

USB-2.0 to Two Serial Ports

Features

- USB-2.0 Device Controller
- On-Chip USB-2.0 PHY
- On-Chip Voltage Regulators
- Two 16c450/16c550 compatible UARTs
- Supports SIR IrDA Mode on any/all ports
- Supports RS-232, RS-485 and RS-422 Serial Ports
- 5, 6, 7 and 8-bit Serial Data support
- Hardware and Software Flow Control
- Serial Port speeds from 50 bps to 6 Mbps
- Custom BAUD Rates supported through external clock and/or by programming the internal PLL
- On-Chip 512-Byte FIFOs for upstream and downstream data transfers for each Serial Port
- Supports Remote Wakeup and Power Management features
- Serial Port Transceiver Shut-Down support
- Two-Wire I²C Interface for EEPROM
- EEPROM read/write through USB
- iSerial feature support with EEPROM
- One Bi-directional multi-function GPIO
- On-Chip buffers for Serial Port signals to operate without external Transceivers over short cable lengths
- Bus-Powered Device

Applications

- Serial Attached Devices
- Modems, Serial Mouse, Generic Serial Devices
- Serial-Port Server
- Data Acquisition System
- POS Terminal and Industrial PC

Application Note

AN-7820

Evaluation Board

MCS7820-EVB

Package

• 48-pin LQFP Package

Driver Support

- Windows (98SE / ME / 2000 / XP / 2003 Server)
- Linux Kernel 2.6.5 and above
- MAC 10.2 and above
- Windows CE5.0
- Windows Vista

Utility Support

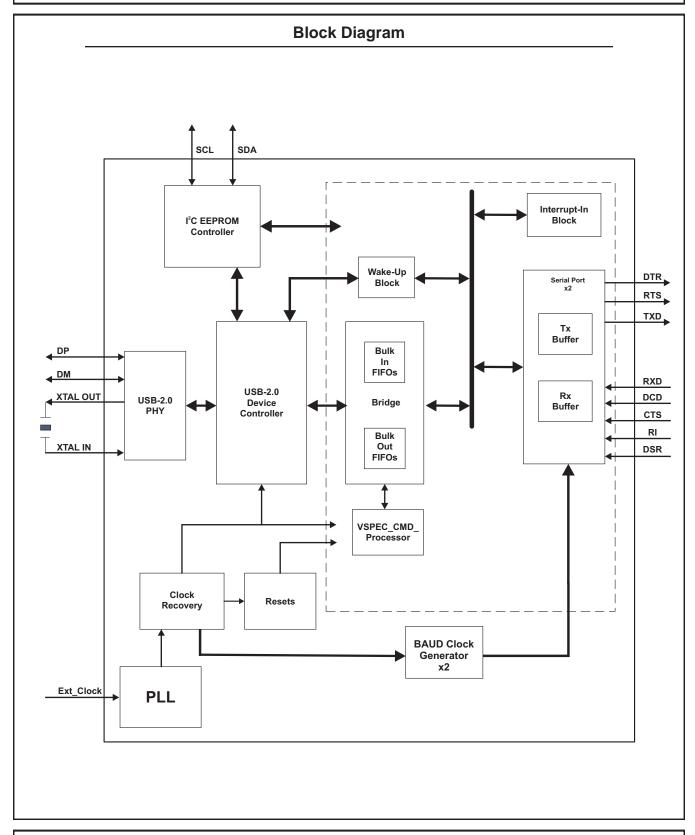
- Windows based EEPROM Tool
- Mass Production Utility

General Description

The MCS7820 is a USB-2.0 to Dual-Serial Port device. It has been developed to connect a wide range of standard serial devices to a USB host.

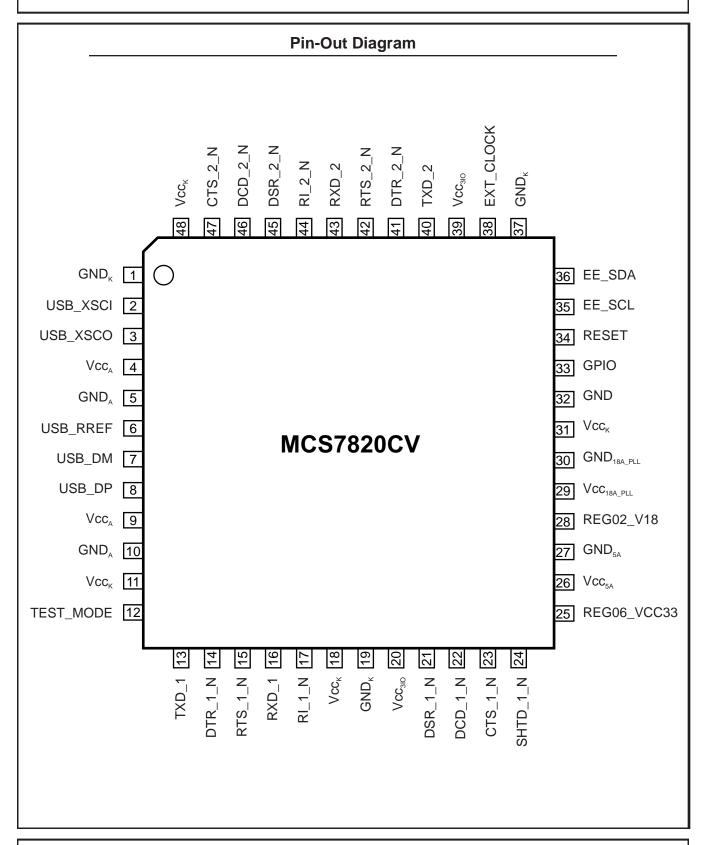
The MCS7820 has a USB Device Controller connected to two (2) individual UARTs.

Support for the following serial communication programs is included:


HyperTerminal, PComm, Windows direct connection, Windows dial-up connection through modem, Networking over IrDA and Windows direct connection over IrDA, Minicom.

Ordering Information					
Commercial Grade (0 °C to +70 °C)					
MCS7820CV	48-LQFP	RoHS			

MosChip Semiconductor ◆ 3335 Kifer Rd, Santa Clara, CA 95051 ◆ Tel (408) 737-7141 ◆ Fax (408) 737-7708


