Temperature Range	
(Note 3)	-40°C to 85°C
Specified Temperature Range	
(Note 4)	-40°C to 85°C
Storage Temperature Range6	5°C to 150°C
Maximum Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec)	300°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6400CUD-14#PBF	LTC6400CUD-14#TRPBF	LCCR	16-Lead (3mm × 3mm) Plastic QFN	0°C to 70°C
LTC6400IUD-14#PBF	LTC6400IUD-14#TRPBF	LCCR	16-Lead (3mm × 3mm) Plastic QFN	-40°C to 85°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

LTC6400 AND LTC6401 SELECTOR GUIDE Please check each datasheet for complete details.

PART NUMBER	GAIN (dB)	GAIN (V/V)	Z _{IN} (DIFFERENTIAL) (Ω)	I _{CC} (mA)
LTC6400-8	8	2.5	400	85
LTC6400-14	14	5	200	85
LTC6400-20	20	10	200	90
LTC6400-26	26	20	50	85
LTC6401-8	8	2.5	400	45
LTC6401-14	14	5	200	45
LTC6401-20	20	10	200	50
LTC6401-26	26	20	50	45

In addition to the LTC6400 family of amplifiers, a lower power LTC6401 family is available. The LTC6401 is pin compatible to the LTC6400, and has the same low noise performance. The lower power consumption of the LTC6401 comes at the expense of slightly higher non-linearity, especially at input frequencies above 140MHz. Please refer to the separate LTC6401 data sheets for complete details.

DC ELECTRICAL CHARACTERISTICS The • denotes the specifications which <u>apply over</u> the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C. V⁺ = 3V, V⁻ = 0V, +IN = -IN = V_{OCM} = 1.25V, ENABLE = 0V, No R_L unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Input/Output C	haracteristic						
G _{DIFF}	Gain	V _{IN} = ±200mV Differential	•	13.5	14	14.5	dB
TC _{GAIN}	Gain Temperature Drift	V _{IN} = ±200mV Differential	٠		-0.9		mdB/°C
V _{SWINGMIN}	Output Swing Low	Each Output, $V_{IN} = \pm 800 \text{mV}$ Differential	٠		77	160	mV
V _{SWINGMAX}	Output Swing High	Each Output, $V_{IN} = \pm 800 \text{mV}$ Differential	٠	2.35	2.48		V
Voutdiffmax	Maximum Differential Output Swing	1dB Compressed	٠		4.8		V _{P-P}
I _{OUT}	Output Current Drive	Each Output	٠	20			mA
VOSDIFF	Input Differential Offset Voltage		٠	-3		3	mV
TCV _{OSDIFF}	Input Differential Offset Voltage Drift	T _{MIN} to T _{MAX}	٠		0.7		μV/°C
IVRMIN	Input Common Mode Voltage Range, MIN					1	V
IVRMAX	Input Common Mode Voltage Range, MAX			1.8			V
RINDIFF	Input Resistance (+IN, -IN)	Differential	٠	170	200	230	Ω
CINDIFF	Input Capacitance (+IN, –IN)	Differential, Includes Parasitic			1		pF
ROUTDIFF	Output Resistance (+OUT, -OUT)	Differential	٠	18	25	32	Ω
ROUTFDIFF	Filtered Output Resistance (+OUTF, -OUTF)	Differential	٠	85	100	115	Ω
COUTFDIFF	Filtered Output Capacitance (+OUTF, -OUTF)	Differential, Includes Parasitic			2.7		pF
CMRR	Common Mode Rejection Ratio	Input Common Mode Voltage 1.1V~1.7V	٠	40	62		dB
Output Commo	on Mode Voltage Control						
G _{CM}	Common Mode Gain	V _{OCM} = 1V to 1.6V			1		V/V
V _{OCMMIN}	Output Common Mode Range, MIN		•			1 1.1	V V
V _{OCMMAX}	Output Common Mode Range, MAX		•	1.6 1.5			V V
V _{OSCM}	Common Mode Offset Voltage	V _{OCM} = 1.1V to 1.5V	٠	-15		15	mV
TCV _{OSCM}	Common Mode Offset Voltage Drift	T _{MIN} to T _{MAX}	٠		9		μV/°C
IV _{OCM}	V _{OCM} Input Current		٠		4	15	μA
ENABLE Pin							
V _{IL}	ENABLE Input Low Voltage		•			0.8	V
V _{IH}	ENABLE Input High Voltage		٠	2.4			V
IIL	ENABLE Input Low Current	ENABLE = 0.8V	٠			0.5	μA
I _{IH}	ENABLE Input High Current	$\overline{ENABLE} = 2.4 V$	•		1.3	3	μA
Power Supply							
V _S	Operating Supply Range		•	2.85	3	3.5	V
ls	Supply Current	ENABLE = 0.8V	•	70	85	96	mA
I _{SHDN}	Shutdown Supply Current	$\overline{\text{ENABLE}}$ = 2.4V, Input and Output Floating	•		0.9	3	mA
PSRR	Power Supply Rejection Ratio (Differential Outputs)	V ⁺ = 2.85V to 3.5V	٠	55	76		dB

Specifications are at $T_A = 25^{\circ}C$. $V^+ = 3V$, $V^- = 0V$, $V_{OCM} = 1.25V$,

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
–3dBBW	–3dB Bandwidth	200mV _{P-P, OUT} (Note 6)	1.2	2.37		GHz
0.1dBBW	Bandwidth for 0.1dB Flatness	200mV _{P-P, OUT} (Note 6)		200		MHz
0.5dBBW	Bandwidth for 0.5dB Flatness	200mV _{P-P, OUT} (Note 6)		377		MHz
1/f	1/f Noise Corner			15		kHz
SR	Slew Rate	Differential (Note 6)		6000		V/µs
t _{S1%}	1% Settling Time	2V _{P-P, OUT} (Note 6)		1.7		ns
t _{ovdr}	Overdrive Recovery Time	1.9V _{P-P, OUT} (Note 6)		17		ns
t _{ON}	Turn-On Time	Differential Output Reaches 90% of Steady State Value		10		ns
t _{OFF}	Turn-Off Time	Differential Output Drops to 10% of Original Value		12		ns
-3dBBW _{VOCM}	V _{OCM} Pin Small Signal –3dB BW	0.1V _{P-P} at V _{OCM} , Measured Single-Ended at Output (Note 6)		16		MHz
10MHz Input Signal						<u> </u>
HD2,10M/HD3,10M	Second/Third Order Harmonic Distortion	$2V_{P-P, OUT}, R_L = 200\Omega$		-107/-96		dBc
		2V _{P-P, OUT} , No R _L		-110/-108		dBc
IMD3,10M	Third-Order Intermodulation (f1 = 9.5MHz f2 = 10.5MHz)	$2V_{P-P, OUT}$ Composite, $R_L = 200\Omega$		-99		dBc
		2V _{P-P, OUT} Composite, No R _L		-110		dBc
0IP3,10M	Third-Order Output Intercept Point (f1 = 9.5MHz f2 = 10.5MHz)	$2V_{P-P, OUT}$ Composite, No R _L (Note 7)	59.1		dBm	
P1dB,10M	1dB Compression Point	R _L = 375Ω (Notes 5, 7)	17.8			dBm
NF10M	Noise Figure	$R_L = 375\Omega$ (Note 5)		7.5		dB
e _{IN,10M}	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)		2.5		nV/√Hz
e _{ON,10M}	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)		13		nV/√Hz
70MHz Input Signal						
HD2,70M/HD3,70M	Second/Third Order Harmonic Distortion	$2V_{P-P, OUT}, R_L = 200\Omega$		-86/-85		dBc
		2V _{P-P, OUT} , No R _L		-89/-94		dBc
IMD3,70M	Third-Order Intermodulation	$2V_{P-P, OUT}$ Composite, $R_L = 200\Omega$		-91		dBc
	(f1 = 69.5MHz f2 = 70.5MHz)	2V _{P-P, OUT} Composite, No R _L		-97		dBc
0IP3,70M	Third-Order Output Intercept Point (f1 = 69.5MHz f2 = 70.5MHz)	2V _{P-P, OUT} Composite, No R _L (Note 7)	52.4		dBm	
P1dB,70M	1dB Compression Point	R _L = 375Ω (Notes 5, 7)		18.5		dBm
NF70M	Noise Figure	$R_L = 375\Omega$ (Note 5)	7.5		dB	
e _{IN,70M}	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)		2.5		nV/√Hz
e _{ON,70M}	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)		12.5		nV/√Hz

AC ELECTRICAL CHARACTERISTICS ENABLE = 0V, No R_L unless otherwise noted.

