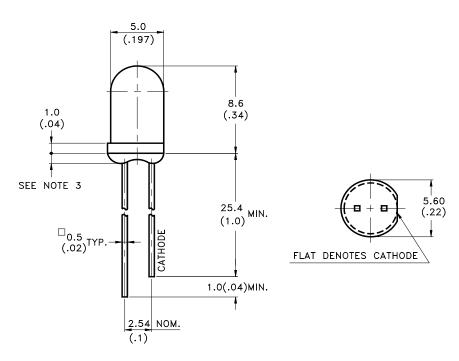
LITEON


LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

Features

- * High Intensity.
- * Popular T-1 3/4 diameter Package.
- * Selected minimun intensities.
- * General purpose leads.
- * Reliable and rugged.

Package Dimensions

Part No.	Lens	Source Color	
LTL-4253-032A	Yellow Diffused	Yellow	

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.25 mm(.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Part No.: LTL-4253-032A Page: 1 of 8

LITEON LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

Absolute Maximum Ratings at TA=25℃

Parameter	Maximum Rating	Unit
Power Dissipation	60	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	80	mA
Continuous Forward Current	20	mA
Derating Linear From 50°C	0.25	mA/°C
Reverse Voltage	5	
Operating Temperature Range	-55°C to + 100°C	
Storage Temperature Range	-55°C to + 100°C	
Lead Soldering Temperature [1.6mm(.063") From Body]	260°C for 5 Seconds	

Part No.: LTL-4253-032A Page: 2 of 8

LITEON LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

Electrical / Optical Characteristics at Ta=25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	Iv	5.6	19		mcd	I _F = 10mA Note 1,4
Viewing Angle	2 θ 1/2		36		deg	Note 2 (Fig.6)
Peak Emission Wavelength	λР		585		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd		588		nm	Note 3
Spectral Line Half-Width	Δλ		35		nm	
Forward Voltage	VF		2.1	2.6	V	$I_F = 20 \text{mA}$
Reverse Current	Ir			100	μ A	$V_R = 5V$
Capacitance	С		15		pF	$V_F = 0$, $f = 1MHz$

Note: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve.

- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ_d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4. The Iv guarantee should be added $\pm 15\%$.

Part No.: LTL-4253-032A Page: of

Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

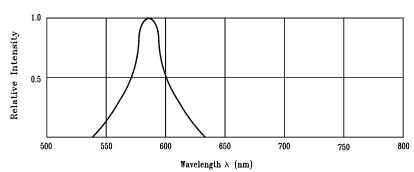
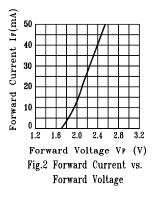
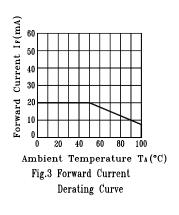
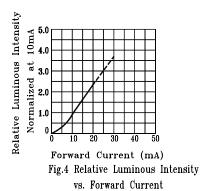
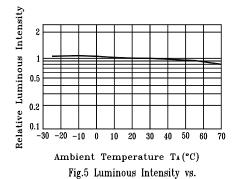






Fig.1 Relative Intensity vs. Wavelength

Ambient Temperature

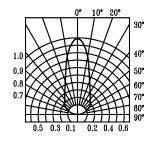


Fig.6 Spatial Distribution

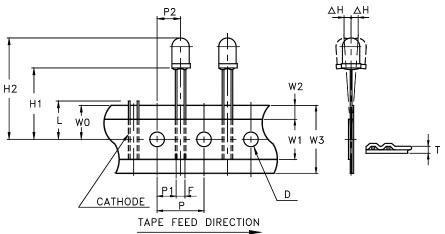
Part No.: LTL-4253-032A

Page:

4

of

8


LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

Features

- * Compatible with radial lead automatic insertion equipment.
- * Most radial lead plastic lead lamps available packaged in tape and folding.
- * 5mm (0.197") formed lead spacing available.
- * Folding packaging simplifies handling and testing.

