

USB 1.1 to Single UART and Printer Port

Features

- USB Specification 1.1 Compliant
- Single 5V Operation
- Low Power
- On-Chip Voltage Regulator
- Single Serial Port
 - Supports up to 920 Kbps Serial Data Rate
 - o Supports 5, 6, 7, & 8-bit Data Widths
 - o Supports 1, 1.5, & 2 Stop Bits
 - Supports Even, Odd, Mark, Space and None parities
- Single Printer Port Interface
- Internal Power-On Reset
- 2KV In-Circuit ESD protection for lower cost of external components
- Available in 48-Pin QFP Package

Applications

- Monitoring Equipment
- High-Speed Modems
- Printer Server
- Serial Networking
- Printer Interface

Application Note

• AN-7715

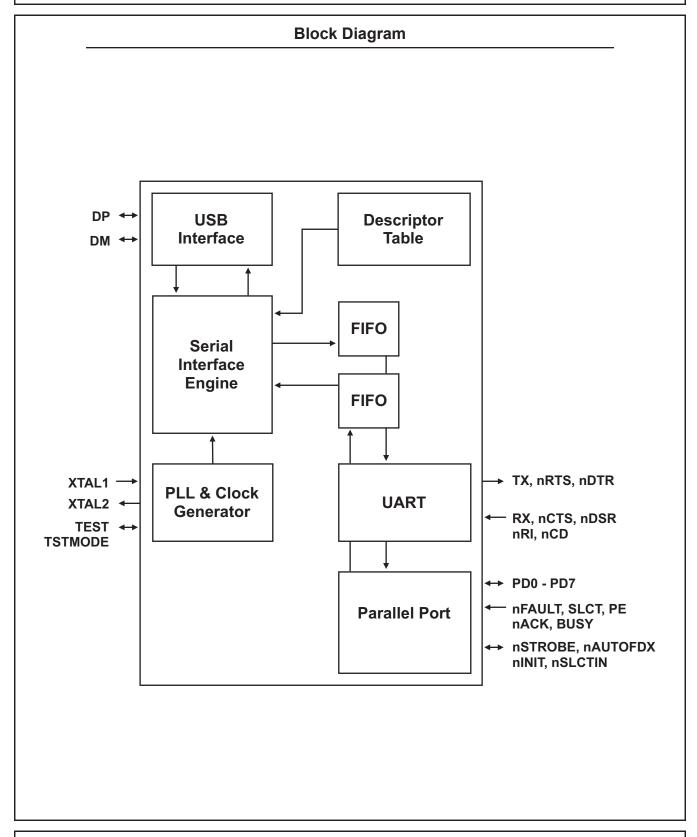
Evaluation Board

MCS7715-EVB

General Description

The MCS7715 controller provides bridging between the Universal Serial Bus (USB) port, an enhanced UART, and a Parallel Printer port. This device contains all the necessary logic to communicate with the host computer via the USB bus. It supports Printers with hardware accelerated SPP mode.

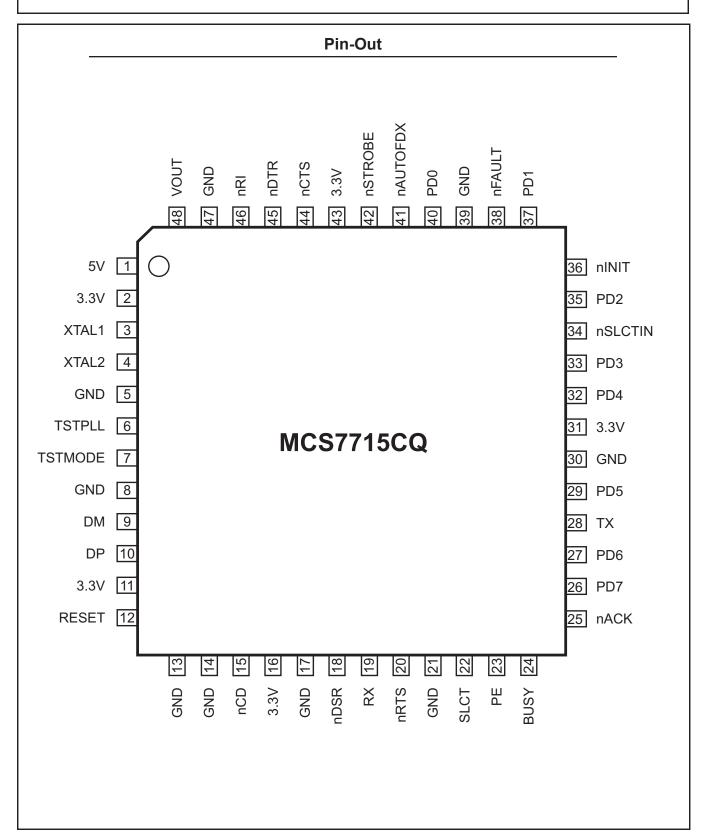
The MCS7715 contains a 3.3V regulator, operates in Bus-Powered mode, and has a reduced frequency (6 MHz) crystal oscillator.


This combination of features allows significant cost savings in system design along with straightforward implementation of Serial Port and Parallel Port functionality into PC peripherals using the host's USB port.

Ordering Information					
Commercial Grade (0° C to +70° C)					
MCS7715CQ 48-QFP Standard					
MCS7715CQ-GR 48-QFP RoHS					

MosChip Semiconductor ◆ 3335 Kifer Rd, Santa Clara, CA 95051 ◆ Tel (408) 737-7141 ◆ Fax (408) 737-7708

USB 1.1 to Single UART and Printer Port



Page 2 Rev. 1.6

USB 1.1 to Single UART and Printer Port

USB 1.1 to Single UART and Printer Port

Pin Assignments

Pin Name	Pin	Туре	Description			
XTAL1	3	I	Crystal Oscillator input, or External Clock input pin (6 MHz). This signal input is used in conjunction with XTAL2 to form a feedback circuit for the internal timing. Two (10 pF) external capacitors connected from each side of the crystal to GND are required to form a Crystal Oscillator.			
XTAL2	4	0	Crystal Oscillator output. See XTAL1 description.			
TSTPLL	6	I	Test Mode (active low, internal pull-up). When this pin is tied to GND, the internal PLL is bypassed and an external 48 MHz clock is used as the reference clock.			
TSTMODE	7	I	Internal Test Mode (active low, internal pull-up). When this pin is tied to GND, the Internal Test Mode is enabled.			
DM	9	I/O	Upstream USB port differential Data Minus (D-), analog.			
DP	10	I/O	Upstream USB port differential Data Plus (D+), analog.			
RESET	12	I	System Reset (active high). Resets all internal registers, sequencers, and signals to a consistent state. Connect to GND to use the internal Power-On-Reset circuit.			
nCD	15	I	Carrier-Detect signal. When low, this indicates that the modem or data set has detected the Data Carrier. nCD has no effect on the transmitter.			
nDSR	18	I	Data-Set-Ready signal. When low, this indicates that the modem or data set is ready to establish a communication link. nDSR has no effect on the transmitter or receiver.			
RX	19	I	UART Serial Data Input.			
nRTS	20	0	Request-To-Send signal. It is set high (inactive) after a hardware reset or during internal loopback mode. When low, this indicates that the UART is ready to exchange data.			
SLCT	22	I	Peripheral/Printer Selected (internal pull-up). This pin is set high by the peripheral/printer when it is selected.			
PE	23	I	Paper Empty (internal pull-up). This pin is set high by the peripheral/printer when printer paper is empty.			
BUSY	24	I	Peripheral/Printer Busy (internal pull-up). This pin is set high by the peripheral/printer when the printer or peripheral is not ready to accept data.			
nACK	25	I	Peripheral/Printer data Acknowledge (internal pull-up). This pin is set low by the peripheral/printer to indicate a successful data transfer has taken place.			
PD7	26	I/O	Parallel printer port Data bit 7.			