Specifications are at T_A = 25°C. V^+ = 3V, V^- = 0V, V_{0CM} = 1.25V,

SYMBOL	PARAMETER	CONDITIONS	MIN TYP MAX	UNITS
140MHz Input Signal				
HD2,140M/HD3,140M	Second/Third Order Harmonic	$2V_{P-P, OUT}, R_L = 200\Omega$	-78/-74	dBc
	Distortion	2V _{P-P, OUT} , No R _L	-81/-79	dBc
IMD3,140M	Third-Order Intermodulation	$2V_{P-P, OUT}$ Composite, $R_L = 200\Omega$	-80	dBc
	(f1 = 139.5MHz f2 = 140.5MHz)	2V _{P-P, OUT} Composite, No R _L	-85	dBc
OIP3,140M	Third-Order Output Intercept Point (f1 = 139.5MHz f2 = 140.5MHz)	$2V_{P-P, OUT}$ Composite, No R _L (Notes 7)	46.5	dBm
P1dB,140M	1dB Compression Point	$R_L = 375\Omega$ (Notes 5, 7)	18.8	dBm
NF140M	Noise Figure	$R_L = 375\Omega$ (Note 5)	7.7	dB
e _{IN,140M}	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)	2.5	nV/√Hz
e _{ON,140M}	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)	12.6	nV/√Hz
240MHz Input Signal				
HD2,240M/HD3,240M	Second/Third-Order Harmonic Distortion	$2V_{P-P, OUT}, R_L = 200\Omega$	-63/-57	dBc
		2V _{P-P, OUT} , No R _L	-67/-63	dBc
IMD3, 240M	Third-Order Intermodulation	$2V_{P-P, OUT}$ Composite, $R_L = 200\Omega$	-68	dBc
	(f1 = 239.5MHz f2 = 240.5MHz)	2V _{P-P, OUT} Composite, No R _L	-71	dBc
0IP3, 240M	Third-Order Output Intercept Point (f1 = 239.5MHz f2 = 240.5MHz)	$2V_{P-P, OUT}$ Composite, No R _L (Note 7)	39.6	dBm
P1dB, 240M	1dB Compression Point	$R_{L} = 375\Omega$ (Notes 5, 7)	17.9	dBm
NF240M	Noise Figure	$R_L = 375\Omega$ (Note 5)	8	dB
e _{N, 240M}	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)	2.5	nV/√Hz
e _{ON, 240M}	Output Referred Voltage Noise Density	nsity Includes Resistors (Short Inputs) 12.9		nV/√Hz

AC ELECTRICAL CHARACTERISTICS

Specifications are at $T_A = 25^{\circ}C$. V⁺ = 3V, V⁻ = 0V, V_{OCM} = 1.25V,

 $\overline{\text{ENABLE}}$ = OV, No R_L unless otherwise noted.

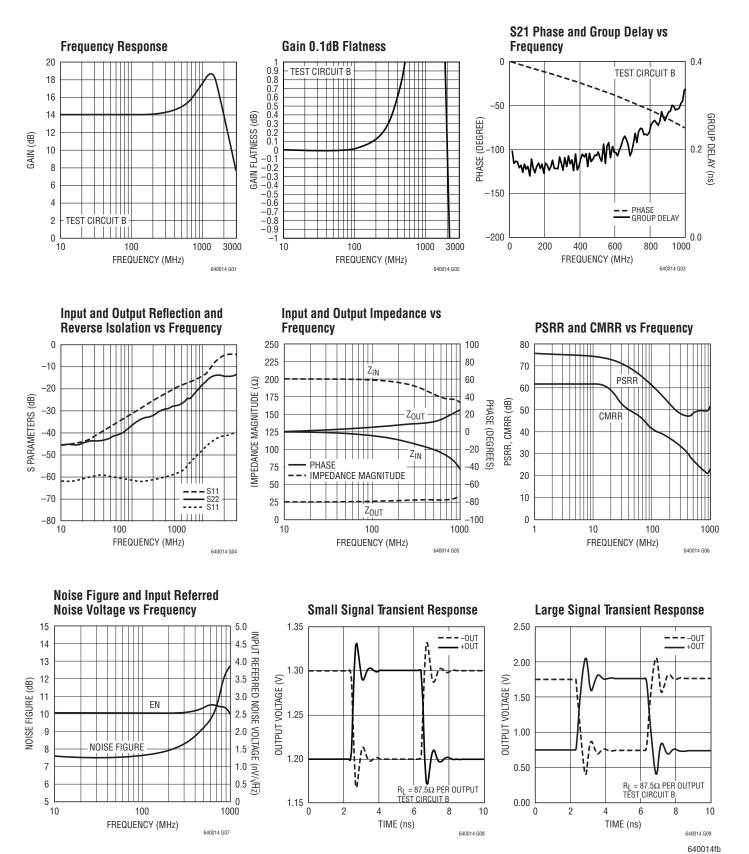
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
300MHz Input Signal	1					
HD2,300M/HD3,300M	Second/Third-Order Harmonic	$2V_{P-P, OUT}, R_L = 200\Omega$		-61/-51		dBc
	Distortion	2V _{P-P, OUT} , No R _L		-61/-55		dBc
IMD3,300M	Third-Order Intermodulation	$2V_{P-P, OUT}$ Composite, $R_L = 200\Omega$		-62		dBc
	(f1 = 299.5MHz f2 = 300.5MHz)	2V _{P-P, OUT} Composite, No R _L		-66		dBc
0IP3,300M	Third-Order Output Intercept Point (f1 = 299.5MHz f2 = 300.5MHz)	$2V_{P-P, OUT}$ Composite, No R _L (Note 7)		36.9		dBm
P1dB,300M	1dB Compression Point	$R_{L} = 375\Omega$ (Notes 5, 7)		17.4		dBm
NF300M	Noise Figure	$R_L = 375\Omega$ (Note 5)		8.2		dB
e _{N, 300M}	Input Referred Voltage Noise Density	Includes Resistors (Short Inputs)		2.5		nV/√Hz
e _{ON, 300M}	Output Referred Voltage Noise Density	Includes Resistors (Short Inputs)		13.9		nV/√Hz
IMD3,280M/320M	Third-Order Intermodulation (f1 = 280MHz f2 = 320MHz) Measured at 360MHz	$2V_{P-P, OUT}$ Composite, $R_L = 375\Omega$		-63	-55	dBc

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Input pins (+IN, -IN) are protected by steering diodes to either supply. If the inputs go beyond either supply rail, the input current should be limited to less than 10mA.

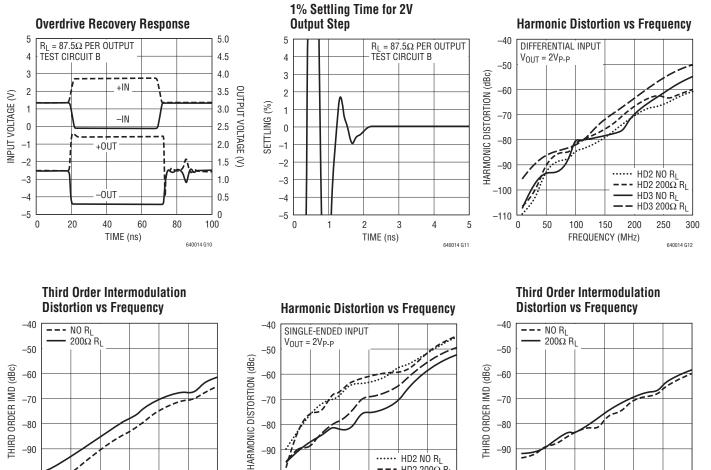
Note 3: The LTC6400C and LTC6400I are guaranteed functional over the operating temperature range of -40° C to 85° C.

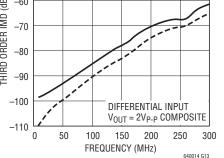
Note 4: The LTC6400C is guaranteed to meet specified performance from 0°C to 70°C. It is designed, characterized and expected to meet specified performance from -40 to 85°C but is not tested or QA sampled at these temperatures. The LTC6400I is guaranteed to meet specified performance from -40°C to 85°C.

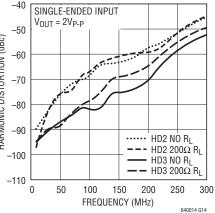

Note 5: Input and output baluns used. See Test Circuit A.