USB-2.0 to Two Serial Ports

USB-2.0 to Two Serial Ports

USB-2.0 to Two Serial Ports

Pin Assignments

Pin	Name	Туре	Functional Description
1	GND _K	Power	Core Ground
2	USB_XSCI	Input	Crystal Oscillator Input
3	USB_XSCO	Output	Crystal Oscillator Output
4	Vcc _A	Power	Power Pin (A3V3)
5	GND _A	Power	Analog Ground
6	USB_RREF	Input	External Reference Resistor (12.1 K Ω , 1%) Connect resistor to Analog GND.
7	USB_DM	I/O	USB D- Signal
8	USB_DP	I/O	USB D+ Signal
9	Vcc _A	Power	Power Pin (A3V3)
10	GND _A	Power	Analog Ground
11	Vcc _K	Power	Power Pin (1.8V)
12	TEST_MODE	Input	Test Mode Pin, (active high). Default = Low (0) When TEST_MODE = 1, PLL, Core, and SCAN/BIST/ Memory BIST testing can be performed. Set TEST_MODE = 0 for normal operation.
13	TXD_1	Output	Serial Port 1 Transmit Data out to transceiver or IrDA data out to IR LED
14	DTR_1_N	Output	Serial Port 1 Data Terminal Ready (in serial protocol), active low.
15	RTS_1_N	Output	Serial Port 1 Request To Send (in serial protocol), active low.
16	RXD_1	Input	Serial Port 1 Serial Receive Data in from transceiver or IrDA data in from IrDA detector.
17	RI_1_N	Input	Serial Port 1 Ring Indicator, active low
18	Vcc _K	Power	Power Pin (1.8V)
19	GND _K	Power	Core Ground
20	Vcc _{3IO}	Power	Power Pin (D3V3)
21	DSR_1_N	Input	Serial Port 1 Data Set Ready (in serial protocol), active low
22	DCD_1_N	Input	Serial Port 1 Data Carrier Detect (in serial protocol), active low
23	CTS_1_N	Input	Serial Port 1 Clear To Send (in serial protocol), active low
24	SHTD_1_N	Output	Shut Down External Serial Transceiver during normal operation, active low by default, can be configured active high by using DCR setting.
25	REG06_VCC33	Power	Power Pin (3.3V OUTPUT)
26	Vcc _{5A}	Power	Power Pin (5V INPUT)

Page 4 Rev. 1.2

USB-2.0 to Two Serial Ports

Pin	Name	Туре	Functional Description
27	GND _{5A}	Power	Ground Pin for 5V Input
28	REG02_V18	Power	Power Pin (1.8V OUTPUT)
29	Vcc _{18A_PLL}	Power	PLL Power (1.8V)
30	GND _{18A_PLL}	Power	PLL Ground
31	Vcc _K	Power	Power Pin (1.8V)
32	Gnd	Power	Ground.
33	GPIO	I/O	GPIO_MODE - Bidirectional GPIO bit. The direction (Input or Output) is controlled by the DCR for Serial Port #1.
34	RESET	Input	Power-On Reset signal (active high).
35	EE_SCL	I/O	2-Wire EEPROM Clock. Default = High (1)
36	EE_SDA	I/O	2-Wire EEPROM Data in/out. Default = High (1)
37	GND _K	Power	Core Ground.
38	EXT_CLOCK	Input	Input Clock from external world. In normal operation mode, clock can be supplied to serial ports and used for custom BAUD Rate of user's choice. In test mode, clock will be the test clock input from external world.
39	Vcc _{3IO}	Power	Power Pin (D3V3).
40	TXD_2	Output	Serial Port 3 Transmit Data out to transceiver, or IrDA data out to IR LED.
41	DTR_2_N	Output	Serial Port 3 Data Terminal Ready (in serial protocol), active low.
42	RTS_2_N	Output	Serial Port 3 Request To Send (in serial protocol), active low.
43	RXD_2	Input	Serial Port 3 Serial Receive Data in from transceiver, or IrDA data in from IrDA detector.
44	RI_2_N	Input	Serial Port 3 Ring Indicator, active low.
45	DSR_2_N	Input	Serial Port 3 Data Set Ready (in serial protocol), active low.
46	DCD_2_N	Input	Serial Port 3 Data Carrier Detect (in serial protocol), active low.
47	CTS_2_N	Input	Serial Port 3 Clear To Send (in serial protocol), active low.
48	Vcc _k	Power	Power Pin (1.8V)

USB-2.0 to Two Serial Ports

Functional Block Descriptions

Internal Regulators

An internal DC-DC Regulator is provided to convert 5V to 1.8V for Core Logic. An additional regulator is provided to convert the 5V input to 3.3V for I/O functions. These regulators eliminate the need for external voltage sources.

USB-2.0 PHY

This is the physical layer of the USB interface. The USB-2.0 PHY communicates with the USB-2.0 Device Controller logic through a UTMI interface to send/receive data on the USB bus.

USB-2.0 Device Controller

The USB-2.0 Device Controller interfaces to the internal bridge and communicates with the serial ports through the bridge logic. The device controller logic is connected to a physical layer USB-2.0 PHY which provides the USB bus interface for the chip. The device controller responds to standard as well as vendor specific requests from USB-2.0 and USB-1.1 Hosts.

Bridge

The bridge logic controls traffic between the USB-2.0 Device Controller and the Serial Port Controllers. The bridge logic has synchronous RAM memories with pingpong FIFO control logic to buffer data in either direction (Bulk-In and Bulk-Out) and send it to the other side without loss. Control logic prevents overflow or underflow conditions in the memory.

UART / Serial Port Controllers

The Serial Port Controllers are linked to the bridge and send/receive data from the bridge interface. Each serial port controller has register logic controlling BAUD rates (50 bps – 6 Mbps), stop-bits, and parity bit settings. Each serial port has synchronous RAM memories acting as transmit and receive FIFOs to buffer outgoing and incoming data. This block has registers for interrupts, line status, and line control features which can be accessed by software. The Serial Port Controllers can interface to external RS-232 / RS-422 / RS-485 transceivers.

Vendor Specific Command Processor

The bridge logic interfaces to a vendor specific command processor block containing commands/register settings (BAUD settings etc.) which are specific to this device.

Interrupt-In Block

The Interrupt-In controller block gives the status of the serial port interrupt registers to the USB-2.0 Device Controller. The USB host controller periodically polls the interrupt endpoint and reads the status of the interrupts.

Wakeup Block

The Wakeup block is used for remote wakeup control. The USB host can suspend operation of the device. The remote wakeup block checks for activity on the serial port pins, and if information is available, it issues a remote wakeup request to the USB-2.0 Device Controller. The Device Controller in turn requests a remote wakeup by the external host. The host issues the "Resume Signaling" command to the device, which then resumes normal operation.

PC EEPROM Controller

The I²C EEPROM Controller interfaces to an external EEPROM and retrieves information necessary for serial port settings, Product-IDs, Vendor-IDs and other control information. The EEPROM controller logic communicates with the USB-2.0 Device Controller block which uses the information from the external EEPROM.

Clock Generation and Resets

The Clock Generation logic is used to generate the clocks for the various BAUD rates supported by the device. The Resets block has logic for synchronous de-assertion and asynchronous assertion of Resets in the respective clock domains to various blocks.

BAUD Clock Generators

The BAUD Clock Generator block generates clocks for each of the Serial Port Controllers depending on the BAUD settings from the host. A source clock is generated from the Clock Recovery block which is further divided or used as is by the BAUD Clock Generator logic depending on the BAUD settings.

PLL Clock Generator

The PLL generates a master clock which the other blocks use to generate the various BAUD rates. The PLL supports a wide range of clock inputs to support industrial standard serial port bit rates, as well as custom BAUD rates.

Page 6 Rev. 1.2

USB-2.0 to Two Serial Ports

UART Functional Description

Overview

The UARTs are high performance serial ports that comply with the 16c550 specification. All UARTs are similar in operation and function, and are described in this section. The function of a single UART is described below.

Operation Modes

The UARTs are backward compatible with 16c450 and 16c550 devices. The operation of the port depends upon the mode settings, which are described throughout the rest of this section. The modes, conditions and corresponding FIFO depth are tabulated below.

UART Mode	FIFO Size	FCR[0]	
450	1	0	
550	16	1	

450 Mode

After the hardware reset, bit-0 of the FIFO Control Register (FCR) is cleared, and the UART is compatible with the 16c450 mode of operation.