Page 4 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Pin Name	Pin	Туре	Description	
PD6	27	I/O	Parallel printer port Data bit 6.	
TX	28	0	UART Serial Data Output.	
PD5	29	I/O	Parallel printer port Data bit 5.	
PD4	32	I/O	Parallel printer port Data bit 4.	
PD3	33	I/O	Parallel printer port Data bit 3.	
nSLCTIN	34	I/O	Peripheral/Printer Select (open-drain). Selects the peripheral/printer when it is set low.	
PD2	35	I/O	Parallel printer port Data bit 2.	
nINIT	36	I/O	Initialize the peripheral/printer (open drain). When set low, the peripheral/printer starts its initialization routine.	
PD1	37	I/O	Parallel printer port Data bit 1.	
nFAULT	38	I	Peripheral/Printer data error (internal pull-up). This pin is set low by the peripheral/printer during an error condition.	
PD0	40	I/O	Parallel printer port Data bit 0.	
nAUTOFDX	41	I/O	Peripheral/Printer Auto Feed (open-drain). Continuous autofed paper is selected when this pin is set low.	
nSTROBE	42	I/O	Peripheral/Printer data Strobe (open drain). Data is latched into the peripheral/printer when the nSTROBE is low.	
nCTS	44	I	Clear-To-Send signal. When low, this indicates that the modem or data set is ready to exchange data. nCTS has no effect on the transmitter.	
nDTR	45	0	Data-Terminal-Ready signal. It is set high (inactive) after a hardware reset or during internal loopback mode. When low, this output indicates to the modem or data set that the UART is ready to establish a communication link. nDTR has no effect on the transmitter or receiver.	
nRI	46	I	Ring-In detect signal.	
VOUT	48	PWR	+3.3V Voltage Regulator output.	
GND	5, 8, 13, 14, 17,21, 30, 39, 47	PWR	Power and Signal Ground.	
3.3V	2, 11, 16, 31, 43	PWR	Device Supply Inputs. All should be connected to the VOUT pin. VOUT voltage is gated by RESET.	
5V	1	PWR	Main Power Input. Connect to USB VBUS or local VDD.	

Note: All names with "n" prefix are active low.

USB 1.1 to Single UART and Printer Port

USB Description

Analog Transceivers

The on-chip transceivers are connected directly to USB cables through external series resistors. They transmit and receive serial data at both full-speed (12Mbit/s) and low-speed (1.5Mbit/s) data rates. Slew rates are automatically adjusted according to the speed of the device connected and lie within the range defined in the *USB Specification Rev. 1.1*.

Serial Interface Engine

This engine implements the complete USB protocol layer including: parallel /serial conversion, synchronization pattern recognition, CRC checking/generation, bit (de)stuffing, packet identifier (PID) verification/generation, address recognition and handshake evaluation/generation.

Bit Clock Recovery

The bit clock recovery circuit recovers the clock from the incoming USB data stream using 4x over sampling. It is able to track in the presence of jitter and frequency drift as specified by the USB Specification Rev. 1.1.

3.3V Source

A 5V to 3.3V DC-DC regulator is integral to the chip relieving the need for a +3.3V source. It supplies the analog transceivers and internal logic and can be used to supply the $1.5k\Omega$ pull-up resistor on the DP line of the upstream connection.

PLL Clock Multiplier

An integral Phase-Locked Loop (PLL) performs 6 to 48MHz clock multiplication and requires no external components except the crystal. This allows for the use of low-cost 6MHz crystals which reduce high frequency radiated Electro-Magnetic Interference (EMI).

Page 6 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Host Requests

All standard USB requests from the host are handled via Control Endpoint-0. The Control Endpoint can handle a maximum of 8 Bytes per transfer.

This table shows the supported standard USB requests.

Note: the USB data transmission order is Least Significant Bit (LSB) first. In the following tables Multi-Byte variables are displayed least significant Byte first.

Standard USB Requests

	bmRequestType	bRequest	wValue	wIndex	wLength	
RequestName	Byte 0 [7:0]	Byte 1	Byte 2, 3	Byte 4, 5	Byte 6, 7	Data
	(bin)	(hex)	(hex)	(hex)	(hex)	
Address						
Set Address	X000 0000	05	address**	00,00	00,00	none
Configuration						
Get Configuration	1000 0000	08	00,00	00,00	01,00	Configuration Value = 0x01
Set Configuration-0	X000 0000	09	00,00	00,00	00,00	none
Set Configuration-1	X000 0000	09	01,00	00,00	00,00	none
Descriptor						
Get Configuration Descriptor	1000 0000	06	00,02	00,00	length***	Configuration, Interface, and Endpoint Descriptors
Get Device Descriptor	1000 0000	06	00,01	00,00	length***	Device Descriptor
Feature						
Clear Feature (REMOTE_WAKEUP)	X000 0000	01	01,00	00,00	00,00	none
Clear Endpoint (1) Feature (HALT/STALL)	X000 0010	01	00,00	81,00	00,00	none
Status						
Get Device Status	1000 0000	00	00,00	00,00	02,00	Device Status
Get Interface Status	1000 0001	00	00,00	00,00	02,00	zero
Get Endpoint (0) Status	1000 0010	00	00,00	00/80, 00*	02,00	Endpoint-0 Status
Get Endpoint (1) Status	1000 0010	00	00,00	81,00	02,00	Endpoint-1 Status

^{*} The MSB specifies endpoint direction: 0 = OUT, 1 = IN. Either value is accepted.