Note 6: Measured using Test Circuit B.

Note 7: Since the LTC6400-14 is a feedback amplifier with low output impedance, a resistive load is not required when driving an AD converter. Therefore, typical output power is very small. In order to compare the LTC6400-14 with amplifiers that require 50Ω output load, the LTC6400-14 output voltage swing driving a given R_L is converted to OIP3 and P_{1dB} as if it were driving a 50Ω load. Using this modified convention, $2V_{P-P}$ is by definition equal to 10dBm, regardless of actual R_L.




TYPICAL PERFORMANCE CHARACTERISTICS



TYPICAL PERFORMANCE CHARACTERISTICS

-90

-100

-110

0

50

100

150

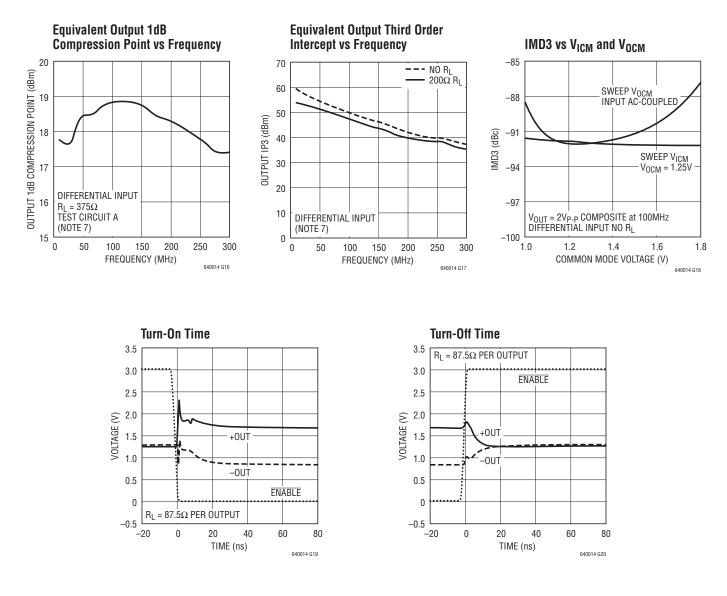
FREQUENCY (MHz)

-

640014fb

SINGLE-ENDED INPUT

200


VOUT = 2VP-P COMPOSITE

250

300

640014 G15

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

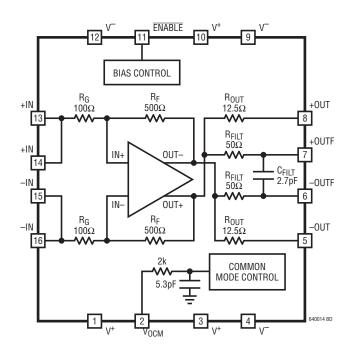
V⁺ (**Pins 1, 3, 10**): Positive Power Supply (Normally tied to 3V or 3.3V). All three pins must be tied to the same voltage. Bypass each pin with 1000pF and 0.1μ F capacitors as close to the pins as possible.

 V_{OCM} (Pin 2): This pin sets the output common mode voltage. A 0.1 μF external bypass capacitor is recommended.

V⁻ (Pins 4, 9, 12, 17): Negative Power Supply (GND). All four pins must be connected to same voltage/ground.

-OUT, +OUT (Pins 5, 8): Unfiltered Outputs. These pins have series resistors, R_{OUT} 12.5 Ω .

–OUTF, +OUTF (Pins 6, 7): Filtered Outputs. These pins have 50Ω series resistors and a 2.7pF shunt capacitor.


ENABLE (Pin 11): This pin is a logic input referenced to V_{EE}. If low, the part is enabled. If high, the part is disabled and draws approximately 1mA supply current.

+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are internally shorted together.

-IN (Pins 15, 16): Negative Input. Pins 15 and 16 are internally shorted together.

Exposed Pad (Pin 17): V⁻. The Exposed Pad must be connected to same voltage/ground as pins 4, 9, 12.

BLOCK DIAGRAM

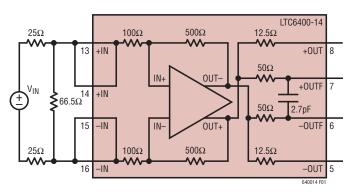
Circuit Operation

The LTC6400-14 is a low noise and low distortion fully differential op amp/ADC driver with:

- Operation from DC to 2.4GHz (-3dB bandwidth)
- Fixed gain of 5V/V (14dB)
- Differential input impedance 200Ω
- Differential output impedance 25Ω
- On-Chip 590MHz output filter

The LTC6400 is composed of a fully differential amplifier with on chip feedback and output common mode voltage control circuitry. Differential gain and input impedance are set by $100\Omega/1000\Omega$ resistors in the feedback network. Small output resistors of 12.5Ω improve the circuit stability over various load conditions. They also provide a possible external filtering option, which is often desirable when the load is an ADC.

Filter resistors of 50Ω are available for additional filtering. Lowpass/bandpass filters are easily implemented with just a couple of external components. Moreover, they offer single-ended 50Ω matching in wideband applications and no external resistor is needed.


The LTC6400-14 is very flexible in terms of I/O coupling. It can be AC- or DC-coupled at the inputs, the outputs or both. Due to the internal connection between input and output, users are advised to keep input common mode voltage between 1V and 1.8V for proper operation. If the inputs are AC-coupled, the input common mode voltage is automatically biased approximately 450mV above V_{OCM} and thus no external circuitry is needed for bias. The LTC6400-14 provides an output common mode voltage set by V_{OCM} , which allows driving an ADC directly without external components such as a transformer or AC coupling capacitors. The input signal can be either single-ended or differential with only minor differences in distortion performance.

Input Impedance and Matching

The differential input impedance of the LTC6400-14 is 200Ω . If a 200Ω source impedance is unavailable, then the differential inputs may need to be terminated to a lower

value impedance, e.g. 50Ω , in order to provide an impedance match for the source. Several choices are available. One approach is to use a differential shunt resistor (Figure 1). Another approach is to employ a wide band transformer (Figure 2). Both methods provide a wide band impedance match. The termination resistor or the transformer must be placed close to the input pins in order to minimize the reflection due to input mismatch. Alternatively, one could apply a narrowband impedance match at the inputs of the LTC6400-14 for frequency selection and/or noise reduction.

Referring to Figure 3, LTC6400-14 can be easily configured for single-ended input and differential output without a balun. The signal is fed to one of the inputs through a matching network while the other input is connected to the same matching network and a source resistor. Because the return ratios of the two feedback paths are equal, the two outputs have the same gain and thus symmetrical swing.

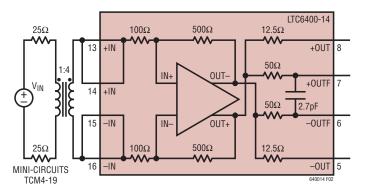


Figure 2. Input Termination for Differential 50 Ω Input Impedance Using a 1:4 Balun

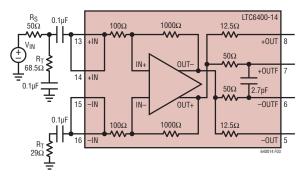


Figure 3. Input Termination for Single-Ended 50 Ω Input Impedance

In general, the single-ended input impedance and termination resistor R_T are determined by the combination of R_S, R_G and R_F. For example, when R_S is 50 Ω , it is found that the single-ended input impedance is 202 Ω and R_T is 68.5 Ω in order to match to a 50 Ω source impedance.

The LTC6400-14 is unconditionally stable under normal bias conditions. However, the overall differential gain is affected by both source impedance and load impedance as shown in Figure 4:

$$A_{V} = \left| \frac{V_{OUT}}{V_{IN}} \right| = \frac{1000}{R_{S} + 200} \bullet \frac{R_{L}}{25 + R_{L}}$$

The noise performance of the LTC6400-14 also depends upon the source impedance and termination. For example, an input 1:4 balun transformer in Figure 2 improves SNR by adding 6dB of voltage gain at the inputs. A trade-off between gain and noise is obvious when constant noise figure circle and constant gain circle are plotted within the same input Smith Chart, based on which users can choose the optimal source impedance for a given gain and noise requirement.

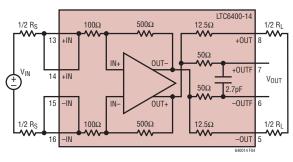


Figure 4. Calculate Differential Gain

Output Match and Filter

The LTC6400-14 can drive an ADC directly without external output impedance matching. Alternatively, the differential output impedance of 25Ω can be matched to higher value impedance, e.g. 50Ω , by series resistors or an LC network.