The transmitter and receiver FIFOs (referred to as the "Transmitter Holding Register" and "Receiver Holding Register" respectively) have a depth of one.

This mode of operation is known as "Byte Mode".

550 Mode

After the hardware reset, writing a 1 to FCR[0] will increase the FIFO size to 16, providing compatibility with 16c550 devices.

In 16c550 mode, the device has the following features:

- RTS/CTS hardware flow control or DSR/DTR hardware flow control
- Infrared IrDA format transmit and receive mode
- Deeper (16-Byte) FIFOs

USB-2.0 to Two Serial Ports

UART Register-Set and Register Descriptions

The UART has 10 registers, but only three address lines to access those registers. The mapping of the registers is dependent upon the Line Control Register (LCR).

LCR[7] enables the Divider Latch Registers (DLL and DLM).

The following table gives the various UART registers and their offsets.

Register Name	Offset	R/W	Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
THR	0	W		Da	ata to be tra	nsmitted (Tr	ransmitter H	olding R	egister)	
RHR	0	R			Data to be	received (Re	eceiver Hold	ling Regi	ister)	
IER	1	R/W		Reserved		Sleep Mode	Modem Int Mask	Rx Stat Int Mask	Tx Rdy Int Mask	Rx Rdy Int Mask
FCR	2	W		RHR Trigger Level Rese		erved	Reserved	Flush THR	Flush RHR	FIFO Enable
ISR	2	R		Os abled	Rese	erved	Inter	rupt Prio	rity	Interrupt Pending
LCR	3	R/W	DLE	Tx Break	Force Parity	Odd/Even Parity	Parity Enable	Stop Bits	Data I	_ength
MCR	4	R/W	D	– DSR/ CD Control	RTS/CTS Flow Control	Loop	Unused		RTS	DTR
LSR	5	R	Data Error	Tx Empty	THR Empty	Rx Break	Framing Error	Parity Error	Overrun Error	Rx Rdy
MSR	6	R	DCD	RI	DSR	CTS	ΔDCD	Teri	ΔDSR	ΔCTS
SPR	7	R/W		Scratch Pad Register						

Additional standard registers - these are accessed when LCR[7] = 1

DLL	0	R/W	Divisor Latch bits[7:0]
DLM	1	R/W	Divisor Latch bits[15:8]

Page 8 Rev. 1.2

USB-2.0 to Two Serial Ports

Transmitter Holding Register and Receiver Holding Register (THR and RHR):

Data is written into the bottom of the THR queue and read from the top of the RHR queue completely asynchronously to the operation of the transmitter and receiver. The size of the FIFOs is dependent upon the setting of the FCR register.

Data written to the THR when it is full, is lost. Data read from the RHR when it is empty, is invalid. The empty and full status of the FIFOs is indicated in the Line Status Register.

Register: THR

Description: Data to be transmitted

Offset: 0

Permissions: Write Only **Access Condition:** LCR[7] = 0

Default Value: (unknown) – based on memory

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
			Data to be	transmitted			

Register: RHR

Description: Data to be received

Offset: 0

Permissions: Read Only **Access Condition:** LCR[7] = 0

Default Value: (unknown) – based on memory

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	
	Data to be received							

USB-2.0 to Two Serial Ports

Interrupt Enable Register (IER):

Serial channel interrupts are enabled using the Interrupt Enable Register (IER).

Register: IER

Description: Interrupt Enable Register

Offset: 1

Permissions: Read/Write **Access Condition:** LCR[7] = 0

Default Value: 0x0C

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	Reserved		Sleep Mode	Modem Int Mask	Rx Stat Int Mask	Tx Rdy Int Mask	Rx Rdy Int Mask

Bit	Description	Operation
0	Rx Rdy Interrupt Mask	Logic 0: Disable the Receiver Ready Interrupt Logic 1: Enable the Receiver Ready Interrupt
1	Tx Rdy Interrupt Mask	Logic 0: Disable the Transmitter Ready Interrupt Logic 1: Enable the Transmitter Ready Interrupt
2	Rx Stat Interrupt Mask	Logic 0: Disable the Receiver Status Interrupt (Normal Mode) Logic 1: Enable the Receiver Status Interrupt (Normal Mode)
3	Modem Interrupt Mask	Logic 0: Disable the Modem Status Interrupt Logic 1: Enable the Modem Status Interrupt
4	Sleep Mode	Logic 0: Disable Sleep Mode Logic 1: Enable Sleep Mode where by the internal clock of the channel is switched OFF
[7:5]	Reserved	Reserved

Page 10 Rev. 1.2

USB-2.0 to Two Serial Ports

FIFO Control Register (FCR):

The FCR controls the UART behavior in various modes.

Register: FCR

Description: FIFO Control Register

Offset: 2
Permissions: Write

Access Condition:

Default Value: 0x00

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
RHR Trig	ger Level	Rese	erved	Reserved	Flush THR	Flush RHR	Enable FIFOs

Bit	Description	Operation
0	Enable FIFO Mode	Logic 0: Byte Mode Logic 1: FIFO Mode
1	Flush RHR	Logic 0: No change Logic 1: Flushes the contents of RHR, This is operative only in FIFO mode. The RHR is automatically flushed whenever changing between Byte Mode and FIFO Mode. The bit will return to zero after clearing the FIFO.
2	Flush THR	Logic 0: No change Logic 1: Flushes the content of the THR, in the same manner as FCR[1] does the RHR
3	Reserved	Reserved
[5:4]	Reserved	Reserved
[7:6]	RHR Trigger Level	See Table Below

In 550 Mode, the receiver FIFO trigger levels are defined by FCR[7:6].

The interrupt trigger level and flow control trigger level where appropriate are defined by L2 in the table.

L1 defines a lower flow control trigger level. The two trigger levels used together introduce a hysteresis element into the hardware RTS/CTS flow control.

In Byte Mode (450 Mode) trigger levels are all set to 1.

FCR[7:6]	550 Mode (FIFO = 16)				
1 01([7.0]	<u>L1</u>	<u>L2</u>			
2'b00	1	1			
2'b01	1	4			
2'b10	1	8			
2'b11	1	14			

USB-2.0 to Two Serial Ports

Interrupt Status Register (ISR):

The source of the highest priority pending interrupt is indicated by the contents of the Interrupt Status Register. There are five sources of interrupts and four levels of priority (1 is the highest) as tabulated below:

Register: ISR

Description: Interrupt Status Register

Offset: 2
Permissions: Read

Access Condition:

Default Value: 0x00

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
FIFOs	Enabled	· ·	t Priority ed Mode)	In	terrupt Priori (All Modes)	ty	Interrupt Pending

Interrupt Source and Priority Table

Priority Level	Interrupt Source	ISR[5:0]
-	No interrupt pending	6'b000001
1	Receiver Status Error or address bit detected in 9-bit mode	6'b000110
2a	Receiver Data Available	6'b000100
2b	Receiver Time-Out	6'b001100
3	Transmitter THR Empty	6'b000010
4	Modem Status Change	6'b000000

Note: ISR[0] indicates whether any interrupt is pending

Page 12 Rev. 1.2

USB-2.0 to Two Serial Ports

Line Control Register (LCR):

The LCR specifies the data format that is common to both transmitter and receiver.

Register: LCR

Description: Line Control Register

Offset: 3

Permissions: Read/Write

Access Condition:

Default Value: 0x00

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
DLE	TX Break	Force Parity	Odd/Even Parity	Parity Enable	Numb Stop		Data Length

LCR[1:0] Data Length of serial characters.