Standard USB Descriptors

These are the supported Standard USB Descriptors:

- Device
- Configuration
- Interface
- Endpoint

^{**} Device Address: 0 to 127

^{***} Returned Value (in Bytes)

USB 1.1 to Single UART and Printer Port

Device Descriptors

Offset (Bytes)	Field Name	Size (Bytes)	Value (hex)	Comments
0	bLength	1	12	Descriptor Length = 18 Bytes
1	bDescriptorType	1	01	Type = DEVICE
2	bcdUSB	2	10,01	USB Specification Rev-1.1
4	bDeviceClass	1	FF	Vendor Class
5	bDeviceSubClass	1	00	n/a
6	bDeviceProtocol	1	FF	Vendor Class
7	bMaxPacketSize0	1	08	Packet Size = 8 Bytes
8	idVendor	2	10,97	the MosChip Vendor-ID (9710)
10	idProduct	2	15,77	the MCS7715 Product-ID
12	bcdDevice	2	00,01	the silicon revision (1.0)
14	iManufacturer	1	00	no manufacturer string
15	iProduct	1	00	no product string
16	iSerialNumber	1	00	no serial number string
17	bNumConfigurations	1	01	one configuration

Configuration Descriptors

	Comiguration Descriptors						
Offset (Bytes)	Field Name	Size (Bytes)	Value (hex)	Comments			
0	bLength	1	09	Descriptor Length = 9 Bytes			
1	bDescriptorType	1	02	Type = CONFIGURATION			
2	wTotalLength	2	35,00	Combined Length of Configuration, + Interface, + all Endpoint Descriptors (53 Bytes)			
4	bNumInterfaces	1	01	one Interface			
5	bConfiguration	1	01	Configuration Value = 1			
6	iConfiguration	1	00	no configuration string			
7	bmAttributes	1	A0	Bus-Powered with remote wake-up			
8	MaxPower	1	32	100mA default			

Interface Descriptors

Offset (Bytes)	Field Name	Size (Bytes)	Value (hex)	Comments
0	bLength	1	09	Descriptor Length = 9 Bytes
1	bDescriptorType	1	04	Type = INTERFACE
2	bInterfaceNumber	1	00	n/a
3	bAlternateSetting	1	00	no alternate setting
4	bNumEndpoints	1	05	five Endpoints
5	bInterfaceClass	1	FF	Vendor Class
6	bInterfaceSubClass	1	00	n/a
7	bInterfaceProtocol	1	FF	Vendor Class
8	bInterface	1	00	no interface string

Page 8 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Endpoint Descriptions

There are five end points apart from the Control Endpoint

Endpoint	Туре	Function	Size
0	Control Endpoint	Default Functionality	
1	Bulk-In	Parallel Printer Port	32Bytes
2	Bulk-Out	Parallel Printer Port	32 Bytes
3	Bulk-In	Serial Port	64 Bytes
4	Bulk-Out	Serial Port	32 Bytes
5	Interrupt	Status Endpoint	4 Bytes

Endpoint Descriptor #1 Bulk-In (Parallel Port)

Offset (Bytes)	Field Name	Size (Bytes)	Value (hex)	Comments
0	bLength	1	07	Descriptor Length = 7 Bytes
1	bDescriptorType	1	05	Type = ENDPOINT
2	bEndpointAddress	1	81	Endpoint-1, direction: IN
3	bmAddress	1	02	Bulk Endpoint
4	wMaxPacketSize	2	20,00	Packet Size = 32 Bytes
6	bInterval	1	FF	Polling Interval (255mS)

Endpoint Descriptor #2 Bulk-Out (Parallel Port)

Offset (Bytes)	Field Name	Size (Bytes)	Value (hex)	Comments
0	bLength	1	07	Descriptor Length = 7 Bytes
1	bDescriptorType	1	05	Type = ENDPOINT
2	bEndpointAddress	1	02	Endpoint-2, direction: OUT
3	bmAddress	1	02	Bulk Endpoint
4	wMaxPacketSize	2	20,00	Packet Size = 32 Bytes
6	bInterval	1	FF	

Endpoint Descriptor #3 Bulk-In (Serial Port)

Offset (Bytes)	Field Name	Size (Bytes)	Value (hex)	Comments
0	bLength	1	07	Descriptor Length = 7 Bytes
1	bDescriptorType	1	05	Type = ENDPOINT
2	bEndpointAddress	1	83	Endpoint-3, direction: IN
3	bmAddress	1	02	Bulk Endpoint
4	wMaxPacketSize	2	40,00	Packet Size = 64 Bytes
6	bInterval	1	01	Polling Interval (1mS)

Endpoint Descriptor #4 Bulk-Out (Serial Port)

Offset (Bytes)	Field Name	Size (Bytes)	Value (hex)	Comments
0	bLength	1	07	Descriptor Length = 7 Bytes
1	bDescriptorType	1	05	Type = ENDPOINT
2	bEndpointAddress	1	04	Endpoint-4, direction: OUT
3	bmAddress	1	02	Bulk Endpoint
4	wMaxPacketSize	2	20,00	Packet Size = 32 Bytes
6	bInterval	1	FF	-

Page 10 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Endpoint Descriptor #5 Status Endpoint

Offset (Bytes)	Field Name	Size (Bytes)	Value (hex)	Comments
0	bLength	1	07	Descriptor Length = 7 Bytes
1	1 bDescriptorType		05	Type = ENDPOINT
2	bEndpointAddress	1	87	Endpoint-7, direction: IN
3	bmAddress	1	03	Interrupt Endpoint
4 wMaxPacketSize		2	04,00	Packet Size = 4 Bytes
6	bInterval	1	01	Polling Interval (1mS)

Status Endpoint:

The Status Endpoint returns 4 Bytes every 1 millisecond. These four Bytes are status information of the Parallel Printer port and the Serial port.

- Byte-1: Interrupt Identification Register of the Serial port (IIR)
- Byte-2: Reserved (Unused)
- Byte-3: Device Status Register of the Parallel Printer port (DSR)
- Byte-4: FIFO status of both the Parallel Printer port and the Serial port.

Description for Byte-4 of Status Endpoint.

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Reserved	Reserved	SerInFifo Status	SerOutFifo Status	ParOutFifo Empty	ParOutFifo Full	ParInFifo Empty	ParInFifo Full

Bit	Description					
ParInFifo Full	1 Indicates the Bulk-In FIFO is full.	(Parallel Printer Port)				
ParInFifo Empty	(Parallel Printer Port)					
ParOutFifo Full	1 Indicates the Bulk-Out FIFO is full.	(Parallel Printer Port)				
ParOutFifo Empty	1 Indicates the Bulk-Out FIFO is empty.	(Parallel Printer Port)				
SerOutFifo Status	1 Indicates the Bulk-Out FIFO is empty.	(Carial Dart)				
Serourilo Status	0 indicates the Bulk-Out FIFO is filled with Tx Data.	(Serial Port)				
Carla Fifa Status	1 indicates the Bulk-In FIFO is filled with Rx Data.	(Carial Dart)				
SerInFifo Status	0 indicates the Bulk-In FIFO is empty.	(Serial Port)				

USB 1.1 to Single UART and Printer Port

USB Vendor Specific Commands:

The purpose of the vendor commands is to configure the Serial and Parallel Printer ports. The following tables provide information for the Vendor Specific Commands.