The internal low pass filter outputs at +OUTF/–OUTF have a –3dB bandwidth of 590MHz. External capacitors can reduce the low pass filter bandwidth as shown in Figure 5. A bandpass filter is easily implemented with only a few components as shown in Figure 6. Three 39pF capacitors and a 16nH inductor create a bandpass filter with 165MHz center frequency, –3dB frequencies at 138MHz and 200MHz.

Output Common Mode Adjustment

The output common mode voltage is set by the V_{OCM} pin, which is a high impedance input. The output common mode voltage is capable of tracking V_{OCM} in a range from 1V to 1.6V. The bandwidth of V_{OCM} control is typically 16MHz,

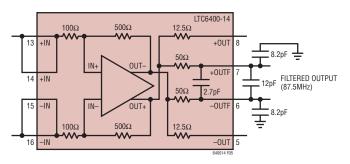


Figure 5. LTC6400-14 Internal Filter Topology Modified for Low Filter Bandwidth (Three External Capacitors)

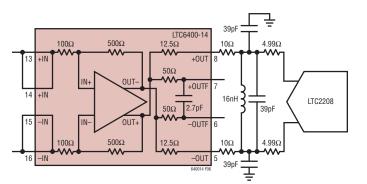
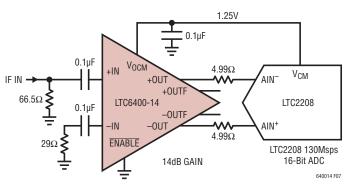


Figure 6. LTC6400-14 Internal Filter Topology Modified for Bandpass Filtering (Three External Capacitors, One External Inductor)

2

which is dominated by a low pass filter connected to the V_{OCM} pin and is aimed to reduce common mode noise generation at the outputs. The internal common mode feedback loop has a –3dB bandwidth around 400MHz, allowing fast common mode rejection at the outputs of the LTC6400-14. The V_{OCM} pin should be tied to a DC bias voltage with a 0.1µF bypass capacitor. When interfacing with A/D converters such as the LTC22xx families, the V_{OCM} pin can be connected to the V_{CM} pin of the ADC.


Driving A/D Converters

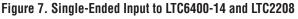

The LTC6400-14 has been specifically designed to interface directly with high speed A/D converters. In Figure 7, an example schematic shows the LTC6400-14 with a single-ended input driving the LTC2208, which is a 16-bit, 130Msps ADC. Two external 4.99 Ω resistors help eliminate potential resonance associated with stray capacitance of PCB traces and bond wires of either the ADC input or the driver output. V_{OCM} of the LTC6400-14 is connected to V_{CM} of the LTC2208 V_{CM} pin at 1.25V. Alternatively, a single-ended input signal can be converted to a differential signal via a balun and fed to the input of the LTC6400-14.

Figure 8 summarizes the IMD3 of the whole system in Figure 7. Note that Figure 7 shows a direct connection to the LTC2208, but in many applications an anti-alias filter would be desirable to limit the wideband noise of the amplifier. This is especially true in high performance 16-bit designs.

Test Circuits

Due to the fully-differential design of the LTC6400 and its usefulness in applications with differing characteristic

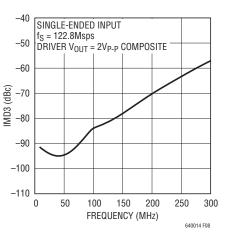
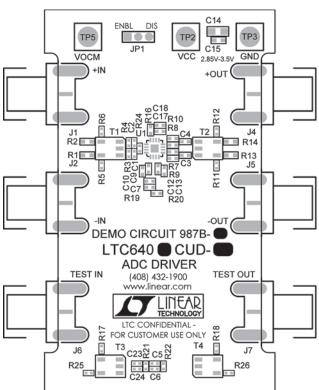
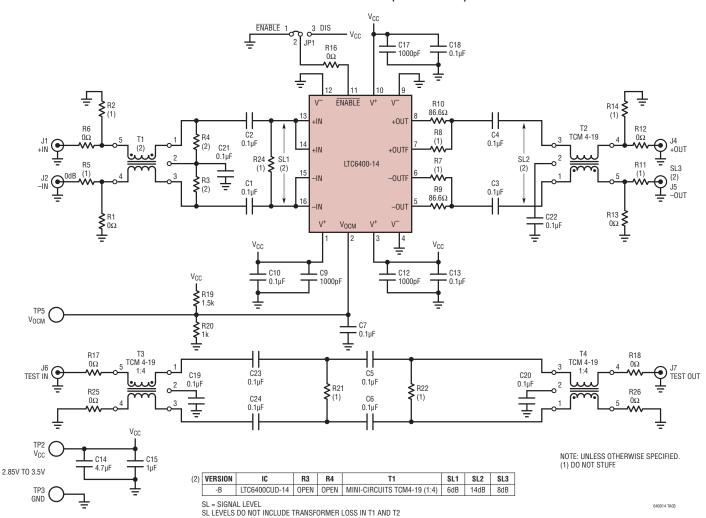



Figure 8. IMD3 for the Combination of LTC6400-14 and LTC2208

specifications, two test circuits are used to generate the information in this datasheet. Test Circuit A is DC987B, a two-port demonstration circuit for the LTC6400 family. The schematic and silkscreen are shown below. This circuit includes input and output transformers (baluns) for single-ended-to-differential conversion and impedance transformation, allowing direct hook-up to a 2-port

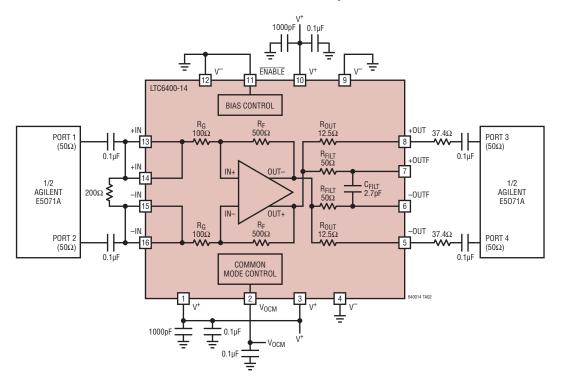


Top Silkscreen

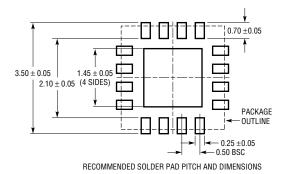
network analyzer. There are also series resistors at the output to present the LTC6400 with a 375Ω differential load, optimizing distortion performance. Due to the input and output transformers, the –3dB bandwidth is reduced from 2.4GHz to approximately 1.8GHz.

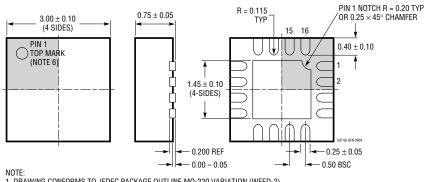
Test Circuit B uses a 4-port network analyzer to measure S-parameters and gain/phase response. This removes the effects of the wideband baluns and associated circuitry, for a true picture of the >1GHz S-parameters and AC characteristics.

TYPICAL APPLICATIONS



Demo Circuit 987B Schematic (Test Circuit A)


TYPICAL APPLICATIONS


Test Circuit B, 4-Port Analysis

PACKAGE DESCRIPTION

UD Package 16-Lead Plastic QFN (3mm × 3mm) (Reference LTC DWG # 05-08-1691)

BOTTOM VIEW-EXPOSED PAD

1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2) 2. DRAWING NOT TO SCALE

2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF OR RESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED

