

USB-1.1 to Single Serial Port

Features

- USB Specification 1.1 Compliant
- Single 5V Operation
- On-Chip Regulator
- Low Power
- Single Serial Port
- Supports up to 920Kbps Data Rate
- Supports 8,7,6 & 5 Data Widths
- Supports Even, Odd, Mark, Space & None Parities
- Supports 1, 1.5 & 2 Stop Bits
- Internal Power-On Reset
- Available in 48-pin QFP Package

Applications

- High-Speed Modems
- Monitoring Equipment
- Serial Networking

Application Note

AN-7710

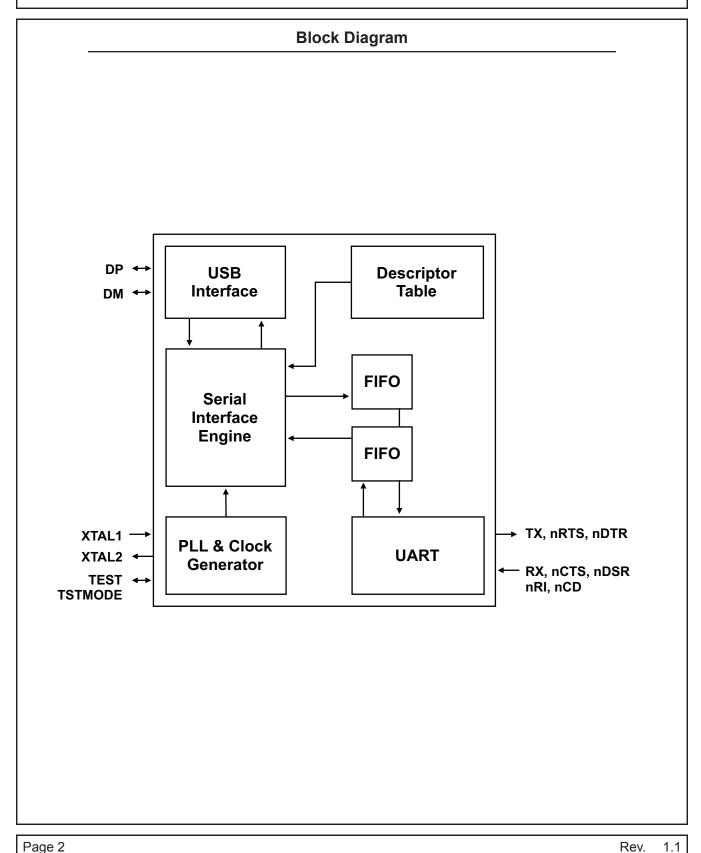
Evaluation Board

MCS7710-EVB

General Description

The MCS7710 controller provides bridging between the Universal Serial Bus (USB) input and an enhanced UART port. This device contains all the necessary logic to communicate with the host computer via the USB Bus.

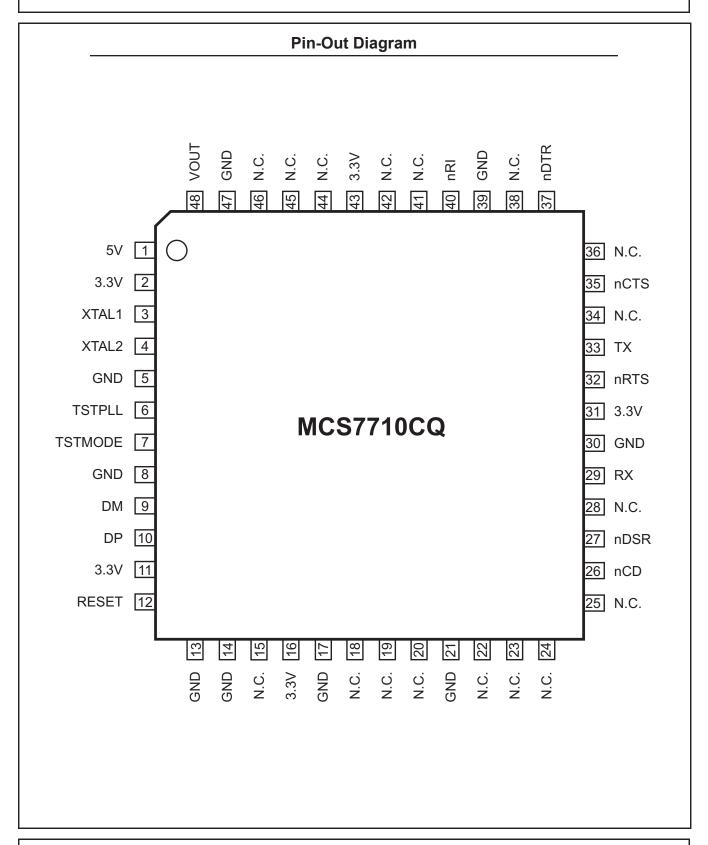
In addition, the MCS7710 contains a 3.3V regulator, operates in Bus-Powered mode, and has a reduced frequency (6 MHz) crystal oscillator.