PARALLEL PRINTER PORT

Get Application Vendor Specific Command (Parallel Printer Port)

				1	1
BmrequestType	Brequest	Wvalue	Windex	Wlength	Register Name
0xC0	0x0D	0x01 <u>xx</u>	0x0000	0x0001	PP_DPR
0xC0	0x0D	0x01 <u>xx</u>	0x0001	0x0001	PP_DSR
0xC0	0x0D	0x01 <u>xx</u>	0x0002	0x0001	PP_DCR
0xC0	0x0D	0x01 <u>xx</u>	0x0008	0x0001	PP_C_FIFO
0xC0	0x0D	0x01 <u>xx</u>	0x0008	0x0001	PP_CONF_A
0xC0	0x0D	0x01 <u>xx</u>	0x0009	0x0001	PP_CONF_B
0xC0	0x0D	0x01 <i>xx</i>	0x000A	0x0001	PP ECR

Set Application Vendor Specific Command (Parallel Printer Port)

BmrequestType	Brequest	Wvalue	Windex	Wlength	Register Name
0x40	0x0E	0x01 <u>xx</u>	0x0000	0x0000	PP_DPR
0x40	0x0E	0x01 <u>xx</u>	0x0001	0x0000	PP_DSR
0x40	0x0E	0x01 <u>xx</u>	0x0002	0x0000	PP_DCR
0x40	0x0E	0x01 <u>xx</u>	0x0008	0x0000	PP_C_FIFO
0x40	0x0E	0x01 <u>xx</u>	0x0008	0x0000	PP_CONF_A
0x40	0x0E	0x01 <u>xx</u>	0x0009	0x0000	PP_CONF_B
0x40	0x0E	0x01 <u>xx</u>	0x000A	0x0000	PP_ECR

SERIAL PORT

Get Application Vendor Specific Command (Serial Port)

BmrequestType	Brequest	Wvalue	Windex	Wlength	Register Name
0xC0	0x0D	0x02 <u>xx</u>	0x0000	0x0001	SP_RHR
0xC0	0x0D	0x02 <u>xx</u>	0x0001	0x0001	SP_IER
0xC0	0x0D	0x02 <u>xx</u>	0x0002	0x0001	SP_IIR
0xC0	0x0D	0x02 <u>xx</u>	0x0003	0x0001	SP_LCR
0xC0	0x0D	0x02 <u>xx</u>	0x0004	0x0001	SP_MCR
0xC0	0x0D	0x02 <u>xx</u>	0x0005	0x0001	SP_LSR
0xC0	0x0D	0x02 <u>xx</u>	0x0006	0x0001	SP_MSR
0xC0	0x0D	0x02 <u>xx</u>	0x0007	0x0001	SP_SPR
0xC0	0x0D	0x02 <u>xx</u>	0x0000	0x0001	SP_DLL
0xC0	0x0D	0x02 <u>xx</u>	0x0001	0x0001	SP_DLM

Set Application Vendor Specific Command (Serial Port)

BmrequestType	Brequest	Wvalue	Windex	Wlength	Register Name
0x40	0x0E	0x02 <u>xx</u>	0x0000	0x0000	SP_THR
0x40	0x0E	0x02 <u>xx</u>	0x0001	0x0000	SP_IER
0x40	0x0E	0x02 <u>xx</u>	0x0002	0x0000	SP_FCR
0x40	0x0E	0x02 <u>xx</u>	0x0003	0x0000	SP_LCR
0x40	0x0E	0x02 <u>xx</u>	0x0004	0x0000	SP_MCR
0x40	0x0E	0x02 <u>xx</u>	0x0005	0x0000	SP_LSR
0x40	0x0E	0x02 <u>xx</u>	0x0006	0x0000	SP_MSR
0x40	0x0E	0x02 <u>xx</u>	0x0007	0x0000	SP_SPR
0x40	0x0E	0x02 <u>xx</u>	0x0000	0x0000	SP_DLL
0x40	0x0E	0x02 <u>xx</u>	0x0001	0x0000	SP_DLM

Page 12 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Vendor Specific Command Parameters

Brequest: specifies whether to Read or Write 0x0E = write to the application register.

0x0D = read from the application register.

Wvalue: Specifies the Application Number.

0x0100 is the application number for the Parallel Printer port

0x0200 is the application number for the Serial port

<u>xx</u> specifies the Byte value to be written into the register.

0x0000 is the application number provided for accessing the other control registers to control the Parallel Printer port and Serial port (i.e. Enabling the Higher Baud Rates, enabling the Auto

hardware Flow Control, Setting the clock frequency, etc.)

Windex: Is the offset of the register to Read/Write.

Wlength: Is the length of the data we are going to read or write.

USB 1.1 to Single UART and Printer Port

UART Register Set:

The UART has 10 registers. Mapping is dependent on the Line Control Register (LCR).

Register Name	Offset	R/W	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	
THR	0	W		Dat	a to be trar	nsmitted (Tr	ansmitting Holding Register)				
RHR	0	R			Data to be i	received (Re	eceiver Ho	lding Regi	ster)		
						Sleep	Modem	Rx Stat	THRE	RxRdy	
IER	1	R/W		Reserv	red	Mode	Interrupt	Interrupt	Interrupt	Interrupt	
						IVIOGE	Mask	Mask	Mask	Mask	
FCR	2	W	R	HR	Posc	erved	Reserved	Flush	Flush	FIFO	
FCK		VV	Trigge	er Level	Nese	erveu	Reserved	THR	RHR	Enable	
ISR	2	R	FIFOs Reserved Interrupt Priority				city	Interrupt			
ISK		I.	Ena	abled	Nese	erveu	IIILE	Tupt Filo	Pending		
LCR	3	R/W	DLE	Tx	Force	Odd/Even	Parity	Stop	Data I	Data Length	
LOIX	3	17/ / /	DLL	Break	Parity	Parity	Enable	Bits	Dala L		
					RTS/CTS						
MCR	4	R/W	Res	erved	Flow	Loop	Unu	sed	RTS	DTR	
					Control						
LSR	5	R	Data	Tx	THR	Rx	Framing	Parity	Overrun	RxRdy	
LSK	5		Error	Empty	Empty	Break	Error	Error	Overruit	RXRUY	
MSR	6	R	DCD	RI	DSR	CTS	Delta	TERI	Delta	Delta	
IVIOR	U	L/	טטט	KI	DSK	013	DCD	IERI	DSR	CTS	
SPR	7	R/W		Scratch Pad Register							

Additional Standard Registers - these are accessed when LCR[7] = 1

DLL	0	R/W	Divisor Latch bits[7:0]
DLM	1	R/W	Divisor Latch bits[15:8]

Register: THR

Description: Data to be transmitted

Offset: 000 Permissions: Write

Access Condition: LCR[7] =0, only write condition can access this register

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
			Data to be	transmitted			

Register: RHR

Description: Data to be received

Offset: 000 Permissions: Read

Access Condition: LCR[7] =0, only read condition can access this register

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
			Data to be	e received			

Page 14 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Interrupt Enable Register:

Serial channel interrupts are enabled using the Interrupt Enable Register (IER).