6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION

ON THE TOP AND BOTTOM OF PACKAGE

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

RELATED PARTS

T1983-4 900MHz Differential Amplifier/ADC Driver Ay = 4V/V, OIP3 = 40dBm at 70MHz T1993-10 700MHz Differential Amplifier/ADC Driver Ay = 10V/V, OIP3 = 40dBm at 70MHz T1994 Low Noise, Low Distortion Differential Op Amp 16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs T19514 Unitation Di Famplifier/ADC Driver with Digitally OIP3 = 40dBm at 100MHz, Gain Control Range 10.5dB to 33dB T0640-8 2.26Hz Low Noise, Low Distortion. Differential ADC Driver Ay = 8dB, 85mA Supply Current, IMD3 = -6dBc at 300MHz T0640-26 1.96Hz Low Noise, Low Distortion. Differential ADC Driver Ay = 2ddB, 85mA Supply Current, IMD3 = -6dBc at 300MHz T0640-27 1.96Hz Low Noise, Low Distortion. Differential ADC Driver Ay = 2ddB, 85mA Supply Current, IMD3 = -6dBc at 300MHz T06401-8 2.6Hz Low Noise, Low Distortion. Differential ADC Driver Ay = 2ddB, 85mA Supply Current, IMD3 = -74dBc at 140MHz T06401-8 1.96Hz Low Noise, Low Distortion. Differential ADC Driver Ay = 2ddB, 85mA Supply Current, IMD3 = -74dBc at 140MHz T06401-8 1.96Hz Low Noise, Low Distortion. Differential ADC Driver Ay = 2ddB, 85mA Supply Current, IMD3 = -74dBc at 140MHz T06401-8 1.96Hz Low Noise, Low Distortion. Differential ADC Driver Ay = 2ddB, 85mA Supply Current, IMD3 = -72dBc at 140MHz T06401-28 1.96Hz Low Noise, Low Distortion. Differential ADC Driver Ay = 2ddB, 15mA Supply Current, IMD3 = -72dBc at 140MHz T06401-28	PART NUMBER	DESCRIPTION	COMMENTS
TP1993-2 900MHz Differential Amplifier/ADC Driver Ay = 2V/V, OIP3 = 38dBm at 70MHz T1993-4 900MHz Differential Amplifier/ADC Driver Ay = 4V/V, OIP3 = 40dBm at 70MHz T1993-10 700MHz Differential Amplifier/ADC Driver Ay = 10V/V, OIP3 = 40dBm at 70MHz T1994 Low Noise, Luw Distortion Differential Op Amp 16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs T5514 Ultralow Distortion IF Amplifier/ADC Driver with Digitally OIP3 = 47dBm at 100MHz, Gain Control Range 4.5dB to 37dB T06400-8 2.26Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 8dB, 85mA Supply Current, IMD3 = -61dBc at 300MHz T06400-8 2.26Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 8dB, 45mA Supply Current, IMD3 = -61dBc at 300MHz T06400-8 2.26Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 8dB, 45mA Supply Current, IMD3 = -74dBc at 300MHz T06401-14 26Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 8dB, 45mA Supply Current, IMD3 = -74dBc at 140MHz T06401-2 1.36Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 8dB, 45mA Supply Current, IMD3 = -74dBc at 140MHz T06401-2 1.6Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 26dB, 45mA Supply Current, IMD3 = -74dBc at 140MHz T06401-2 1.6Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 20dB, 6mA Supply Current, IMD3 = -74dBc at 140MHz T06401-2 300MHz Differential Amplifier/ADC			
T1933-4 900MHz Differential Amplifier/ADC Driver Ay = 4V/V, OIP3 = 40dBm at 70MHz T1993-10 700MHz Differential Amplifier/ADC Driver Ay = 10V/V, OIP3 = 40dBm at 70MHz T1994 Low Noise, Low Distorion Differential Op Amp 16-Bit SNR and SFDR at 1MHz, Rai-to-Rail Outputs T5514 Uttratow Distorion IF Amplifier/ADC Driver with Digitally OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 33dB T6640-8 2.2GHz Low Noise, Low Distorion, Differential ADC Driver Ay = 8dB, 85mA Supply Current, IMD3 = -6dBc at 300MHz T06400-28 1.9GHz Low Noise, Low Distorion, Differential ADC Driver Ay = 2ddB, 95mA Supply Current, IMD3 = -6dBc at 300MHz T06401-8 2.2GHz Low Noise, Low Distorion, Differential ADC Driver Ay = 2ddB, 85mA Supply Current, IMD3 = -6dBc at 300MHz T06401-8 1.9GHz Low Noise, Low Distorion, Differential ADC Driver Ay = 2ddB, 85mA Supply Current, IMD3 = -7dBc at 140MHz T06401-8 1.9GHz Low Noise, Low Distorion, Differential ADC Driver Ay = 2ddB, 5mA Supply Current, IMD3 = -7dBc at 140MHz T06401-8 1.9GHz Low Noise, Low Distorion, Differential ADC Driver Ay = 2ddB, 5mA Supply Current, IMD3 = -7dBc at 140MHz T06401-2 1.9GHz Low Noise, Low Distorion, Differential ADC Driver Ay = 2ddB, 5mA Supply Current, IMD3 = -7dBc at 140MHz T06401-2 1.9GHz Low Noise, Low Distorion, Differential ADC Driver Ay = 2ddB, 5mA Supply Current, IMD3 = -7dBc at 140MHz T06401-2 300MHz Di	LT®1993-2		$A_{\rm M}$ = 2V/V, OIP3 = 38dBm at 70MHz
T1939-10 700MHz Differential Amplifier/ADC Driver Åy = 10V/V, 0IP3 = 40dBm at 70MHz T1994 Low Noise, Low Distortion Differential 0p Amp 16-Bit SNR and SFDR at 1MHz, Ball T5514 Utralow Distortion IF Amplifier/ADC Driver with Digitally 0IP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB T0540 Controlled Gain 0IP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB T06400-8 2.2GHz Low Noise, Low Distortion, Differential ADC Driver Åy = 26dB, 80mA Supply Current, IMD3 = -64dBc at 300MHz T06400-8 1.8GHz Low Noise, Low Distortion, Differential ADC Driver Åy = 26dB, 80mA Supply Current, IMD3 = -64dBc at 300MHz T06400-8 2.2GHz Low Noise, Low Distortion, Differential ADC Driver Åy = 26dB, 80mA Supply Current, IMD3 = -64dBc at 300MHz T06401-8 2.2GHz Low Noise, Low Distortion, Differential ADC Driver Åy = 26dB, 80mA Supply Current, IMD3 = -80dBc at 140MHz T06401-14 2GHz Low Noise, Low Distortion, Differential ADC Driver Åy = 26dB, 80mA Supply Current, IMD3 = -72dBc at 140MHz T06401-26 1.6GHz Low Noise, Low Distortion, Differential ADC Driver Åy = 26dB, 80mA Supply Current, IMD3 = -72dBc at 140MHz T06402-13 300MHz Differential Amplifier/ADC Driver Åy = 26dB, Bistortion <-80dBc at 25MHz	LT1993-4	-	• •
T1994 Low Noise, Low Distortion Differential Op Amp 16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs T5514 Ultralow Distortion IF Amplifier/ADC Driver with Digitally OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB T5524 Low Distortion IF Amplifier/ADC Driver with Digitally OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB T06400-80 2.2GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 20dB, 85mA Supply Current, IMD3 = -61dBc at 300MHz T06400-80 1.8GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 20dB, 85mA Supply Current, IMD3 = -71dBc at 300MHz T06401-80 2.SGHz Low Noise, Low Distortion, Differential ADC Driver Ay = 20dB, 45mA Supply Current, IMD3 = -71dBc at 300MHz T06401-81 2.SGHz Low Noise, Low Distortion, Differential ADC Driver Ay = 20dB, 55mA Supply Current, IMD3 = -74dBc at 140MHz T6402-61 300MHz Differential ADC Driver Ay = 20dB, 55mA Supply Current, IMD3 = -74dBc at 140MHz T6402-61 300MHz Differential ADD Eriver Ay = 20dB, 55mA Supply Current, IMD3 = -74dBc at 140MHz T6402-61 300MHz Differential ADC Driver Ay = 20dB, Distortion <-80dBc at 25MHz	LT1993-10		• •
T5514 Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB T6524 Low Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain OIP3 = 40dBm at 100MHz, Gain Control Range 4,5dB to 37dB T66400-8 2.2GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 8dB, 85mA Supply Current, IMD3 = -61dBc at 300MHz T66400-26 1.9GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 2dB, 85mA Supply Current, IMD3 = -61dBc at 300MHz T66401-8 2.2GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 2dB, 85mA Supply Current, IMD3 = -61dBc at 300MHz T66401-8 2.3GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 2dB, 85mA Supply Current, IMD3 = -71dBc at 140MHz T66401-8 2.3GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 2dB, 50mA Supply Current, IMD3 = -72dBc at 140MHz T66401-8 1.3GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 2dB, 50mA Supply Current, IMD3 = -72dBc at 140MHz T66401-8 1.3GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 2dB, 15mX Suppl Current, IMD3 = -72dBc at 140MHz T66401-8 1.3GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 2dB, 15mX Control < -80dBc at 25MHz	LT1994		16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs
Controlled Gain Controlled Gain T06400-8 2.26Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 8dB, 85mA Supply Current, IMD3 = -61dBc at 300MHz T06400-20 1.86Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 26dB, 85mA Supply Current, IMD3 = -71dBc at 300MHz T06401-8 2.26Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 8dB, 45mA Supply Current, IMD3 = -71dBc at 300MHz T06401-14 26Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 20dB, 50mA Supply Current, IMD3 = -74dBc at 140MHz T06401-20 1.36Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 20dB, 50mA Supply Current, IMD3 = -74dBc at 140MHz T06401-20 1.36Hz Low Noise, Low Distortion, Differential ADC Driver Ay = 20dB, 50mA Supply Current, IMD3 = -74dBc at 140MHz T06402-6 300MHz Differential Amplifier/ADC Driver Ay = 20dB, Stortion < -80dBc at 25MHz	LT5514		OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB
T06400-20 1.8GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 20dB, 90mA$ Supply Current, IMD3 = -66dBc at 300MHz T06400-26 1.9GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 2dBB, 85mA$ Supply Current, IMD3 = -80dBc at 140MHz T06401-8 2.2GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 2dBB, 45mA$ Supply Current, IMD3 = -80dBc at 140MHz T06401-20 1.3GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 2dBB, 45mA$ Supply Current, IMD3 = -78dBc at 140MHz T06401-26 1.6GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 2dBB, 45mA$ Supply Current, IMD3 = -72dBc at 140MHz T06402-6 300MHz Differential Amplifier/ADC Driver $A_y = 6dB, Distortion < -80dBc at 25MHz$	LT5524		OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB
T06400-26 1.9GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 26dB, 85mA$ Supply Current, IMD3 = -71dBc at 300MHz T06401-8 2.2GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 8dB, 45mA$ Supply Current, IMD3 = -80dBc at 140MHz T06401-14 2GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 14dB, 45mA$ Supply Current, IMD3 = -74dBc at 140MHz T06401-20 1.3GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 2dB, 50mA$ Supply Current, IMD3 = -74dBc at 140MHz T06401-20 1.3GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 2dB, 54mA$ Supply Current, IMD3 = -74dBc at 140MHz T06401-20 300MHz Differential Amplifier/ADC Driver $A_y = 2dB, 54mA$ Supply Current, IMD3 = -74dBc at 140MHz T06401-3 300MHz Differential Amplifier/ADC Driver $A_y = 2dB, Distortion < -80dBc at 25MHz$	LTC6400-8	2.2GHz Low Noise, Low Distortion, Differential ADC Driver	A _V = 8dB, 85mA Supply Current, IMD3 = -61dBc at 300MHz
T06401-8 2.2GHz Low Noise, Low Distortion, Differential ADC Driver $A_V = 8dB, 45mA$ Supply Current, IMD3 = -80dBc at 140MHz T06401-14 2GHz Low Noise, Low Distortion, Differential ADC Driver $A_V = 14dB, 45mA$ Supply Current, IMD3 = -74dBc at 140MHz T06401-20 1.3GHz Low Noise, Low Distortion, Differential ADC Driver $A_V = 20dB, 50mA$ Supply Current, IMD3 = -72dBc at 140MHz T06401-26 1.6GHz Low Noise, Low Distortion, Differential ADC Driver $A_V = 20dB, 50mA$ Supply Current, IMD3 = -72dBc at 140MHz T06402-6 300MHz Differential Amplifier/ADC Driver $A_V = 20dB, Distortion < -80dBc at 25MHz$	LTC6400-20	1.8GHz Low Noise, Low Distortion, Differential ADC Driver	A _V = 20dB, 90mA Supply Current, IMD3 = -65dBc at 300MHz
T06401-14 2GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 14dB, 45mA Supply Current, IMD3 = -81dBc at 140MHz$ T06401-20 1.3GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 20dB, 50mA Supply Current, IMD3 = -72dBc at 140MHz$ T06401-26 1.6GHz Low Noise, Low Distortion, Differential ADC Driver $A_y = 26dB, 45mA Supply Current, IMD3 = -72dBc at 140MHz$ T06402-0 300MHz Differential Amplifier/ADC Driver $A_y = 6dB, Distortion < -80dBc at 25MHz$ T06402-10 300MHz Differential Amplifier/ADC Driver $A_y = 20dB, Distortion < -80dBc at 25MHz$ T06402-10 500MHz Differential Amplifier/ADC Driver $A_y = 20dB, Distortion < -80dBc at 25MHz$ T06404-1 600MHz Low Noise Differential ADC Driver/ $e_n = 1.5nV/HZ, Rail-to-Rail Outputs$ T06405 3GHz Rail-to-Rail Input Differential ADC Driver/Dual Selectable Gain Amplifier 16mA Supply Current, IMD3 = -83dBc at 70MHz, Ay = 1, -1 or 2 T1812/L11813/ High Slew Rate Low Cost Single/Dual/Quad Op Amps 8nV/\ftz Noise, 750V/µs, 3mA Supply Current T1814 Very High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/\ftz Noise, 1500V/µs, 6.5mA Supply Current T1818/L11819 Uttra High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/\ftz Noise, 2500V/µs, 9mA Supply Current T1818/L11819 Ittra High Slew Rate Low Cost Single/Dual/Quad Op Amps	LTC6400-26	1.9GHz Low Noise, Low Distortion, Differential ADC Driver	A _V = 26dB, 85mA Supply Current, IMD3 = -71dBc at 300MHz
T06401-20 1.3GHz Low Noise, Low Distortion, Differential ADC Driver A _V = 20dB, 50mA Supply Current, IMD3 = -74dBc at 140MHz T06401-26 1.6GHz Low Noise, Low Distortion, Differential ADC Driver A _V = 26dB, 45mA Supply Current, IMD3 = -72dBc at 140MHz T6402-6 300MHz Differential Amplifier/ADC Driver A _V = 6dB, Distortion < -80dBc at 25MHz	LTC6401-8	2.2GHz Low Noise, Low Distortion, Differential ADC Driver	A _V = 8dB, 45mA Supply Current, IMD3 = -80dBc at 140MHz
TC6401-26 1.6GHz Low Noise, Low Distortion, Differential ADC Driver Ay = 26dB, 45mA Supply Current, IMD3 = -72dBc at 140MHz T6402-6 300MHz Differential Amplifier/ADC Driver Ay = 6dB, Distortion < -80dBc at 25MHz	LTC6401-14	2GHz Low Noise, Low Distortion, Differential ADC Driver	A _V = 14dB, 45mA Supply Current, IMD3 = -81dBc at 140MHz
Té402-6300MHz Differential Amplifier/ADC Driver $A_V = 6dB$, Distortion < -80dBc at 25MHzT6402-12300MHz Differential Amplifier/ADC Driver $A_V = 12dB$, Distortion < -80dBc at 25MHz	LTC6401-20	1.3GHz Low Noise, Low Distortion, Differential ADC Driver	A _V = 20dB, 50mA Supply Current, IMD3 = -74dBc at 140MHz
T6402-12 300MHz Differential Amplifier/ADC Driver A _V = 12dB, Distortion < -80dBc at 25MHz	LTC6401-26	1.6GHz Low Noise, Low Distortion, Differential ADC Driver	A _V = 26dB, 45mA Supply Current, IMD3 = -72dBc at 140MHz
T6402-20 300MHz Differential Amplifier/ADC Driver A _V = 20dB, Distortion < -80dBc at 25MHz	LT6402-6	300MHz Differential Amplifier/ADC Driver	$A_V = 6$ dB, Distortion < -80 dBc at 25MHz
IC6404-1 600MHz Low Noise Differential ADC Driver en = 1.5nV/\Hz, Rail-to-Rail Outputs IC6406 3GHz Rail-to-Rail Input Differential Op Amp 1.6nV/\Hz Noise, -72dBc Distortion at 50MHz, 18mA IC6401 Low Power Differential ADC Driver/Dual Selectable Gain Amplifier 16mA Supply Current, IMD3 = -83dBc at 70MHz, A _V = 1, -1 or 2 High-Speed Single-Ended Output Op Amps 16mA Supply Current, IMD3 = -83dBc at 70MHz, A _V = 1, -1 or 2 High-Speed Single-Ended Output Op Amps 8nV/\Hz Noise, 750V/µs, 3mA Supply Current 11812/LT1816/ Very High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/\Hz Noise, 1500V/µs, 6.5mA Supply Current 11815/LT1816 Very High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/\Hz Noise, 1500V/µs, 0.5mA Supply Current 11816/LT1819 Ultra High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/\Hz Noise, 1500V/µs, 0.5mA Supply Current 176200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual/Quad 0.95nV/\Hz Noise, 165MHz GBW, Distortion = -80dBc at 1MHz 176200/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\Hz Noise, 3.5mA Supply Current, 100MHz GBW 176230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\Hz Noise, 1.2mA Supply Current, 60MHz GBW 176232 Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\Hz Noise, 1.2mA Supply Cu	LT6402-12	300MHz Differential Amplifier/ADC Driver	$A_V = 12$ dB, Distortion < -80dBc at 25MHz