This combination of features allows significant cost savings in system design, along with straightforward implementation of serial port functionality into PC peripherals using the host's USB port.

Ordering Information					
Commercial Grade (0° C to +70° C)					
MCS7710CQ	48-LQFP	Standard			
MCS7710CQ-GR	48-LQFP	RoHS			

MosChip Semiconductor ◆ 3335 Kifer Rd, Santa Clara, CA 95051 ◆ Tel (408) 737-7141 ◆ Fax (408) 737-7708

USB-1.1 to Single Serial Port



Page 2 Rev.

USB-1.1 to Single Serial Port

USB-1.1 to Single Serial Port

Pin Assignments

Name	Pin	Туре	Description
XTAL1	3	I	Crystal oscillator input or external clock input (6 MHz). This signal input is used in conjunction with XTAL2 to form a feedback circuit for the internal timing. Two external (10 pF) capacitors connected from each side of the crystal to GND are required to form a crystal oscillator
XTAL2	4	0	Crystal oscillator output. See XTAL1 description.
TSTPLL	6	l	Test Mode (active low, internal pull-up) input. When this pin is tied to GND, the internal PLL is bypassed and an external 48 MHz clock is used as the reference clock.
TSTMODE	7	I	Internal Test Mode (internal pull-up). When this pin is tied to GND, the internal test mode is enabled.
DM	9	I/O	Upstream USB port Differential data Minus (D-), analog.
DP	10	I/O	Upstream USB port Differential data Plus (D+), analog.
RESET	12	I	System Reset (Active high). Resets all internal registers, sequencers, and signals to a consistent state. Connect to GND to enable the internal Power-On Reset circuit.
nCD	26	I	Carrier-Detect signal. When low this indicates that the modem or data set has detected the data carrier. nCD has no effect on the transmitter.
nDSR	27	I	Data-Set-Ready signal. When low, this indicates the modem or data set is ready to establish a communication link.
RX	29	I	Serial Data Input.
nRTS	32	0	Request-To-Send signal. It is set high (inactive) after a hardware reset or during internal loop-back mode. When low, this indicates that the UART is ready to exchange data. nRTS has no effect on the transmitter or receiver.
TX	33	0	Serial Data Output.
nCTS	35	I	Clear-To-Send signal. When low this indicates that the modem or data set is ready to exchange data. nCTS has no effect on the transmitter.
nDTR	37	0	Data-Terminal-Ready signal. It is set high (inactive) after a hardware reset or during internal loop-back mode. When low, this output indicates to the modem or data set that the UART is ready to establish a communication link. nDTR has no effect on the transmitter or receiver.
nRI	40	I	Ring-Detect signal.
VOUT	48	PWR	+3.3V Voltage Regulator Output.
GND	5, 8, 13, 14, 17, 21, 30, 39, 47	PWR	Power and signal grounds.
3.3V	2, 11, 16, 31, 43	PWR	Device Supply inputs. All should be connected to the VOUT pin. The VOUT voltage is gated by RESET.
5V	1	PWR	Main Power Input. Connect to USB VBUS or local VDD.