Register: IER

Description: Interrupt Enable Register

Offset: 001

Permissions: Read/Write

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	Decembed		Sleep	Modem	Rx Stat	THRE	RxRdy
	Reserved		Mode	Interrupt Mask	Interrupt Mask	Interrupt Mask	Interrupt Mask

Bit	Name	Description
0	RxRdy Interrupt Mask	Logic 0 = Disable the Receiver Ready Interrupt Logic 1 = Enable the Receiver Ready Interrupt
1	THRE Interrupt Mask	Logic 0 = Disable the Transmitter Ready Interrupt Logic 1 = Enable the Transmitter Ready Interrupt
2	Rx Stat Interrupt Mask	Logic 0 = Disable the Receiver Status Interrupt (Normal Mode) Logic 1 = Enable the Receiver Status Interrupt (Normal Mode)
3	Modem Interrupt Mask	Logic 0 = Disable the Modem Status Interrupt Logic 1 = Enable the Modem Status Interrupt
4	Sleep Mode	Logic 0 = Disable Sleep-Mode Logic 1 = Enable Sleep-Mode (the internal clock of the channel is switched off)
5	Reserved	Reserved
6	Reserved	Reserved
7	Reserved	Reserved

FIFO Control Register:

The FCR controls the UART behavior in various modes.

Register: FCR

Description: FIFO Control Register

Offset: 010 Permissions: Write

Bit[7] Bit	[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
RHR		Reserved		Decemined	Flush	Flush	Enable
Trigger Leve	l			Reserved	THR	RHR	FIFO

Bit	Name	Description
0	Enable FIFO Mode	Logic 0 = Byte Mode Logic 1 = FIFO Mode
1	Flush RHR	Logic 0 = No change Logic 1 = Flushes the contents of RHR. This is operative only in FIFO Mode. The RHR is automatically flushed whenever changing between Byte Mode and FIFO Mode. The bit will return to zero after clearing the FIFOs.
2	Flush THR	Logic 0 = No change Logic 1 = Flushes the content of the THR, in the same manner as FCR[1] does the RHR
3	Reserved	Reserved
5, 4	Reserved	Reserved
7, 6	RHR Trigger Level	See the table below.

FCR[7:6] RHR Trigger Level:

In 550 mode, the receiver FIFO trigger levels are defined using FCR[7:6]. The interrupt trigger level & flow control trigger level where appropriate are defined by L2 in the table below. L1 defines lower flow control trigger levels that introduce a hysteresis element in hardware RTS/CTS flow control.

In Byte Mode (450 Mode) the trigger levels are all set to 1.

FCR[7:6]	550 I (FIFO	
	<u>L1</u>	<u>L2</u>
2'b00	1	1
2'b01	1	4
2'b10	1	8
2'b11	1	14

Page 16 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Interrupt Status Register:

The source of the highest priority interrupt pending is indicated by the contents of the Interrupt Status Register (ISR). There are five sources of interrupts, and four levels of priority (1 is the highest) as tabulated below.

Level	Interrupt Source	ISR[5:0]
-	No interrupt pending	6'b000001
1	Receiver Status Error	6'b000110
1	or address bit detected in 9-bit mode	0 0000110
2a	Receiver Data Available	6'b000100
2b	Receiver Time Out	6'b001100
3	Transmitter THR Empty	6'b000010
4	Modem Status Change	6'b000000

Note: ISR[0] indicates whether any interrupt is pending

Register: ISR

Description: Interrupt Status Register

Offset: 010 Permissions: Read

L	Bit[7] Bit[6]		Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
ſ	FIFOs		Interrupt Priority		Interrupt Priority			Interrupt
	Enabled		(Enhanced Mode)			(All Modes)		Pending

Interrupt Descriptions:

Level1: Receiver Status Error

Normal Mode: This interrupt is active whenever any of the LSR[1], LSR[2], LSR[3] or LSR[4] are set. These flags are cleared following a read of the LSR. The interrupt is masked with IER[2].

Level 2a: Receiver Data Available

The interrupt is active whenever the receiver FIFO level is above the interrupt trigger level.

Level 2b: Receiver Time-Out

A receiver time out event, (which may cause an interrupt) will occur when all of the following conditions are true:

- The UART is in the FIFO Mode.
- There is data in the RHR
- There has been no read of the RHR for a period of time greater than the timeout period. The timeout period of time is greater than the time out period. The time out period is four times the character period (including start & stop bits) measured from the centre of the first stop bit of the first data item received.

Reading the first data item in RHR clears this interrupt.

Level 3: Transmitter Empty

This interrupt is set when the transmit FIFO level falls below the trigger level. It is cleared on the ISR read to Level-3 interrupt or by writing more data to the THR so that the trigger level is exceeded.

Level 4: Modem Change

This interrupt is set by the modem change flag (MSR[0], MSR[1], MSR[2] or MSR[3]) becoming active due to changes in the input modem lines. This interrupt is cleared following the read of the MSR register.

Line Control Register:

The LCR specifies the data format that is common to both transmitter and receiver.

Register: LCR

Description: Line Control Register

Offset: 011

Permissions: Read/Write Access Condition: LCR[7] =0

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
DLE	Tx	Force	Odd/Even	Parity	Number of	Data	а
DLE	Break	Parity	Parity	Enable	Stop Bits	Leng	ıth

LCR[1:0]: Determines the data length of serial characters.

LCR[2]: Defines the number of stop bits per serial character.

LCR[5:3]: The selected parity type will be generated during transmission and checked by the receiver, which may produce a parity error as a result. In 9-bit mode parity is disabled

and LCR[5:3] are ignored.

LCR[6]: Transmission Break

Logic 0: Break transmission disabled
Logic 1: Forces the transmitter data
output (SOUT) low to alert the
communications channel. It is the
responsibility of the software driver
to ensure that the break duration is
longer than the character period for
it to be recognized remotely as a

break rather than data.

LCR[7]: Divisor Latch Enable

Logic 0: Accesses to DLL and DLM registers disabled

Logic 1: Accesses to DLL and DLM registers enabled

LCR[1:0]	Data Length
2'b00	5 bits
2'b01	6 bits
2'b10	7 bits
2'b11	8 bits

LCR[2]	Data Length	Stop Bits
0	5,6,7,8	1
1	5	1.5
1	6,7,8	2

LCR[5:3]	Parity Type
3'bxx0	No parity
3'b001	Odd parity
3'b011	Even parity
3'b101	Parity bit forced to 1
3'b111	Parity bit forced to 0

Page 18 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Line Status Register:

This register provides the status of the data transfer to the CPU.