LCR[2] Number of Stop-Bits per serial character.

LCR[5:3] Parity Type

The selected parity type will be generated during transmission and checked by the receiver, which may produce a parity error as a result. In 9-bit mode parity is disabled and LCR[5:3] are ignored.

LCR[6] Transmission Break

Logic 0: Transmission Break Disabled.

Logic 1: Forces the transmitter data

output SOUT low to alert the communications channel, or

sends zeroes in IrDA mode.

LCR[7] Divisor Latch Enable

Logic 0: Accesses to DLL and DLM

registers disabled.

Logic 1: Accesses to DLL and DLM

registers enabled.

LCR[1:0]	Data Length
2'b00	5 bits
2'b01	6 bits
2'b10	7 bits
2'b11	8 bits

LCR[2]	Data Length	Number of Stop-Bits
0	5, 6, 7, 8	1
1	5	1.5
1	6, 7, 8	2

LCR[5:3]	Parity Type
3'bxx0	No Parity
3'b001	Odd Parity
3'b011	Even Parity
3'b101	Parity bit forced to 1
3'b111	Parity bit forced to 0

USB-2.0 to Two Serial Ports

Line Status Register (LSR):

This register provides the status of the data transfer to CPU.

Register: LSR

Description: Line Status Register

Offset: 5

Permissions: Read

Access Condition:

Default Value: 0x00

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Data	Tx	THR	Rx	Framing	Parity	Overrun	Rx
Error	Empty	Empty	Break	Error	Error	Error	Rdy

Bit	Description		Operation
0	RHR Data Available	Logic 0: Logic 1:	RHR is empty RHR is not empty. Data is available to be read
1	RHR Overrun	Logic 0: Logic 1:	No overrun error Data was received when the RHR was full, An overrun has occurred. The error is flagged when the data would normally have been transferred to the RHR.
2	Received Data Parity Error	Logic 0: Logic 1:	No parity error in normal mode or 9 th bit received data is "0" in 9-bit mode. Data has been received that did not have correct parity
3	Received Data Framing Error	Logic 0: Logic 1:	No framing error Data has been received with an invalid stop-bit.
4	Receiver Break Error	Logic 0: Logic 1:	No receiver break error The receiver received a break error
5	THR Empty	Logic 0: Logic 1:	Transmitter FIFO is not empty Transmitter FIFO is empty
6	Transmitter and THR Empty	Logic 0: Logic 1:	The transmitter is not idle THR is empty and the transmitter has completed the character in the shift register and is in the idle mode
7	Receiver Data Error	Logic 0: Logic 1:	Either there is no receiver data error in the FIFO or it was cleared by an earlier read of LSR At least one parity error, framing error or break indication is present in the FIFO.

Page 14 Rev. 1.2

USB-2.0 to Two Serial Ports

Modem Control Register (MCR):

This register controls the UART's flow control and self diagnostic features.

Register: MCR

Description: Modem Control Register

Offset: 4

Permissions: Read/Write

Access Condition:

Default Value: 0x00

	550 Mode								
Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]		
DTR-DS Flow C		CTS/RTS Flow Control	Internal Loop Back Enable	Reserved	Reserved	RTS	DTR		

Bit	Description	Operation
0	DTR	Logic 0: Forces DTR# output to inactive (high) Logic 1: Forces DTR# output to active (low)
1	RTS	Logic 0: Forces RTS# output to inactive (high) Logic 1: Forces RTS# output to active (low)
2	Reserved	Reserved.
3	Reserved	Reserved.
4	Loop-Back Mode	Logic 0: Normal operating mode Logic 1: Enable local Loop-Back Mode
5	CTS/RTS Flow Control	Logic 0: CTS/RTS flow control disabled in 550 mode Logic 1: CTS/RTS flow control enabled in 550 mode
6	DTR/DSR Flow Control	Logic 0: DTR/DSR flow control disabled in 550 mode Logic 1: DTR/DSR flow control enabled in 550 mode
7	DCD Flow Control	Logic 0: DCD flow control disabled in 550 mode Logic 1: DCD flow control enabled in 550 mode

USB-2.0 to Two Serial Ports

Modem Status Register (MSR):

This register provides the status of the modem control lines to CPU.

Register: MSR

Description: Modem Status Register

Offset: 6

Permissions: Read

Access Condition:

Default Value: 0x00

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
DCD	RI	DSR	CTS	ΔDCD	Teri	ΔDSR	ΔCTS

Bit	Description	Operation
0	Delta CTS	Logic 0: No change in the CTS signal Logic 1: Indicates that the CTS input has changed since the last time the MSR was read
1	Delta DSR	Logic 0: No change in the DSR signal Logic 1: Indicates that the DSR input has changed since the last time the MSR was read
2	Trailing Edge of RI	Logic 0: No change in the RI signal Logic 1: Indicates that the RI input has changed from low to high since the last time the MSR was read
3	Delta DCD	Logic 0: No change in the DCD signal Logic 1: Indicates that the DCD input has changed since the last time the MSR was read
4 CTS		Logic 0: CTS# line is 1 Logic 1: CTS# line is 0
5	DSR	Logic 0: DSR# line is 1 Logic 1: DSR# line is 0
6	RI	Logic 0: RI# line is 1 Logic 1: RI# line is 0
7	DCD	Logic 0: DCD# line is 1 Logic 1: DCD# line is 0

Page 16 Rev. 1.2

USB-2.0 to Two Serial Ports

Scratch Pad Register (SPR):

The scratch pad register does not influence operation of the UART in RS-232 mode in any way, and is used for temporary data storage. When using RS-422/485 Mode, bit[6] and bit[7] of the Scratch Pad Register are used for mode setting and DTR active level settings.

Register: SPR

Description: Scratch Pad Register

Offset: 7

Permissions: Read/Write

Access Condition:

Default Value: 0x00

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Scratch Pad Register Data							

USB-2.0 to Two Serial Ports

Divisor Latch Registers (DLL and DLM):

The Divisor Latch Registers are used to program the BAUD Rate divisor.

This is a value between 1 and 65535 by which the input clock is divided in order to generate serial BAUD rates.

After the hardware reset, the BAUD Rate used by the transmitter and receiver is given by:

BAUD Rate = Input Clock / (16 * Divisor)

where divisor is given by (256 * DLM) + DLL.

More flexible BAUD rate generation options are also available.

Register: DLL

Description: Divisor Latch (Least Significant Byte)

Offset: 0

Permissions: Read/Write **Access Condition:** LCR[7] = 1

Default Value: 0x01

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Least Significant Byte of divisor latch							

Register: DLM

Description: Divisor Latch (Most Significant Byte)

Offset: 1

Permissions: Read/Write **Access Condition:** LCR[7] = 1

Default Value: 0x00

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Most Significant Byte of divisor latch							

Page 18 Rev. 1.2

USB-2.0 to Two Serial Ports

RS-422 / RS-485 Mode Support

Two additional modes of serial port operation are supported, these are:

- RS-422 Mode Full Duplex Serial Port for industrial applications
- RS-485 Mode Half Duplex Serial Port for industrial applications

RS-485

The RS-485 mode can be set using the Scratch Pad Register bit[6] and bit[7] for each serial port.