Note: All names with "n" prefix are active low.

Page 4 Rev. 1.1

USB-1.1 to Single Serial Port

USB Description

Analog Transceivers

The on-chip transceivers are connected directly to USB cables through external series resistors. They transmit and receive serial data at both full-speed (12Mbit/s) and low-speed (1.5Mbit/s) data rates. Slew rates are automatically adjusted according to the speed of the device connected and lie within the range defined in the *USB Specification Rev. 1.1*.

Serial Interface Engine

This engine implements the complete USB protocol layer including: parallel /serial conversion, synchronization pattern recognition, CRC checking/generation, bit (de)stuffing, packet identifier (PID) verification/generation, address recognition and handshake evaluation/generation.

Bit Clock Recovery

The bit clock recovery circuit recovers the clock from the incoming USB data stream using 4x over sampling. It is able to track in the presence of jitter and frequency drift as specified by the USB Specification Rev. 1.1.

3.3V Source

A 5V to 3.3V DC-DC regulator is integral to the chip relieving the need for a +3.3V source. It supplies the analog transceivers and internal logic and can be used to supply the $1.5 \mathrm{k}\Omega$ pull-up resistor on the DP line of the upstream connection.

PLL Clock Multiplier

An integral Phase-Locked Loop (PLL) performs 6 to 48MHz clock multiplication and requires no external components except the crystal. This allows for the use of low-cost 6MHz crystals which reduce high frequency radiated Electro-Magnetic Interference (EMI).

USB Interface

All standard USB requests received from the host are processed on-board without the need of firmware intervention. The MCS7710 supports Bus-Powered operation only. The USB interface to the host controller includes a Control endpoint, a Bulk-In endpoint, a Bulk-Out endpoint and an Interrupt endpoint. The USB controller supports the USB-1.1 specification. Hence, it supports all standard functionality associated with device enumeration, standard USB device requests, etc. In addition, there are Vendor Specific commands provided to allow a USB driver to access registers and ROM in the USB controller.

USB-1.1 to Single Serial Port

UART Register Set:

The UART has 10 registers. Mapping is dependent on the Line Control Register (LCR).

Register Name	Offset	R/W	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	
THR	0	W		Dat	a to be trar	smitted (Tr	ansmitting	Holding R	egister)		
RHR	0	R			Data to be i	received (R	eceiver Ho	ding Regi	ster)		
						Sleep	Modem	Rx Stat	THRE	RxRdy	
IER	1	R/W		Reserv	ed	Mode	Interrupt	Interrupt	Interrupt	Interrupt	
						Mode	Mask	Mask	Mask	Mask	
FCR	2	W	R	HR	Reserved		Posonyod	Flush	Flush	FIFO	
FCK		VV	Trigge	er Level	Nese	erveu	rved Reserved		RHR	Enable	
ISR	2	R	FII	-Os	Reserved Interrupt Priority Int		Interrupt				
1311		11	Ena	abled	1,636	ei veu	IIILE	Tupt Filo	ity	y Pending	
LCR	3	R/W	DLE	Tx	Force	Odd/Even	Parity	Stop	Data Length		
LOIX	J	11/1/	DLL	Break	Parity	Parity	Enable	Bits	Dala L	-engui	
					RTS/CTS						
MCR	4	R/W	Res	erved	Flow	Loop	Unu	sed	RTS	DTR	
					Control						
LSR	5	R	Data	Tx	THR	Rx	Framing	Parity	Overrun	RxRdy	
LOIX		11	Error	Empty	Empty	Break	Error	Error	Overruit	ixxixuy	
MSR	6	R	DCD	RI	DSR	CTS	Delta	TERI	Delta	Delta	
IVIOR	U		DOD	IXI	DOK		DCD		DSR	CTS	
SPR	7	R/W		Scratch Pad Register							