Register: LSR

Description: Line Status Register

Offset: 101 Permissions: Read

Access Condition: LCR[7] =0, ACR[6] = 0

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Data	Tx	THR	Rx	Framing	Parity	Overrun	DyDdy
Error	Empty	Empty	Break	Error	Error	Overrun	RxRdy

Bit	Name	Description
0	RHR	Logic 0 = RHR is empty
U	Data Available	Logic 1 = RHR is not empty, data is available to be read
		Logic 0 = No overrun error
1	RHR	Logic 1 = Data was received when the RHR was full, An overrun
'	Overrun	has occurred. The error is flagged when the data would
		normally have been transferred to the RHR.
	Received Data	Logic 0 = No parity error in received data, or 9th bit is "0" in 9-bit
2	Parity Error	mode.
	Failty Elloi	Logic 1 = Data has been received that did not have correct parity
3	Received Data	Logic 0 = No framing error
	Framing Error	Logic 1 = data has been received with an invalid stop bit.
4	Received Break	Logic 0 = No receiver break error
	Error	Logic 1 = the receiver received a break error
5	THR	Logic 0 = Transmitter FIFO is not empty
	Empty	Logic 1 = Transmitter FIFO is empty
	Transmitter & THR	Logic 0 = The transmitter is not idle
6	Empty	Logic 1 = THR is empty & the transmitter has completed the character
	шпріу	in the shift register and is in the idle mode
		Logic 0 = Either there are no receiver data errors in the FIFO, or it
7	Receiver Data	was cleared by earlier read of LSR
'	Error	Logic 1 = At least one parity error, framing error or break indication in
		the FIFO.

Note: A break condition occurs when the SIN line goes low and stays low through out the start, data, parity & first stop bits. One zero character associated with break flag set will be transferred to the RHR and the receiver will then wait until the SIN line returns high. The LSR[4] flag break flag is set when this data item gets to the top of the RHR and it is cleared following the read to the LSR.

Modem Control Register:

Register: MCR

Description: Modem Control Register

Offset: 100

Permissions: Read/Write

Bit[7] Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	
550 Mode							
Unused	CTS/RTS Flow Control	Internal Loop Back Enable	Out2 (Interrupt Enable)	Out1	RTS	DTR	

Bit	Name	Description
0	DTR	Logic 0 = Forces DTR# output to inactive (high) Logic 1 = Forces DTR# output to active (low)
1	RTS	Logic 0 = Forces RTS# output to inactive (high) Logic 1 = Forces RTS# output to active (low)
2	Out1	Unused
3	Out2	Unused
4	Internal Loop Back Enable	Logic 0 = Normal operating mode Logic 1 = Enable Local Loop-Back Mode
5	CTS/RTS flow control	Logic 0 = CTS/RTS flow control Disabled in 550-Mode Logic 1 = CTS/RTS flow control Enabled in 550-Mode
6	Unused	Unused
7	Unused	Unused

Page 20 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Modem Status Register:

This register provides the status of the modem control lines to CPU.

Register: MSR

Description: Modem Status Register

Offset: 110 Permissions: Read

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
DCD	RI	DSR	CTS	Delta DCD	Trailing Edge RI	Delta DSR	Delta CTS

Bit	Name	Description
0	Dalta OTO	Logic 0 = no change in the CTS signal
0	Delta CTS	Logic 1 = indicates that the CTS input has changed since the last time the MSR was read
		Logic 0 = no change in the DSR signal
1	Delta DSR	Logic 1 = indicates that the DSR input has changed since the last time the
		MSR was read
	Trailing Edge	Logic 0 = no change in the RI signal
2	RI	Logic 1 = indicates that the RI input has changed from low to high since the
		last time the MSR was read
		Logic 0 = no change in the DCD signal
3	Delta DCD	Logic 1 = indicates that the DCD input has changed since the last time the
		MSR was read
4	стѕ	Logic 0 = CTS# line is 1
	013	Logic 1 = CTS# line is 0
5	DSR	Logic 0 = DSR# line is 1
	DOIN	Logic 1 = DSR# line is 0
6	RI	Logic 0 = RI# line is 1
	IXI	Logic 1 = RI# line is 0
7	DCD	Logic 0 = DCD# line is 1
	DCD	Logic 1 = DCD# line is 0

Scratch Pad Register:

The scratch pad register does not effect operation of the rest of the UART in any way and can be used for the temporary data storage.

Register: SPR

Description: Scratch Pad Register

Offset: 111
Permissions: Read/Write

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
			Scratch Pa	ad Register			

USB 1.1 to Single UART and Printer Port

Divisor Latch Registers:

The divisor latch registers (DLL & DLM) are used to program the baud rate divisor. This is a value between 1 and 65535 by which the input clock is divided in order to generate serial Baud Rates. After a hardware Reset, the Baud Rate used by the transmitter & receiver is given by:

Baud Rate = Input Clock / 16 * Divisor

where divisor is given by: (256 * DLM) + DLL

Note: More flexible Baud Rate generation options are also available. These require the use of Advanced Features in other registers however.

Register: DLL

Description: Divisor Latch Register

Offset: 000

Permissions: Read/Write

Access Condition: LCR[7] =1, Address = 000

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]		
Least significant Byte for divisor latch									

Register: DLM

Description: Divisor Latch Register

Offset: 001

Permissions: Read/Write

Access Condition: LCR[7] =1, Address = 001

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
		Most	significant B	vte for diviso	r latch		

Baud Rate Generator Programming Table

(Hex)	(Hex)
00	01
00	02
00	03
00	06
00	0C
00	30
00	60
00	C0
01	80
03	00
09	00
	(Hex) 00 00 00 00 00 00 00 00 00 01 03

ו וח

Page 22 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Master Reset Values

Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
RHR	0	0	0	0	0	0	0	0
THR	Х	Х	Х	Х	Х	Х	Х	Х
IER	0	0	0	0	0	0	0	0
FCR	0	0	0	0	0	0	0	0
IIR	0	0	0	0	0	0	0	1
LCR	0	0	0	0	0	0	0	0
MCR	0	0	0	0	0	0	0	0
LSR	0	1	1	0	0	0	0	0
MSR	Х	Х	Х	Х	0	0	0	0
SPR	0	0	0	0	0	0	0	0

USB 1.1 to Single UART and Printer Port

Parallel Printer Port Register Descriptions

Data Register

The Data Register is cleared at initialization by RESET. During a write operation, the contents of this register are buffered and output onto the PD7-PD0 ports. During a read operation PD7-PD0 ports are buffered and output to the host CPU.