This mode is a half duplex mode and the external transceiver is controlled for transmission or reception using the enable signal.

Scratch Pad Bit[7]	Scratch Pad Bit[6]	Operation Summary
0	X	RS-485 Mode Disabled
1	0	RS-485 Mode Enabled, DTR High = Rx DTR Low = Tx
		RS-485 Mode Enabled DTR Low = Rx DTR High = Tx
1	1	This is the default selection when RS485 mode is selected through driver property sheets.

RS-422

This is the full duplex mode.

This mode will work without the use of the DTR signal for external transceiver control.

USB-2.0 to Two Serial Ports

Configuration Options

Two serial ports can be configured for operation.

To program and access the serial ports via software, endpoint numbers have been assigned so that serial ports can be configured from the USB side.

Endpoint	Туре	Function	Size (Bytes) (USB-1.1 / USB-2.0)
0	Control Endpoint	Default Functionality	8 / 64
1	Bulk-In	Serial Port – 1	64 / 512
2	Bulk-Out	Serial Port – 1	64 / 512
3	Bulk-In	Serial Port – 2	64 / 512
4	Bulk-Out	Serial Port – 2	64 / 512
5	Interrupt	Status Endpoint	5 or 13 *

^{*} Controlled by DCR1 bit-6

Serial Port Set/Get Commands

Vendor commands are the vendor specific USB setup commands. The purpose of the vendor commands is to set/get the contents of the application registers. The following table provides information on the various vendor specific commands.

Windex [7:0] is the register index from where data is to be read.

Brequest specifies whether to read or write.

- 0x0E = write to the application register
- 0x0D = read from the application register

Wvalue specifies the application number and data to be written (ww = data).

- 0x01ww is the application number for Serial Port-1
- 0x03ww is the application number for Serial Port-2
- 0x09ww is the application number for EEPROM Write/Read
- 0x00ww is the application number provided for accessing the Control Registers which control the UARTs. It is possible to enable higher BAUD rates, and features like auto hardware flow control using the Control Registers.

Note: "N" in Wvalue and Register Name columns indicate the corresponding serial port number.

Windex is the offset of the register to read/write.

Wlength is the length of the data to read/write.

Page 20 Rev. 1.2

USB-2.0 to Two Serial Ports

Get Application Vendor Specific Command (Serial Port -N)

bmrequestType	Brequest	Wvalue	Windex	Wlength	Register Name
0xC0	0x0D	0x0N00	0x0000	0x0001	SPN_RHR
0xC0	0x0D	0x0N00	0x0001	0x0001	SPN_IER
0xC0	0x0D	0x0N00	0x0002	0x0001	SPN_IIR
0xC0	0x0D	0x0N00	0x0003	0x0001	SPN_LCR
0xC0	0x0D	0x0N00	0x0004	0x0001	SPN_MCR
0xC0	0x0D	0x0N00	0x0005	0x0001	SPN_LSR
0xC0	0x0D	0x0N00	0x0006	0x0001	SPN_MSR
0xC0	0x0D	0x0N00	0x0007	0x0001	SPN_SPR
0xC0	0x0D	0x0N00	0x0000	0x0001	SPN_DLL
0xC0	0x0D	0x0N00	0x0001	0x0001	SPN_DLM

Set Application Vendor Specific Command (Serial Port -N)

bmrequestType	Brequest	Wvalue	Windex	Wlength	Register Name
0x40	0x0E	0x0Nww	0x0000	0x0001	SPN_THR
0x40	0x0E	0x0Nww	0x0001	0x0001	SPN_IER
0x40	0x0E	0x0Nww	0x0002	0x0001	SPN_FCR
0x40	0x0E	0x0Nww	0x0003	0x0001	SPN_LCR
0x40	0x0E	0x0Nww	0x0004	0x0001	SPN_MCR
0x40	0x0E	0x0Nww	0x0005	0x0001	SPN_LSR
0x40	0x0E	0x0Nww	0x0006	0x0001	SPN_MSR
0x40	0x0E	0x0Nww	0x0007	0x0001	SPN_SPR
0x40	0x0E	0x0Nww	0x0000	0x0001	SPN_DLL
0x40	0x0E	0x0Nww	0x0001	0x0001	SPN_DLM

USB-2.0 to Two Serial Ports

USB Device Descriptors

Device Descriptor	Location	Data
BLength	0	8'h12
BDescriptorType	1	8'h01
BcdUSB	2	8'h00
BcdUSB	3	8'h02
BDeviceClass	4	8'hFF
BDeviceSubClass	5	8'h00
BDeviceProtocol	6	8'hFF
bMaxPacketSize0	7	8'h40
IdVendor	8	8'h10
IdVendor	9	8'h97
IdProduct	10	8'h20
IdProduct	11	8'h78
BcdDevice	12	8'h01
BcdDevice	13	8'h00
iManufacturer	14	8'h00 / 02 *
iProduct	15	8'h00 / 03 *
iSerialNumber	16	8'h00 / 01 *
BNumConfigurations	17	8'h01

^{*} Values returned Without / With the Serial EEPROM present.

Page 22 Rev. 1.2

USB-2.0 to Two Serial Ports

USB Configuration Descriptors

Configuration Descriptor	Index	Data
BLength	0	8'h09
BDescriptorType	1	8'h02
WtotalLength(L)	2	8'h35
WtotalLength(M)	3	8'h00
BNumInterfaces	4	8'h01
BConfigurationValue	5	8'h01
IConfiguration	6	8'h00
BmAttributes	7	8'hA0
BMaxPower	8	8'h32 (100 mA)

USB Interface Descriptors

Configuration Descriptor	Index	Data
BLength	0	8'h09
BDescriptorType	1	8'h04
BInterfaceNumber	2	8'h00
BAlternateSetting	3	8'h00
BNumEndpoints	4	8'h09
BInterfaceClass	5	8'hFF
BInterfaceSubClass	6	8'h00
BInterfaceProtocol	7	8'hFF
IInterface	8	8'h00

USB-2.0 to Two Serial Ports

Endpoint-1 Serial Port 1 Bulk-In **Configuration Descriptor** Index **Data** bLength 0 8'h07 bDescriptorType 1 8'h05 bEndpointAddress 2 8'h81 bmAttributes 3 8'h02 wMaxPacketSize(L) 4 8'h40/8'h00 * 5 wMaxPacketSize(M) 8'h00/8'h02 * bInterval 6 8'hFF

Endpoint-2 Serial Port 1 Bulk-Out

Configuration Descriptor	Index	Data
bLength	0	8'h07
bDescriptorType	1	8'h05
bEndpointAddress	2	8'h02
bmAttributes	3	8'h02
WmaxPacketSize(L)	4	8'h40/8'h00 *
WmaxPacketSize(M)	5	8'h00/8'h02 *
bInterval	6	8'hFF

Endpoint-3 Serial Port 2 Bulk-In

Configuration Descriptor	Index	Data
bLength	0	8'h07
bDescriptorType	1	8'h05
bEndpointAddress	2	8'h85
bmAttributes	3	8'h02
wMaxPacketSize(L)	4	8'h40/8'h00 *
wMaxPacketSize(M)	5	8'h00/8'h02 *
bInterval	6	8'hFF