Additional Standard Registers - these are accessed when LCR[7] = 1

DLL	0	R/W	Divisor Latch bits[7:0]
DLM	1	R/W	Divisor Latch bits[15:8]

Register: THR

Description: Data to be transmitted

Offset: 0
Permissions: Write

Access Condition: LCR[7] =0, only write condition can access this register

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	
	Data to be transmitted							

Register: RHR

Description: Data to be received

Offset: 0
Permissions: Read

Access Condition: LCR[7] =0, only read condition can access this register

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
			Data to be	e received			

Page 6 Rev. 1.1

USB-1.1 to Single Serial Port

Interrupt Enable Register:

Serial channel interrupts are enabled using the Interrupt Enable Register (IER).

Register: IER

Description: Interrupt Enable Register

Offset: 1

Permissions: Read/Write

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	Reserved		Sleep	Modem Interrupt	Rx Stat Interrupt	THRE Interrupt	RxRdy Interrupt
Reserved		Mode	Mask	Mask	Mask	Mask	

Bit	Name	Description
0	RxRdy Interrupt Mask	Logic 0 = Disable the Receiver Ready Interrupt Logic 1 = Enable the Receiver Ready Interrupt
1	THRE Interrupt Mask	Logic 0 = Disable the Transmitter Ready Interrupt Logic 1 = Enable the Transmitter Ready Interrupt
2	Rx Stat Interrupt Mask	Logic 0 = Disable the Receiver Status Interrupt (Normal Mode) Logic 1 = Enable the Receiver Status Interrupt (Normal Mode)
3	Modem Interrupt Mask	Logic 0 = Disable the Modem Status Interrupt Logic 1 = Enable the Modem Status Interrupt
4	Sleep Mode	Logic 0 = Disable Sleep-Mode Logic 1 = Enable Sleep-Mode (the internal clock of the channel is switched off)
5	Reserved	Reserved
6	Reserved	Reserved
7	Reserved	Reserved

USB-1.1 to Single Serial Port

FIFO Control Register:

The FCR controls the UART behavior in various modes.

Register: FCR

Description: FIFO Control Register

Offset: 2 Permissions: Write

Bit[7] Bit	[6] Bi	it[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
RHR		Decembed		Decembed	Flush	Flush	Enable
Trigger Level		Reserve	eu	Reserved	THR	RHR	FIFO

Bit	Name	Description
0	Enable FIFO Mode	Logic 0 = Byte Mode Logic 1 = FIFO Mode
1	Flush RHR	Logic 0 = No change Logic 1 = Flushes the contents of RHR. This is operative only in FIFO Mode. The RHR is automatically flushed whenever changing between Byte Mode and FIFO Mode. The bit will return to zero after clearing the FIFOs.
2	Flush THR	Logic 0 = No change Logic 1 = Flushes the content of the THR, in the same manner as FCR[1] does the RHR
3	Reserved	Reserved
5, 4	Reserved	Reserved
7, 6	RHR Trigger Level	See the table below.

FCR[7:6] RHR Trigger Level:

In 550 mode, the receiver FIFO trigger levels are defined using FCR[7:6]. The interrupt trigger level & flow control trigger level where appropriate are defined by L2 in the table below. L1 defines lower flow control trigger levels that introduce a hysteresis element in hardware RTS/CTS flow control.

In Byte Mode (450 Mode) the trigger levels are all set to 1.

FCR[7:6]	550 Mode (FIFO = 16)		
	<u>L1</u>	<u>L2</u>	
2'b00	1	1	
2'b01	1	4	
2'b10	1	8	
2'b11	1	14	

Page 8 Rev. 1.1

USB-1.1 to Single Serial Port

Interrupt Status Register:

The source of the highest priority interrupt pending is indicated by the contents of the Interrupt Status Register (ISR). There are five sources of interrupts, and four levels of priority (1 is the highest) as tabulated below.