Register: PP_DPR

Description: Parallel Printer Data Register

Offset: 000
Permissions: Read/Write

Access Condition: Application Number = 0x0100

Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0]

Parallel Printer Data

Device Status Register

The bits of the status register are defined as follows:

Register: DSR

Description: Device Status Register

Offset: 001 Permissions: Read

Access Condition: Application Number = 0x0100

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
nBUSY	nACK	PE	SLCT	nFAULT	Unused	Unused	Unused

Bit	Name	Description
0	Unused	Not used, set to 0
1	Unused	Not used, set to 0
2	Unused	Not used, set to 0
3	nFAULT	Logic 0 = Printer reports an error condition exists. Logic 1 = Normal operation.
4	SLCT	Logic 0 = Printer is off line. Logic 1 = Printer is on line.
5	PE	Logic 0 = Normal operation Logic 1 = Paper end/empty is detected
6	nACK	Logic 0 = State of the nACK pin (nACK = Low). Logic 1 = State of the nACK pin (nACK = High).
7*	nBUSY	Logic 0 = BUSY pin is high, printer is not ready to take data. Logic 1 = BUSY pin is low, printer is ready to take data.

Note: Bit-7 (nBUSY) in this register is logically inverted from the state of the electrical signal appearing at the physical device pin. When the printer is BUSY, this bit will read back as a zero.

Page 24 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Device Control Register

Register: DCR

Description: Device Control Register

Offset: 002

Permissions: Read/Write

Access Condition: Application Number = 0x0100

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Unused	Unused	DIR	Unused	SLCTIN	nINIT	AUTOFD	STROBE

Bit	Name	Description
0*	STROBE	Logic 0 = Sets the nSTROBE pin to high. Logic 1 = Sets the nSTROBE pin to low. PD7-PD0 data are latched into
		printer
1*	AUTOFD	Logic 0 = Sets the nAUTOFDX pin to high. No auto feed function. Logic 1 = Sets the nAUTOFDX pin to low. Printer generates auto line feed after each line is printed.
2	nINIT	Logic 0 = Peripheral/printer starts its initialization routine. Logic 1 = Normal Operation.
3*	SLCTIN	Logic 0 = Sets the nSLCTIN pin to high. Printer is not selected. Logic 1 = Sets the nSLCTIN pin to low. Selects the printer.
4	Unused	Not uset set to 0
5	DIR	Logic 0 = PD7-PD0 pins are configured for output mode. Logic 1 = PD7-PD0 pins are configured for input mode.
6	Unused	Not used, set to 0.
7	Unused	Not used, set to 0.

Note: Three bits (0, 1, & 3) of this register are logically inverted from the state of the electrical signals appearing at the physical device pins they control. The physical pins for these three bits are all Active-Low signals, so writing a "one" in this register will enable or activate the desired function.

The physical pin associated with Bit-2 (nINIT) of this register is also an Active-Low electrical signal. This bit is not inverted however, so in order to start the Initialization process, this bit must be set LOW.

Extended Control Register (ECR)

This register controls the Parallel Port mode selection operation.

Register: PP_ECR

Description: Parallel Printer Port Extended Control Register

Offset: 0x0A
Permissions: Read/Write

Access Condition: Application Number = 0x0100

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Parallel Port Mode		Reserved	Reserved	Reserved	Reserved	Reserved	

Bit-7	Bit-6	Bit-5	Operating Mode
0	0	0	SPP
0	0	1	Nibble
0	1	0	CB-FIFO mode
0	1	1	Not Used
1	0	0	Not Used
1	0	1	Not used
1	1	0	Not Used
1	1	1	Not Used

Page 26 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Mode Changes

After a hardware reset Nibble Mode is selected as the default mode. It is required to select mode 000 or 001 before any other mode configuration.

Mode "000"

SPP/Centronics/Compatible Mode

Forward direction only. The direction bit is forced to "0" and PD7-PD0 are set to the output direction. The Parallel Port is under software control. This mode defines the protocol used by most PCs to transfer data to a printer. It is commonly called the "Centronics" mode and is the method utilized with the Standard Parallel Printer port. Data is placed on the PD7-PD0 ports, and the printer status is checked via the DSR register. If no error condition is flagged and the printer is not busy, software toggles the nSTROBE pin to latch the PD7-PD0 data into the printer. This operating cycle continues when the printer/peripheral issues the data acknowledge signal (pulses the ACK and nBUSY pins).

Mode "001"

Nibble Mode

The Nibble Mode is the most common way to get reverse channel data from the printer or peripheral. This mode is usually combined with the SPP Mode or a proprietary forward channel mode to create a Bi-Directional channel. In this mode printer status bits are used as Nibble bits.

Pin	Data Bit
BUSY	Bit-7
PE	Bit-6
SLCT	Bit-5
nFAULT	Bit-4
BUSY	Bit-3
PE	Bit-2
SLCT	Bit-1
nFAULT	Bit-0

Bit Order for Nibble Mode

Mode "010"

FIFO Output Mode

In this mode, Bytes written to the FIFO are transmitted automatically using the SPP/Centronics standard protocol.

USB 1.1 to Single UART and Printer Port

Vendor Specific Command Registers:

There are three vendor specific registers which are used to tune the behavior and performance of the UART and Parallel Port. They are as follows

- SP_REG
- PP REG
- SP_CONTROL_REG

SP_REGISTER:

This register is used for internal debugging of UDC controller & bridge circuitry. This enables the designer to pin point the problem in the design. This register also enables the hardware flow control. This register has bits which clear the Bulk-In & Bulk-Out FIFOs. There is a bit which resets the UART. There are bits which control the input clock fed to the UART, providing options for higher Baud Rates.

Register: SP_REG

Description: Serial Port Register

Offset: 0x01
Permissions: Read/Write

Access Condition: Application Number = 0x0000

Bit[7]	Bit[6] B	3it[5] Bit[4] Bit[3]	Bit[2]	Bit[1]	Bit[0]
UART_Reset	Clk_UA	ART_Select	Sp_bi_clear	Sp_bo_clear	Ser_line_err_ctl_en	Udc_loop

Bit Description			
Udc_loop	When enabled, loops the data from the Bulk-Out FIFO to the Bulk-In FIFO.		
Ser_line_err_ctl_en	When enabled, will not allow the data from the UART to be written into the		
Sei_iiie_eii_cii_eii	Bulk-In FIFO if there are any errors in the received data.		
Sp_bo_clear	Reset the Bulk-Out FIFO		
Sp_bi_clear	Reset the Bulk-In FIFO		
Clk_UART_Select	Changes the clock fed to UART as shown in the table below		
UART_Reset	Resets the UART		

Clk_UART_Select: Changes the clock fed to the Serial Port as shown in the table below.

Option	Input Clock Frequency
3'b000	12 MHz
3'b001	6 MHz
3'b010	3 MHz
3'b011	1.5 MHz
3'b100	0.75 MHz

Page 28 Rev. 1.6

USB 1.1 to Single UART and Printer Port

PP_REGISTER:

This register is used for internal debugging of UDC controller & bridge circuitry. There is a bit which resets the Parallel Printer port. There are bits which control the input clock fed to the Parallel Printer port.