Endpoint-4 Serial Port 2 Bulk-Out

Configuration Descriptor	Index	Data
bLength	0	8'h07
bDescriptorType	1	8'h05
bEndpointAddress	2	8'h06
bmAttributes	3	8'h02
wMaxPacketSize(L)	4	8'h40/8'h00 *
wMaxPacketSize(M)	5	8'h00/8'h02 *
bInterval	6	8'hFF

* Values for Full Speed and High Speed USB

Page 24 Rev. 1.2

USB-2.0 to Two Serial Ports

Endpoint-5
Interrupt Endpoint

Configuration Descriptor	Index	Data
bLength	0	8'h07
bDescriptorType	1	8'h05
bEndpointAddress	2	8'h89
bmAttributes	3	8'h03
wMaxPacketSize(L)	4	8'h0A
wMaxPacketSize(M)	5	8'h00
bInterval	6	* 8'h01 / 8'h05 (default FS/HS)

* programmable using intr_pg_fs , intr_pg_hs

USB-2.0 to Two Serial Ports

EEPROM Content Layout

Bytes	# of Bytes	Name	Description
[1:0]	2	EE Check	EEPROM Present Check value = 0x9710
[3:2]	2	VID	Vendor ID = 0x9710
[5:4]	2	PID	Product ID = 0x7840
[7:6]	2	RN	Release Number in BCD format = 0x0001
8	1	SER1_DCR0	Device Configuration Registers (SER1_DCR0)
9	1	SER1_DCR1	Device Configuration Registers (SER1_DCR1)
10	1	SER1_DCR2	Device Configuration Registers (SER1_DCR2)
14	1	SER2_DCR0	Device Configuration Registers (SER2_DCR0)
15	1	SER2_DCR1	Device Configuration Registers (SER2_DCR1)
16	1	SER2_DCR2	Device Configuration Registers (SER2_DCR2)
20	1	intr_pg_fs	Binterval value for Full Speed
21	1	intr_pg_hs	Binterval value for High Speed
[23:22]	2	Language ID	Language ID in HEX Format (0x0409 default)
[71:24]	48	Manufacture ID	"MosChip Semiconductor" in UNICODE
[113:72]	42	Product Name	"USB-Serial Controller" in UNICODE
[129:114]	16	Serial Number	"X7X6X5X4X3X2X1X0" in UNICODE

Page 26 Rev. 1.2

USB-2.0 to Two Serial Ports

EEPROM Contents for MCS7820 (Example Contents)

EE_Check,
VID,
PID,
RN,
SER1_DRC0, SER1_DRC1, SER1_DRC2,
Reserved (3),
SER2_DRC0, SER2_DRC1, SER2_DRC2,
Reserved (3),
INTR_PG_FS,
INTR_PG_HS,
Language ID,
Manufacture ID,

М	0	S	С	h	i	р
4D	6F	73	43	68	69	70

	S	е	m	i	С	0	n	d	u	С	t	0	r
20	53	65	6D	69	63	6F	6E	64	75	63	74	6F	72

Product Name,

U	S	В	-	S	е	r	i	а	-
55	53	42	2D	53	65	72	69	61	6C

	_	0		t	r	0	Ι	-	е	r
20	43	6F	6E	74	72	6F	6C	6C	65	72

Serial Number

Location	HEX	ASCII
0	10	
1	97	
2	10	
3	97	
4	40	
5	78	
6	01	
7	00	
8	01	
9	85	
10	24	
11	01	
12	80	
13	24	
14	01	
15	80	
16	24	
17	01	
18	80	
19	24	
20	01	
21	05	
22	09	
23	04	
24	4D	М
25	00	101
26	6F	0
27	00	
28	73	S
29	00	3
30	43	С
31	00	
32	68	h
33	00	- 11
		:
34	69	i
35	00	_
36	70	р
37	00	C
38	20	Space
39	00	
40	53	S
41	00	
42	65	е
43	00	

Location	HEX	ASCII
44	6D	m
45	00	
46	69	i
47	00	
48	63	С
49	00	-
50	6F	0
51	00	
52	6E	n
53	00	
54	64	d
55	00	
56	75	u
57	00	
58	63	С
59	00	
60	74	t
61	00	,
62	6F	0
63	00	
64	72	r
65	00	
66	20	Space
67	00	Space
68	20	Space
69	00	Space
70	20	Space
71	00	Space
71	55	U
73		U
	00	S
74	53	_ <u> </u>
75 76	00 42	В
	00	D
77		
78	2D	-
79	00	S
80	53	٥
81	00	
82	65	е
83	00	
84	72	r
85	00	
86	69	i
87	00	

Location	HEX	ASCII
88	61	а
89	00	
90	6C	I
91	00	
92	20	Space
93	00	
94	43	С
95	00	
96	6F	0
97	00	
98	6E	n
99	00	
100	74	t
101	00	
102	72	r
103	00	
104	6F	0
105	00	
106	6C	1
107	00	· ·
108	6C	ı
109	00	· ·
110	65	е
111	00	
112	72	r
113	00	r
114	4D	M
115		IVI
	00	
116	6F	0
117	00	
118	73	S
119	00	
120	43	С
121	00	
122	68	h
123	00	
124	69	i
125	00	
126	70	р
127	00	
128	20	Space
129	00	

USB-2.0 to Two Serial Ports

Device Configuration Bit Fields and Descriptions

Bytes 8, 9, 10, 14, 15 and 16 form six 8-bit DCR Registers. These Bytes are read from the EEPROM, and loaded into the Global Device Configuration Registers after Power-On Reset. They can be programmed by software using the following application number and register indexes as shown in the table.

EEPROM Location	DCR Bit	DCR Name	Application Number	Register Index	Default Value
8	SER1_DCR[7:0]	SER1_DCR0	0	4	0x01
9	SER1_DCR[15:8]	SER1_DCR1	0	5	0x85
10	SER1_DCR[23:16]	SER1_DCR2	0	6	0x24
14	SER2_DCR[7:0]	SER2_DCR0	0	25	0x01
15	SER2_DCR[15:8]	SER2_DCR1	0	26	0x84
16	SER2_DCR[23:16]	SER2_DCR2	0	27	0x24

The following tables describe the function of each bit in the DCR registers. There are three DCR registers for each Serial Port (IrDA). In the absence of an EEPROM, the default values are taken from the Device Configuration Registers.

Page 28 Rev. 1.2

USB-2.0 to Two Serial Ports

Serial Port 1 – Device Configuration Register 0

Bit[7		Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Reserv	ed	IrDA_ Mode	RTS_ CM	-	GP Mo	IO_ ode	Reserved	RS_ SDM

DCR0 Bit	Name	Definition	Default Value
	D.C.	RS-232 / RS-422 / RS-485 Transceiver Shut-Down Mode: 0: Do not shut down the transceiver	
0	RS_ SDM	Even when USB SUSPEND is engaged	1
		Shut down the transceiver when USB SUSPEND is engaged	
1	Reserved	Reserved.	0
[3:2]	GPIO_ Mode	00: GPIO = Input	00
	iviode	10: GPIO = Output	
[5:4]	RTS_ CM	RTSM RTS Control Method: 00: RTS is controlled by Control Bit Map. Signal is active low; 01: RTS is controlled by Control Bit Map. Signal is active high; 10: Drive RTS active when Downstream Data Buffer is NOT EMPTY; Otherwise Drive RTS inactive. 11: Drive RTS inactive when Downstream Data Buffer is NOT EMPTY; Otherwise Drive RTS active.	00
6	IrDA_ Mode	0: RS-232 / RS-422 / RS-485 Serial Port Mode. 1: IrDA Mode.	0
7	Reserved	Reserved	0