Level	Interrupt Source	ISR[5:0]
-	No interrupt pending	6'b000001
1	Receiver Status Error	6'b000110
	or address bit detected in 9-bit mode	0 0000110
2a	Receiver Data Available	6'b000100
2b	Receiver Time Out	6'b001100
3	Transmitter THR Empty	6'b000010
4	Modem Status Change	6'b000000

Note: ISR[0] indicates whether any interrupt is pending

Register: ISR

Description: Interrupt Status Register

Offset: 2 Permissions: Read

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
FIFOs		Interrupt	Priority	Interrupt Priority		Interrupt	
Enabled (Enhanced Mode)			(All Modes)		Pending		

Interrupt Descriptions:

Level1: Receiver Status Error

Normal Mode: This interrupt is active whenever any of the LSR[1], LSR[2], LSR[3] or LSR[4] are set. These flags are cleared following a read of the LSR. The interrupt is masked with IER[2].

Level 2a: Receiver Data Available

The interrupt is active whenever the receiver FIFO level is above the interrupt trigger level.

Level 2b: Receiver Time-Out

A receiver time out event, (which may cause an interrupt) will occur when all of the following conditions are true:

- The UART is in the FIFO Mode.
- There is data in the RHR
- There has been no read of the RHR for a period of time greater than the timeout period. The timeout period of time is greater than the time out period. The time out period is four times the character period (including start & stop bits) measured from the centre of the first stop bit of the first data item received.

Reading the first data item in RHR clears this interrupt.

Level 3: Transmitter Empty

This interrupt is set when the transmit FIFO level falls below the trigger level. It is cleared on the ISR read to Level-3 interrupt or by writing more data to the THR so that the trigger level is exceeded.

Level 4: Modem Change

This interrupt is set by the modem change flag (MSR[0], MSR[1], MSR[2] or MSR[3]) becoming active due to changes in the input modem lines. This interrupt is cleared following the read of the MSR register.

USB-1.1 to Single Serial Port

Line Control Register:

The LCR specifies the data format that is common to both transmitter and receiver.

LCR Register:

Description: Line Control Register

Offset:

Permissions: Read/Write **Access Condition:** LCR[7] = 0

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
DLE	Tx	Force	Odd/Even	Parity	Number of	Dat	a
DLE	Break	Parity	Parity	Enable	Stop Bits	Lend	ıth

LCR[1:0]: Determines the data length of serial

characters.

LCR[2]: Defines the number of stop bits per serial

character.

LCR[5:3]:	The selected parity type will be generated
	during transmission and checked by the
	receiver, which may produce a parity error
	as a result. In 9-bit mode parity is disabled
	and LCR[5:3] are ignored.

LCR[6]: Transmission Break

Logic 0: Break transmission disabled

Logic 1: Forces the transmitter data output (SOUT) low to alert the communications channel. It is the responsibility of the software driver to ensure that the break duration is longer than the character period for it to be recognized remotely as a

break rather than data.

2'b00	5 bits
2'b01	6 bits
2'b10	7 bits
2'b11	8 bits

Data Length

LCR[1:0]

LCR[2]	Data Length	Stop Bits
0	5,6,7,8	1
1	5	1.5
1	6,7,8	2

LCR[5:3]	Parity Type
3'bxx0	No parity
3'b001	Odd parity
3'b011	Even parity
3'b101	Parity bit forced to 1
3'b111	Parity bit forced to 0

LCR[7]: Divisor Latch Enable

Logic 0: Accesses to DLL and DLM registers disabled

Logic 1: Accesses to DLL and DLM registers enabled

Page 10 Rev. 1.1

USB-1.1 to Single Serial Port

Modem Control Register:

Register: MCR

Description: Modem Control Register

Offset: 4

Permissions: Read/Write

Bit[7] Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
550 Mode						
Unused CTS/RTS Flow Control		Internal Loop Back Enable	Out2 (Interrupt Enable)	Out1	RTS	DTR

Bit	Name	Description					
0	DTR	Logic 0 = Forces DTR# output to inactive (high) Logic 1 = Forces DTR# output to active (low)					
1 RTS		Logic 0 = Forces RTS# output to inactive (high) Logic 1 = Forces RTS# output to active (low)					
2	Out1	Unused					
3 Out2		Unused					
4	Internal Loop Back Enable	Logic 0 = Normal operating mode Logic 1 = Enable Local Loop-Back Mode					
5	CTS/RTS flow control	Logic 0 = CTS/RTS flow control Disabled in 550-Mode Logic 1 = CTS/RTS flow control Enabled in 550-Mode					
6	Unused	Unused					
7	Unused	Unused					

USB-1.1 to Single Serial Port

Line Status Register:

This register provides the status of the data transfer to the CPU.