Package Dimensions

		Specification			
Item	Symbol	Minimum		Maximum	
		mm	inch	mm	inch
Tape Feed Hole Diameter	D	3.8	0.149	4.2	0.165
Component Lead Pitch	F	2.3	0.091	3.0	0.118
Front to Rear Deflection	△Н			2.0	0.078
Feed Hole to Bottom of Component	H1	20.0	0.787	21.0	0.827
Feed Hole to Overall Component Height	H2	28.3	1.114	29.9	1.177
Lead Length After Component Height	L	W0 11.		11.0	0.433
Feed Hole Pitch	P	12.4	0.488	13.0	0.511
Lead Location	P1	4.4	0.173	5.8	0.228
Center of Component Location	P2	5.05	0.198	7.65	0.301
Total Tape Thickness	T			0.90	0.035
Feed Hole Location	W0	8.5	0.334	9.75	0.384
Adhesive Tape Width	W1	14.5	0.571	15.5	0.610
Adhesive Tape Position	W2	0	0	3.0	0.118
Tape Width	W3	17.5	0.689	19.0	0.748

Part No.: LTL-4253-032A Page: 5 of 8

LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

CAUTIONS

1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

2. Storage

The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are used within three months. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant or in desiccators with nitrogen ambient.

3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LEDs if necessary.

4. Lead Forming & Assembly

During lead forming, the leads should be bent at a point at least 3mm from the base of LED lens.

Do not use the base of the lead frame as a fulcrum during forming.

Lead forming must be done before soldering, at normal temperature.

During assembly on PCB, use minimum clinch force possible to avoid excessive mechanical stress.

5. Soldering

When soldering, leave a minimum of 2mm clearance from the base of the lens to the soldering point.

Dipping the lens into the solder must be avoided.

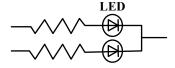
Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.

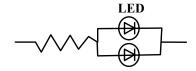
Recommended soldering conditions:

Soldering iron		Wave soldering		
Temperature Soldering time	300°C Max. 3 sec. Max. (one time only)	Pre-heat Pre-heat time Solder wave Soldering time	100°C Max. 60 sec. Max. 260°C Max. 10 sec. Max.	

Note: Excessive soldering temperature and/or time might result in deformation of the LED lens or catastrophic failure of the LED

Part No.: LTL-4253-032A Page: 6 of 8


BNS-OD-C131/A4


6. Drive Method

An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

Circuit model A

Circuit model B

- (A) Recommended circuit
- (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs

Part No.: LTL-4253-032A Page: 7 of 8

BNS-OD-C131/A4

LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

7. Reliability Test

Classification	Test Item	Test Condition	Reference Standard
	Operation Life	Ta= Under Room Temperature As Per Data Sheet Maximum Rating *Test Time= 1000HRS (-24HRS,+72HRS)	MIL-STD-750D:1026 (1995) MIL-STD-883D:1005 (1991) JIS C 7021:B-1 (1982)
Endurance Test	High Temperature High Humidity Storage	Ta= $65\pm5^{\circ}$ C RH= $90 \sim 95\%$ Test Time= 240 HRS ±2 HRS	MIL-STD-202F: 103B(1980) JIS C 7021 : B-11(1982)
	High Temperature High Humidity Reverse BIAS	Ta= $65\pm5^{\circ}$ C RH= $90 \sim 95\%$ VR=5V Test Time = 500 HRS (- 24 HRS, + 48 HRS)	JIS C 7021 : B-11(1982)
	High Temperature Storage	Ta= 105±5℃ *Test Time= 1000HRS (-24HRS,+72HRS)	MIL-STD-883D:1008 (1991) JIS C 7021:B-10 (1982)
	Low Temperature Storage	Ta= -55±5°C *Test Time=1000HRS (-24HRS,+72HRS)	JIS C 7021:B-12 (1982)
	Temperature Cycling	$105^{\circ}\text{C} \sim 25^{\circ}\text{C} \sim -55^{\circ}\text{C} \sim 25^{\circ}\text{C}$ 30mins 5mins 30mins 5mins 10 Cycles	MIL-STD-202F:107D (1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1010 (1991) JIS C 7021: A-4(1982)
Environmental	Thermal Shock	$105 \pm 5^{\circ}$ C $\sim -55^{\circ}$ C $\pm 5^{\circ}$ C 10mins 10 mins 10 Cycles	MIL-STD-202F:107D(1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1011 (1991)
Test	Solder Resistance	T.sol = $260 \pm 5^{\circ}$ C Dwell Time= 10 ± 1 secs	MIL-STD-202F:210A(1980) MIL-STD-750D:2031(1995) JIS C 7021: A-1(1982)
	Solderability	T. sol = $230 \pm 5^{\circ}$ C Dwell Time= 5 ± 1 secs	MIL-STD-202F:208D(1980) MIL-STD-750D:2026(1995) MIL-STD-883D:2003(1991) JIS C 7021: A-2(1982)

8. Others

The appearance and specifications of the product may be modified for improvement, without prior notice.