TC6406 3GHz Rail-to-Rail Input Differential Op Amp 1.6nV/\/Hz Noise, -72dBc Distortion at 50MHz, 18mA T6411 Low Power Differential ADC Driver/Dual Selectable Gain Amplifier 16mA Supply Current, IMD3 = -83dBc at 70MHz, A _V = 1, -1 or 2 High-Speed Single-Ended Output Op Amps 16mA Supply Current, IMD3 = -83dBc at 70MHz, A _V = 1, -1 or 2 T1812/LT1813/ High Slew Rate Low Cost Single/Dual/Quad Op Amps 8nV/\/Hz Noise, 750V/µs, 3mA Supply Current T1815/LT1816/ Very High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/\/Hz Noise, 1500V/µs, 6.5mA Supply Current T1815/LT1819 Ultra High Slew Rate Low Cost Single/Dual Op Amps 6nV/\/Hz Noise, 2500V/µs, 9mA Supply Current T6200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps 0.95mV/\Hz Noise, 3mA Supply Current, 100MHz GBW T6202/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\Hz Noise, 3mA Supply Current, 100MHz GBW T6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\Hz Noise, 3.5mA Supply Current, 215MHz GBW T6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\Hz Noise, 1.2mA Supply Current, 60MHz GBW T6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\Hz Noise, 1.2mA Supply Current, 60MHz GBW T6233/LT6234/ Rail-to-Rail Output Low Noise Singl	LT6402-20	300MHz Differential Amplifier/ADC Driver	$A_V = 20$ dB, Distortion < -80dBc at 25MHz
T6411 Low Power Differential ADC Driver/Dual Selectable Gain Amplifier 16mA Supply Current, IMD3 = -83dBc at 70MHz, A _V = 1, -1 or 2 tigh-Speed Single-Ended Output Op Amps 8nV/√Hz Noise, 750V/µs, 3mA Supply Current T1812/LT1813/ T1815/LT1816/ High Slew Rate Low Cost Single/Dual/Quad Op Amps 8nV/√Hz Noise, 750V/µs, 6.5mA Supply Current T1812/LT1819/ T1817 Very High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/√Hz Noise, 1500V/µs, 6.5mA Supply Current T1820/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual/Quad 0.95nV/√Hz Noise, 165MHz GBW, Distortion = -80dBc at 1MHz T6202/LT6203/ T6204 Rail-to-Rail Input and Output Low Noise Single/Dual/Quad 0.95nV/√Hz Noise, 35mA Supply Current, 100MHz GBW T6233/LT6234/ T6233 Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW T16233/LT6234/ T6235 Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW T16562-2 Very Low Noise, 8th Order Filter Building Block Lowpass and Bandpass Filters up to 300kHz T1568 Very Low Noise, 8th Order Filter Building Block Lowpass and Bandpass Filters up to 10MHz T16560-7 Linear Phase, Tunable 10th Order Lowpass Filter Single-Resistor Programmable Cut-Off to 300kHz T16600-5 Very Low Noise Differential 2.5MHz Lowpa	LTC6404-1	600MHz Low Noise Differential ADC Driver	e _n = 1.5nV/√Hz, Rail-to-Rail Outputs
High-Speed Single-Ended Output Op Amps 8nV/√Hz T1812/LT1813/ L1814 High Slew Rate Low Cost Single/Dual/Quad Op Amps 8nV/√Hz Noise, 750V/µs, 3mA Supply Current T1814/ L1815/LT1816/ L1817 Very High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/√Hz Noise, 1500V/µs, 6.5mA Supply Current T1817/ L1817 Ultra High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/√Hz Noise, 2500V/µs, 9mA Supply Current T6200/L6201 Rail-to-Rail Input and Output Low Noise Single/Dual/Quad Op Amps 0.95nV/√Hz Noise, 165MHz GBW, Distortion = -80dBc at 1MHz T6200/L76203/ L76204 Rail-to-Rail Input and Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW T6230/L76231/ L76233/L76234/ L76235 Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√Hz Noise, 3.5mA Supply Current, 60MHz GBW T1568 Very Low Noise, 8th Order Filter Building Block Lowpass and Bandpass Filters up to 300kHz T1568 Very Low Noise, 8th Order Filter Building Block Lowpass and Bandpass Filters up to 10MHz T16600-2.5 Very Low Noise Differential 2.5MHz Lowpass Filter Single-Resistor Programmable Cut-Off to 300kHz T6600-5 Very Low Noise Differential 15MHz Lowpass Filter SNR = 86dB at 3V Supply, 4th Order Filter T6600-10 Very L	LTC6406	3GHz Rail-to-Rail Input Differential Op Amp	1.6nV/√Hz Noise, −72dBc Distortion at 50MHz, 18mA
T1812/LT1813/ 11814 High Slew Rate Low Cost Single/Dual/Quad Op Amps 8nV/√Hz Noise, 750V/µs, 3mA Supply Current T1812/LT1813/ 11814 Very High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/√Hz Noise, 1500V/µs, 6.5mA Supply Current T1815/LT1816/ T1817 Ultra High Slew Rate Low Cost Single/Dual Op Amps 6nV/√Hz Noise, 1500V/µs, 6.5mA Supply Current T1812/LT1819 Ultra High Slew Rate Low Cost Single/Dual Op Amps 6nV/√Hz Noise, 165MHz GBW, Distortion = -80dBc at 1MHz T6200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual/Quad Op Amps 0.95nV/√Hz Noise, 3mA Supply Current, 100MHz GBW T6230/LT6231/ T6230/LT6231/ Reail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW T156230/LT6234/ T6235 Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW T1568 Very Low Noise, 8th Order Filter Building Block Lowpass and Bandpass Filters up to 300kHz T1568 Very Low Noise, 4th Order Filter Building Block Lowpass and Bandpass Filters up to 10MHz T16600-2.5 Very Low Noise Differential 2.5MHz Lowpass Filter Single-Resistor Programmable Cut-Off to 300kHz T6600-5 Very Low Noise Differential 5MHz Lowpass Filter SNR = 82dB at 3V Supply, 4th Order Filter T6600-10 Very Low Noise Differential 10MHz Lowpass Filter <td>LT6411</td> <td>Low Power Differential ADC Driver/Dual Selectable Gain Amplifier</td> <td>16mA Supply Current, IMD3 = -83dBc at 70MHz, A_V = 1, -1 or 2</td>	LT6411	Low Power Differential ADC Driver/Dual Selectable Gain Amplifier	16mA Supply Current, IMD3 = -83dBc at 70MHz, A _V = 1, -1 or 2
IT1814 Oregan State Control of	High-Speed Sing	Jle-Ended Output Op Amps	L
IT1817 Ittra High Slew Rate Low Cost Single/Dual Op Amps 6nV/√Hz Noise, 2500V/µs, 9mA Supply Current IT6200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps 0.95nV/√Hz Noise, 165MHz GBW, Distortion = -80dBc at 1MHz IT6202/LT6203/ Rail-to-Rail Input and Output Low Noise Single/Dual/Quad 1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW IT6204 Op Amps 1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW IT6232 Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.1nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW IT6233 Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW IT6233 Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW IT6235 regrated Filters Iters up to 300kHz GBW 1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW IT1568 Very Low Noise, 8th Order Filter Building Block Lowpass and Bandpass Filters up to 300kHz Iters up to 300kHz IT1568 Very Low Noise Differential 2.5MHz Lowpass Filter Single-Resistor Programmable Cut-Off to 300kHz IT6600-2.5 Very Low Noise Differential 2.5MHz Lowpass Filter SNR = 86dB at 3V Supply, 4th Order Filter IT6600-5 Very Low Noise Differential 5MHz Lowpass Filter SNR = 82dB at 3V Supply,	LT1812/LT1813/ LT1814	High Slew Rate Low Cost Single/Dual/Quad Op Amps	8nV/√Hz Noise, 750V/µs, 3mA Supply Current