Register: LSR

Description: Line Status Register

Offset: 5
Permissions: Read

Access Condition: LCR[7] = 0, ACR[6] = 0

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Data	Tx	THR	Rx	Framing	Parity	Overrun	RxRdv
Error	Empty	Empty	Break	Error	Error	Overrun	RXRUY

Bit	Name	Description
0	RHR	Logic 0 = RHR is empty
U	Data Available	Logic 1 = RHR is not empty, data is available to be read
		Logic 0 = No overrun error
1	RHR	Logic 1 = Data was received when the RHR was full, An overrun
'	Overrun	has occurred. The error is flagged when the data would
		normally have been transferred to the RHR.
	Received Data	Logic 0 = No parity error in received data, or 9th bit is "0" in 9-bit
2	Parity Error	mode.
	ranty Little	Logic 1 = Data has been received that did not have correct parity
3	Received Data	Logic 0 = No framing error
	Framing Error	Logic 1 = data has been received with an invalid stop bit.
4	Received Break	Logic 0 = No receiver break error
	Error	Logic 1 = the receiver received a break error
5	THR	Logic 0 = Transmitter FIFO is not empty
	Empty	Logic 1 = Transmitter FIFO is empty
	Transmitter & THR	Logic 0 = The transmitter is not idle
6	Empty	Logic 1 = THR is empty & the transmitter has completed the character
	шпріу	in the shift register and is in the idle mode
		Logic 0 = Either there are no receiver data errors in the FIFO, or it
7	Receiver Data	was cleared by earlier read of LSR
'	Error	Logic 1 = At least one parity error, framing error or break indication in
		the FIFO.

Note: A break condition occurs when the SIN line goes low and stays low through out the start, data, parity & first stop bits. One zero character associated with break flag set will be transferred to the RHR and the receiver will then wait until the SIN line returns high. The LSR[4] flag break flag is set when this data item gets to the top of the RHR and it is cleared following the read to the LSR.

Page 12 Rev. 1.1

USB-1.1 to Single Serial Port

Modem Status Register:

This register provides the status of the modem control lines to CPU.

Register: MSR

Description: Modem Status Register

Offset: 6
Permissions: Read

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
DCD	RI	DSR	CTS	Delta DCD	Trailing Edge RI	Delta DSR	Delta CTS

Bit	Name	Description
	D # 0T0	Logic 0 = no change in the CTS signal
0	Delta CTS	Logic 1 = indicates that the CTS input has changed since the last time the MSR was read
		Logic 0 = no change in the DSR signal
1	Delta DSR	Logic 1 = indicates that the DSR input has changed since the last time the
		MSR was read
	Trailing Edge	Logic 0 = no change in the RI signal
2	RI	Logic 1 = indicates that the RI input has changed from low to high since the
		last time the MSR was read
	Delta DCD	Logic 0 = no change in the DCD signal
3		Logic 1 = indicates that the DCD input has changed since the last time the
		MSR was read
4	CTS	Logic 0 = CTS# line is 1
		Logic 1 = CTS# line is 0
5	DSR	Logic 0 = DSR# line is 1
	DOIN	Logic 1 = DSR# line is 0
6	RI	Logic 0 = RI# line is 1
	IXI	Logic 1 = RI# line is 0
7	DCD	Logic 0 = DCD# line is 1
	DCD	Logic 1 = DCD# line is 0

Scratch Pad Register:

The scratch pad register does not effect operation of the rest of the UART in any way and can be used for the temporary data storage.