Register: PP_REG

Description: Parallel Printer Port Register

Offset: 0x04

Permissions: Read/Write

Access Condition: Application Number = 0x0000

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
pp_reset	cl	k_freq_sele	ct	pp_bi_clear	pp_bo_clear	Reserved	udc_loop

Bit	Description
udc_loop	When enabled, loops the data from the Bulk-Out FIFO to the Bulk-In FIFO.
Reserved	Reserved
pp_bo_clear	Reset the Bulk-Out FIFO
pp_bi_clear	Reset the Bulk-In FIFO
clk_freq_select	Changes the clock fed to the Parallel Printer port.
pp_reset	Resets the Parallel Printer port

pp reset: This bit will reset the Parallel Printer port. When this bit is a 1 the Parallel Printer port is under the Reset process. Whenever the frequency is to be changed, first set the Reset bit, change the clk_frequency, and finally clear the Reset bit to 0.

clk_freq_select: Changes the clock fed to the Parallel Printer port as shown in the table below.

Option	Input Clock Frequency
3'b000	12 MHz
3'b001	6 MHz
3'b010	3 MHz
3'b011	1.5 MHz
3'b100	0.75 MHz

USB 1.1 to Single UART and Printer Port

SP_CONTROL_REGISTER:

The Control register is used for controlling the Auto RTS/CTS flow control of the Serial Port.

Register: SP_CONTROL_REG

Description: Control Register for Serial Port

Offset: 0x08
Permissions: Read/Write

Access Condition: Application Number = 0x0000

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Reserved	sp autoflow ctrl en						

Bit	Description
sp_autoflow_ctrl_en	This bit is used for enabling the hardware flow control for the Serial port.
Reserved	Reserved

Page 30 Rev. 1.6

USB 1.1 to Single UART and Printer Port

Electrical Characteristics

Absolute Maximum Ratings

6 Volts Supply Voltage Input Voltage (I/O) -0.3 to $V_{CC} + 0.3$ -60° C to +150° C Storage Temperature

Recommended Operating Conditions

Supply Voltage 4.5 to 5.5 Volts Input Voltage (I/O) 0 to 5.5 Volts 0° C to +70° C Ambient Operating Temperature (free air) 0° C to +115° C **Junction Operating Temperature**

Static Characteristics (Supply Pins)

 V_{cc} = 4.5V to 5.5V; GND = 0V; Temp = 0 to +70° C; unless otherwise specified

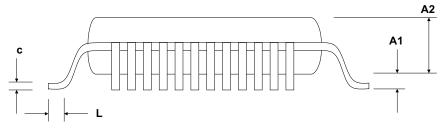
Symbol	Parameter	Conditions	Min	Typical	Max	Unit
V _{reg} (3.3V)	Regulated Supply Voltage		3.0	3.3	3.6	V
I _{cc}	Operating Supply Current		-	18	-	mA

Static Characteristics

 V_{CC} = 4.5V to 5.5V; GND = 0V; Temp = 0 to +70° C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Typical	Max	Unit
V _{IL}	LOW Level Input Voltage		-	-	0.3*Vcc	V
V _{IH}	HIGH Level Input Voltage		0.7*Vcc	-	-	V
V _{th} (LH)	Positive going Threshold Voltage		-	3.22	-	V
V _{th} (HL)	Negative going Threshold Voltage		-	1.84	-	V
I _{LI}	Input Leakage Current		-	-	±1	μA
l _{oz}	Tri-State Leakage Current		-	-	±10	μA
V _{oL}	Output Voltage (Low)		-	-	0.4	V
V _{OH}	Output Voltage (High)		3.5	-	-	V

Dynamic Characteristics – Analog I/O Pins (DP, DM); Full-Speed Mode $V_{\rm CC}$ = 4.5V to 5.5V; GND = 0V; Temp = 0 to +70° C; unless otherwise specified


Symbol	Parameter	Condition	Min	Typical	Max	Unit
T _{FR}	Rise Time	$C_L = 50pF$ 10% to 90% of $ V_{OH} - V_{OL} $	4	-	20	nS
T _{FF}	Fall Time	$C_L = 50pF$ 10% to 90% of $ V_{OH} - V_{OL} $	4	-	20	nS

Page 31 Rev. 1.6

USB 1.1 to Single UART and Printer Port

48-Pin QFP Package Dimensions

SYMBOL	MILLIMETERS			INCHES		
STIVIDUL	MIN	TYPICAL	MAX	MIN	TYPICAL	MAX
A1	0.05		0.15	0.002		0.006
A2	1.35		1.45	0.053		0.057
b	0.17		0.27	0.007		0.011
С	0.09		0.20	0.004		0.008
е		0.50			0.0197	
L	0.45		0.75	0.018		0.030
HD	8.80		9.20	0.346		0.362
D	7.20		6.80	0.283		0.268
HE	8.80		9.20	0.346		0.362
E	7.20		6.80	0.2.83		0.268

Page 32 Rev. 1.6

USB 1.1 to Single UART and Printer Port

IMPORTANT NOTICE

MosChip Semiconductor Technology, LTD products are not authorized for use as critical components in life support devices or systems. Life support devices are applications that may involve potential risks of death, personal injury or severe property or environmental damages. These critical components are semiconductor products whose failure to perform can be reasonably expected to cause the failure of the life support systems or device, or to adversely impact its effectiveness or safety. The use of MosChip Semiconductor Technology LTD's products in such devices or systems is done so fully at the customer risk and liability.

As in all designs and applications it is recommended that the customer apply sufficient safeguards and guard bands in both the design and operating parameters. MosChip Semiconductor Technology LTD assumes no liability for customer's applications assistance or for any customer's product design(s) that use MosChip Semiconductor Technology, LTD's products.

MosChip Semiconductor Technology, LTD warrants the performance of its products to the current specifications in effect at the time of sale per MosChip Semiconductor Technology, LTD standard limited warranty. MosChip Semiconductor Technology, LTD imposes testing and quality control processes that it deems necessary to support this warranty. The customer should be aware that not all parameters are 100% tested for each device. Sufficient testing is done to ensure product reliability in accordance with MosChip Semiconductor Technology LTD's warranty.

MosChip Semiconductor Technology, LTD believes the information in this document to be accurate and reliable but assumes no responsibility for any errors or omissions that may have occurred in its generation or printing. The information contained herein is subject to change without notice and no responsibility is assumed by MosChip Semiconductor Technology, LTD to update or keep current the information contained in this document, nor for its use or for infringement of patent or other rights of third parties. MosChip Semiconductor Technology, LTD does not warrant or represent that any license, either expressed or implied, is granted to the user.

Revision History

Revision	Changes	Date
1.0	Preliminary Release	6-Nov-2002
1.1	Datasheet updated for Serial and Printer port related details	7-Feb-2005
1.2	Revised Data Sheet	25-Oct-2005
1.3	Minor Layout Changes	17-Nov-2005
1.4	Changes to Serial and Parallel Port Descriptors	28-Nov-2005
1.5	Corrected Polling Intervals	30-Nov-2005
1.6	Corrected Electrical Characteristics and Pin Descriptions	6-Jan-2006

Page 34 Rev. 1.6