USB-2.0 to Two Serial Ports

Serial Port 1 – Device Configuration Register 1

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Reserved	Interrupt IN Endpoint Status	PLL_ Power-Down Bypass Control	RW_ INHB	Tx. PN	_I_ //G	GPI0 PN	O_I_ MG

DCR1 Bit	Name	Definition	Default Value
[1:0]	GPIO_I_ PMG	These two bits set the output current of the GPIO lines: 00: 6 mA 01: 8 mA (Default) 10: 10 mA 11: 12 mA	01
[3:2]	Tx_l_ PMG	These two bits set the output current of Serial output signals TxD, DTR_n and RTS_n: 00: 6 mA 01: 8 mA (Default) 10: 10 mA 11: 12 mA	01
4	RW_ INHB	RW_INH Remote Wake Inhibit: 0: Enable the USB Remote Wakeup function 1: Inhibit the USB Remote Wakeup function	0
5	PLL_ Power-Down Bypass Control	0: Enables PLL Power-Down 1: Disables PLL Power-Down	0
6	Interrupt IN Endpoint Status	O: Interrupt Endpoint returns 5 Bytes of data. 1: Interrupt Endpoint returns 5 Bytes + 8 Bytes of the Bulk-In/Out memory controller status	0
7	Reserved	Reserved.	1

Page 30 Rev. 1.2

USB-2.0 to Two Serial Ports

Serial Port 1 – Device Configuration Register 2

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
SHDN_	Reserved	RWU_	EWU_	EWU_	EWU_	EWU_	EWU_
POL		Mode	Rx	DSR	RI	DCD	CTS

DCR2 Bit	Name	Definition	Default Value
0	EWU_	Enable Wake Up Trigger on CTS:	0
	CTS	Disabled Enable Wake Up Trigger on CTS State Changes.	
	E/\///	Enable Wake Up Trigger on DCD:	
1	EWU_ DCD	0: Disabled 1: Enable Wake Up Trigger on DCD State Changes.	0
		Enable Wake Up Trigger on RI:	
2	EWU_ RI	0: Disabled 1: Enable Wake Up Trigger on RI State Changes.	1
	EWU	Enable Wake Up Trigger on DSR:	
3	DSR	0: Disabled 1: Enable Wake Up Trigger on DSR State Changes.	0
	=,,,,,	Enable Wake Up Trigger on RXD:	
4	EWU_ Rx	0: Disabled 1: Enable Wake Up Trigger on RXD State Changes.	0
		Remote Wakeup Mode:	
5	RWU_ Mode	0: Engages Remote Wakeup, The device issues Disconnect Signal.	1
		1: Engages Remote Wakeup, The device issues Resume Signal.	
6	Reserved	Reserved.	0
		SHDN Polarity:	
7	SHDN_ POL	0: Pin 12 Active Low Shut-Down Signal.	0
		1: Pin 12 Active High Shut-Down Signal.	

Note: Wake up defined above only works when DCR0[6] = 0 and DCR1[4] = 0.

USB-2.0 to Two Serial Ports

Serial Port 2 – Device Configuration Register 0

The Configuration Registers for this Serial Port are very similar to Serial Port 1, but have a few less configuration options.

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Reserved	IrDA_ Mode	RTS_ CM	-	Rese	erved	Reserved	RS_ SDM

DCR0 Bit	Name	Definition	Default Value
0	RS_ SDM	RS-232 / RS-485 Transceiver Shut-Down Mode: 0: Do not shut down the transceiver Even when USB SUSPEND is engaged	1
		1: Shut down the transceiver when USB SUSPEND is engaged	
[3:1]	Reserved	Reserved	000
[5:4]	RTS_ CM	RTSM RTS Control Method: 00: RTS is controlled by Control Bit Map. Signal is active low; 01: RTS is controlled by Control Bit Map. Signal is active high; 10: Drive RTS active when Downstream Data Buffer is NOT EMPTY; Otherwise Drive RTS inactive. 11: Drive RTS inactive when Downstream Data Buffer is NOT EMPTY; Otherwise Drive RTS active.	00
6	IrDA_ Mode	0: RS-232 / RS-422 / RS-485 Serial Port Mode. 1: IrDA Mode.	0
7	Reserved	Reserved	0

Page 32 Rev. 1.2

USB-2.0 to Two Serial Ports

Serial Port 2 – Device Configuration Register 1

The Configuration Registers for this Serial Port are very similar to Serial Port 1, but have a few less configuration options.

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Reserved	Reserved	Reserved	RW_ INHB	Tx. PN		Rese	erved

DCR1 Bit	Name	Definition	Default Value
[1:0]	Reserved	Reserved	00
		These two bits set the output current of Serial output signals TxD, DTR_n and RTS_n:	
[3:2]	Tx_I_ PMG	00: 6 mA 01: 8 mA (Default) 10: 10 mA 11: 12 mA	01
4	RW_ INHB	RW_INH Remote Wake Inhibit: Enable the USB Remote Wakeup function Inhibit the USB Remote Wakeup function	0
[7:5]	Reserved	Reserved	0

USB-2.0 to Two Serial Ports

Serial Port 2 – Device Configuration Register 2

The Configuration Registers for this Serial Port are very similar to Serial Port 1, but have a few less configuration options.

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
December	December	RWU_	EWU_	EWU_	EWU_	EWU_	EWU_
Reserved	Reserved	Mode	Rx	DSR	RI	DCD	CTS

DCR2 Bit	Name	Definition	Default Value
0	EWU_ CTS	0: Disabled 1: Enable Wake Up Trigger on CTS State Changes.	0
1	EWU_ DCD	0: Disabled 1: Enable Wake Up Trigger on DCD: Disabled 1: Enable Wake Up Trigger on DCD State Changes.	0
2	EWU_ RI	0: Disabled 1: Enable Wake Up Trigger on RI State Changes.	1
3	EWU_ DSR	0: Disabled 1: Enable Wake Up Trigger on DSR State Changes.	0
4	EWU_ Rx	0: Disabled 1: Enable Wake Up Trigger on RXD: Disabled 1: Enable Wake Up Trigger on RXD State Changes.	0
5	RWU_ Mode	O: Engages Remote Wakeup, The device issues Disconnect Signal. 1: Engages remote wakeup, the Device issues resume signal.	1
[7:6]	Reserved	Reserved.	0

Note: Wake up defined above only works when DCR0[6] = 0 and DCR1[4] = 0.