T6200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps 0.95nV/√Hz Noise, 165MHz GBW, Distortion = -80dBc at 1MHz T6202/LT6203 Rail-to-Rail Input and Output Low Noise Single/Dual/Quad 1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW T6204 Pamps 1.1nV/√Hz Noise, 3mA Supply Current, 215MHz GBW T6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.1nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW T6233/LT6234/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW T6235 T6235 Integrated Filters 1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW T1568 Very Low Noise, 8th Order Filter Building Block Lowpass and Bandpass Filters up to 300kHz T1569-7 Linear Phase, Tunable 10th Order Lowpass Filter Single-Resistor Programmable Cut-Off to 300kHz T6600-2.5 Very Low Noise Differential 2.5MHz Lowpass Filter SNR = 86dB at 3V Supply, 4th Order Filter T6600-5 Very Low Noise Differential 10MHz Lowpass Filter SNR = 82dB at 3V Supply, 4th Order Filter T6600-10 Very Low Noise Differential 15MHz Lowpass Filter SNR = 82dB at 3V Supply, 4th Order Filter T6600-15 Very Low Noise Differential 15MHz Lowpass Filter SNR = 76dB at 3V Supply, 4th Order Filter	LT1815/LT1816/ LT1817	Very High Slew Rate Low Cost Single/Dual/Quad Op Amps	6nV/√Hz Noise, 1500V/µs, 6.5mA Supply Current
T6202/LT6203/ Rail-to-Rail Input and Output Low Noise Single/Dual/Quad 1.9nV/\/Hz Noise, 3mA Supply Current, 100MHz GBW T6204 Dp Amps 1.1nV/\/Hz Noise, 3mA Supply Current, 100MHz GBW T6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.1nV/\/Hz Noise, 3.5mA Supply Current, 215MHz GBW T6233/LT6234/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\/Hz Noise, 1.2mA Supply Current, 60MHz GBW T6233/LT6234/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\/Hz Noise, 1.2mA Supply Current, 60MHz GBW T6235 T6235/LT6234/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/\/Hz Noise, 1.2mA Supply Current, 60MHz GBW T6235 Very Low Noise, 8th Order Filter Building Block Lowpass and Bandpass Filters up to 300kHz T1568 Very Low Noise, 4th Order Filter Building Block Lowpass and Bandpass Filters up to 10MHz T1569-7 Linear Phase, Tunable 10th Order Lowpass Filter Single-Resistor Programmable Cut-Off to 300kHz T6600-2.5 Very Low Noise Differential 2.5MHz Lowpass Filter SNR = 86dB at 3V Supply, 4th Order Filter T6600-5 Very Low Noise Differential 10MHz Lowpass Filter SNR = 82dB at 3V Supply, 4th Order Filter T6600-15 Very Low Noise Differential 15MHz Lowpass Filter SNR = 76dB at 3V Supply, 4th Order Filter	LT1818/LT1819	Ultra High Slew Rate Low Cost Single/Dual Op Amps	6nV/ √Hz Noise, 2500V/µs, 9mA Supply Current
InternationalInternationalInternationalOp AmpsInternational <td< td=""><td>LT6200/LT6201</td><td>Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps</td><td>0.95nV/\sqrt{Hz} Noise, 165MHz GBW, Distortion = -80dBc at 1MHz</td></td<>	LT6200/LT6201	Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps	0.95 nV/ \sqrt{Hz} Noise, 165MHz GBW, Distortion = -80dBc at 1MHz
T6232The first of the first of	LT6202/LT6203/ LT6204		1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW
T6235Integrated FiltersTC1562-2Very Low Noise, 8th Order Filter Building BlockLowpass and Bandpass Filters up to 300kHzT1568Very Low Noise, 4th Order Filter Building BlockLowpass and Bandpass Filters up to 10MHzTC1569-7Linear Phase, Tunable 10th Order Lowpass FilterSingle-Resistor Programmable Cut-Off to 300kHzT6600-2.5Very Low Noise Differential 2.5MHz Lowpass FilterSNR = 86dB at 3V Supply, 4th Order FilterT6600-5Very Low Noise Differential 5MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-10Very Low Noise Differential 10MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-15Very Low Noise Differential 15MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order Filter	LT6230/LT6231/ LT6232	Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps	1.1nV/ $\sqrt{\text{Hz}}$ Noise, 3.5mA Supply Current, 215MHz GBW
TC1562-2Very Low Noise, 8th Order Filter Building BlockLowpass and Bandpass Filters up to 300kHzT1568Very Low Noise, 4th Order Filter Building BlockLowpass and Bandpass Filters up to 10MHzTC1569-7Linear Phase, Tunable 10th Order Lowpass FilterSingle-Resistor Programmable Cut-Off to 300kHzT6600-2.5Very Low Noise Differential 2.5MHz Lowpass FilterSNR = 86dB at 3V Supply, 4th Order FilterT6600-5Very Low Noise Differential 5MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-10Very Low Noise Differential 10MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-15Very Low Noise Differential 15MHz Lowpass FilterSNR = 76dB at 3V Supply, 4th Order Filter	LT6233/LT6234/ LT6235	Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps	1.9nV/ $\sqrt{\text{Hz}}$ Noise, 1.2mA Supply Current, 60MHz GBW
T1568Very Low Noise, 4th Order Filter Building BlockLowpass and Bandpass Filters up to 10MHzTC1569-7Linear Phase, Tunable 10th Order Lowpass FilterSingle-Resistor Programmable Cut-Off to 300kHzT6600-2.5Very Low Noise Differential 2.5MHz Lowpass FilterSNR = 86dB at 3V Supply, 4th Order FilterT6600-5Very Low Noise Differential 5MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-10Very Low Noise Differential 10MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-15Very Low Noise Differential 15MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order Filter	Integrated Filter	S	
TC1569-7Linear Phase, Tunable 10th Order Lowpass FilterSingle-Resistor Programmable Cut-Off to 300kHzT6600-2.5Very Low Noise Differential 2.5MHz Lowpass FilterSNR = 86dB at 3V Supply, 4th Order FilterT6600-5Very Low Noise Differential 5MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-10Very Low Noise Differential 10MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-15Very Low Noise Differential 15MHz Lowpass FilterSNR = 76dB at 3V Supply, 4th Order Filter	LTC1562-2	Very Low Noise, 8th Order Filter Building Block	Lowpass and Bandpass Filters up to 300kHz
T6600-2.5Very Low Noise Differential 2.5MHz Lowpass FilterSNR = 86dB at 3V Supply, 4th Order FilterT6600-5Very Low Noise Differential 5MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-10Very Low Noise Differential 10MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-15Very Low Noise Differential 15MHz Lowpass FilterSNR = 76dB at 3V Supply, 4th Order Filter	LT1568	Very Low Noise, 4th Order Filter Building Block	Lowpass and Bandpass Filters up to 10MHz
T6600-5Very Low Noise Differential 5MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-10Very Low Noise Differential 10MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-15Very Low Noise Differential 15MHz Lowpass FilterSNR = 76dB at 3V Supply, 4th Order Filter	LTC1569-7	Linear Phase, Tunable 10th Order Lowpass Filter	Single-Resistor Programmable Cut-Off to 300kHz
T6600-10Very Low Noise Differential 10MHz Lowpass FilterSNR = 82dB at 3V Supply, 4th Order FilterT6600-15Very Low Noise Differential 15MHz Lowpass FilterSNR = 76dB at 3V Supply, 4th Order Filter	LT6600-2.5	Very Low Noise Differential 2.5MHz Lowpass Filter	SNR = 86dB at 3V Supply, 4th Order Filter
T6600-15 Very Low Noise Differential 15MHz Lowpass Filter SNR = 76dB at 3V Supply, 4th Order Filter	LT6600-5	Very Low Noise Differential 5MHz Lowpass Filter	SNR = 82dB at 3V Supply, 4th Order Filter
	LT6600-10	Very Low Noise Differential 10MHz Lowpass Filter	SNR = 82dB at 3V Supply, 4th Order Filter
T6600-20 Very Low Noise Differential 20MHz Lowpass Filter SNR = 76dB at 3V Supply, 4th Order Filter	LT6600-15	Very Low Noise Differential 15MHz Lowpass Filter	SNR = 76dB at 3V Supply, 4th Order Filter
	LT6600-20	Very Low Noise Differential 20MHz Lowpass Filter	SNR = 76dB at 3V Supply, 4th Order Filter

1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 • FAX: (408) 434-0507 • www.linear.com