Page 34 Rev. 1.2

USB-2.0 to Two Serial Ports

Electrical Specifications

Absolute Maximum Ratings:

Core Power Supply (VCC, -0.3 to 2.16 V Power Supply of 3.3V I/O (VCC_{3,10}) -0.3 to 4.0 V Input Voltage of 3.3V I/O (Vin,) -0.3 to 4.0 V -0.3 to 5.8 $\ensuremath{\text{V}}$ Input Voltage of 5V Tolerant I/O (Vin₅) **Operating Temperature** 0 to +70 °C Storage Temperature -40 to +150 °C ESD HBM (MIL-STD 883E Method 3015-7 Class 2) 2000 V ESD MM (JEDEC EIA/JESD22 A115-A) 200 V CDM (JEDEC/JESD22 C101-A) 500 V Latch-up (JESD No. 78, March 1997) 200 mA, 1.5 x VCC Junction Temperature (Tj) 115 °C Thermal Resistance of Junction to Ambient (Still Air) 80 °C/W

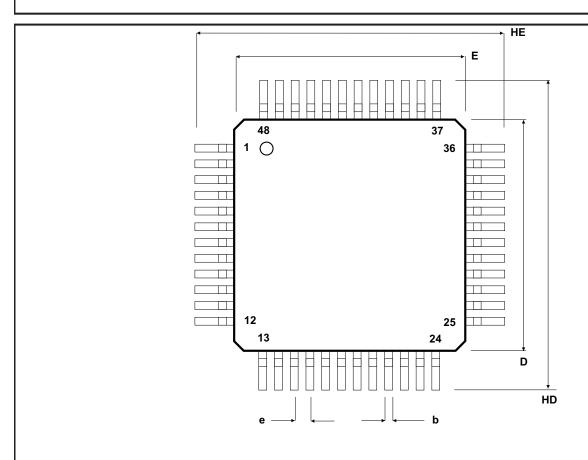
Operating Conditions:

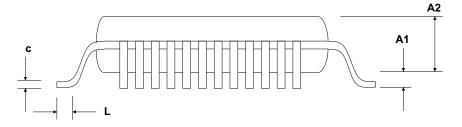
Symbol	Parameter	Min	Тур	Max	Units
VCC _{5A}	5V Power Supply Input	4.5	5.0	5.5	V
Vcc _k	Core Power Supply	1.62	1.8	1.98	V
Vcc ₃₁₀	Power Supply of 3.3V I/O	2.97	3.3	3.63	V
REG02_V18	1.8V Regulator Output	1.71	1.8	1.89	V
I_REG02_V18	1.8V Regulator Current			70	mA
REG06_VCC33	3.3V Regulator Output	3.14	3.3	3.46	V
I _{REG06_VCC33}	3.3V Regulator Current			250	mA
I _{5V}	Operating current of 5V when 3.3V and 1.8V internal regulators are used. No serial load.		70		mA
I _{3.3V}	Operating current of 3.3V. No serial load.		45		mA
I _{1.8V}	Operating current of 1.8V. No serial load.		25		mA

USB-2.0 to Two Serial Ports

DC Characteristics of 3.3V I/O Cells

Symbol	Parameter	Condition	Min	Тур	Max	Units
Vcc _K	Core Power Supply	Core Area	1.62	1.8	1.98	V
VCC ₃₁₀	Power Supply	3.3V I/O	2.97	3.3	3.63	V
Vi _L	Input Low Voltage	LVTTL			0.8	V
Vi _H	Input High Voltage	LVTTL	2.0			V
Vt	Switching Threshold	LVTTL		1.5		V
Vt- Vt+	Schmitt Trigger Threshold Voltage	LVTTL	0.8	1.1 1.6	2.0	V
Vo	Output Low Voltage	Io _L = 2 to 24mA			0.4	V
Vo _H	Output High Voltage	Io _H = -2 to -24mA	2.4			V


DC Characteristics of 5V Tolerant I/O Cells


Symbol	Parameter	Condition	Min	Тур	Max	Units
$Vcc_{_{5A}}$	5V Power Supply	5V I/O	4.5	5.0	5.5	V
Vi _L	Input Low Voltage	LVTTL			0.8	V
Vi _H	Input High Voltage	LVTTL	2.0			V
Vt	Switching Threshold	LVTTL		1.5		V
Vt- Vt+	Schmitt Trigger Threshold Voltage	LVTTL	0.8	1.1 1.6	2.0	V
Vo _H	Output Low Voltage	Io _L = 2 to 24 mA			0.4	V
Vo _H	Output High Voltage	IO _H = -2 to -24 mA	2.4			V

Page 36 Rev. 1.2

USB-2.0 to Two Serial Ports

48-Pin "CV" LQFP Package Dimensions

SYMBOL	MILLIMETERS					
STWBOL	MIN	TYPICAL	MAX			
A1	0.05		0.15			
A2	1.35		1.45			
b	0.17		0.27			
С	0.09		0.20			
е		0.50				
L	0.45		0.75			
HD	8.80		9.20			
D	6.80		7.20			
HE	8.80		9.20			
E	6.80		7.20			

USB-2.0 to Two Serial Ports

IMPORTANT NOTICE

MosChip Semiconductor Technology, LTD products are not authorized for use as critical components in life support devices or systems. Life support devices are applications that may involve potential risks of death, personal injury or severe property or environmental damages. These critical components are semiconductor products whose failure to perform can be reasonably expected to cause the failure of the life support systems or device, or to adversely impact its effectiveness or safety. The use of MosChip Semiconductor Technology LTD's products in such devices or systems is done so fully at the customer risk and liability.

As in all designs and applications it is recommended that the customer apply sufficient safeguards and guard bands in both the design and operating parameters. MosChip Semiconductor Technology LTD assumes no liability for customer's applications assistance or for any customer's product design(s) that use MosChip Semiconductor Technology, LTD's products.

MosChip Semiconductor Technology, LTD warrants the performance of its products to the current specifications in effect at the time of sale per MosChip Semiconductor Technology, LTD standard limited warranty. MosChip Semiconductor Technology, LTD imposes testing and quality control processes that it deems necessary to support this warranty. The customer should be aware that not all parameters are 100% tested for each device. Sufficient testing is done to ensure product reliability in accordance with MosChip Semiconductor Technology LTD's warranty.

MosChip Semiconductor Technology, LTD believes the information in this document to be accurate and reliable but assumes no responsibility for any errors or omissions that may have occurred in its generation or printing. The information contained herein is subject to change without notice and no responsibility is assumed by MosChip Semiconductor Technology, LTD to update or keep current the information contained in this document, nor for its use or for infringement of patent or other rights of third parties. MosChip Semiconductor Technology, LTD does not warrant or represent that any license, either expressed or implied, is granted to the user.

Page 38 Rev. 1.2

USB-2.0 to Two Serial Ports

Revision History

Revision	Changes	Date
0.1	Preliminary Release.	19-May-2006
0.2	Switched to new Page-1 Layout.	30-May-2006
0.3	Corrected MaxPacketSize, Endpoint Numbers, Package dimensions.	31-May-2006
0.4	Corrected Wlength fields in "Set Application Vendor Specific Command".	05-Jun-2006
1.0	Removed Preliminary Notice. Made change throughout to reflect one GPIO port instead of two. Added Driver Support entries on page 1. Made bits 2 and 3 of the MCR register reserved. Made bit 5 of the Mode register reserved. Replaced Raid_reg1 with Rx_sampling_reg1 throughout document. Modified product ID value in EEPROM Content Layout table. Modified description of bits 3, 2, and 1 of Device Configuration register 0. Made bit 6 of Device Configuration register 2 reserved and added note.	28-Aug-2006
1.1	Clarified Linux Kernel support in Features. Deleted Windows CE5.0 and Vista release dates. Verified state of all Reserved field default values.	16-Sept-2006
1.2	Updated Absolute Maximum Rating table Deleted Leakage Current table Updated Operating Conditions table Updated 3.3V DC Characteristics table Updated 5V DC Characteristics table Removed dimensions in Inches from Package Dimensions table Removed 'Confidential' notice from all pages	5-August-2007