Register: SPR

Description: Scratch Pad Register

Offset: 7

Permissions: Read/Write

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	
Scratch Pad Register								

USB-1.1 to Single Serial Port

Divisor Latch Registers:

The divisor latch registers (DLL & DLM) are used to program the baud rate divisor. This is a value between 1 and 65535 by which the input clock is divided in order to generate serial Baud Rates. After a hardware Reset, the Baud Rate used by the transmitter & receiver is given by:

Baud Rate = Input Clock / 16 * Divisor

where divisor is given by: (256 * DLM) + DLL

Note: More flexible Baud Rate generation options are also available. These require the use of Advanced Features in other registers however.

Register: DLL

Description: Divisor Latch Register

Offset: 0

Permissions: Read/Write Access Condition: LCR[7] =1

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Least significant Byte for divisor latch							

Register: DLM

Description: Divisor Latch Register

Offset:

Permissions: Read/Write Access Condition: LCR[7] =1

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Most significant Byte for divisor latch							

Baud Rate Generator Programming Table

Baud Rate	DLM (Hex)	DLL (Hex)
115.2K	00	01
57.6K	00	02
38.4K	00	03
19.2K	00	06
9600	00	0C
2400	00	30
1200	00	60
600	00	C0
300	01	80
150	03	00
50	09	00

Page 14 Rev. 1.1

USB-1.1 to Single Serial Port

Master Reset Values

Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
RHR	0	0	0	0	0	0	0	0
THR	Х	Х	Х	Х	Х	Х	Х	Х
IER	0	0	0	0	0	0	0	0
FCR	0	0	0	0	0	0	0	0
IIR	0	0	0	0	0	0	0	1
LCR	0	0	0	0	0	0	0	0
MCR	0	0	0	0	0	0	0	0
LSR	0	1	1	0	0	0	0	0
MSR	Х	Х	Х	Х	0	0	0	0
SPR	0	0	0	0	0	0	0	0

USB-1.1 to Single Serial Port

Electrical Characteristics

Absolute Maximum Ratings

6 Volts Supply Voltage Input Voltage (I/O) -0.3 to $V_{CC} + 0.3$ -60° C to +150° C Storage Temperature

Recommended Operating Conditions

Supply Voltage 4.5 to 5.5 Volts 0 to 5.5 Volts Input Voltage (I/O) 0° C to +70° C Ambient Operating Temperature (free air) 0° C to +115° C **Junction Operating Temperature**

Static Characteristics (Supply Pins)

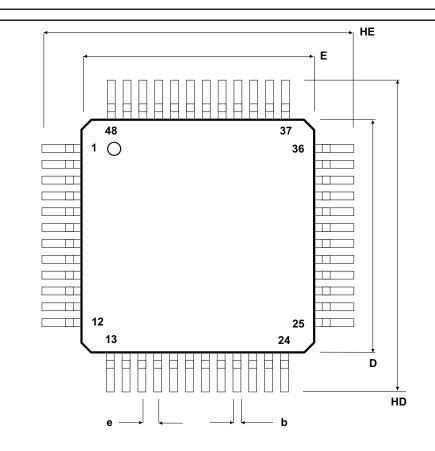
 V_{cc} = 4.5V to 5.5V; GND = 0V; Temp = 0 to +70° C; unless otherwise specified

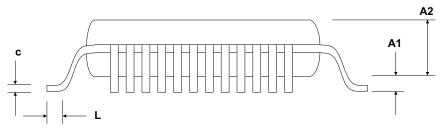
Symbol	Parameter	Conditions	Min	Typical	Max	Unit
V _{reg} (3.3V)	Regulated Supply Voltage		3.0	3.3	3.6	V
I _{cc}	Operating Supply Current		-	18	-	mA

Static Characteristics

 V_{CC} = 4.5V to 5.5V; GND = 0V; Temp = 0 to +70° C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Typical	Max	Unit
V _{IL}	LOW Level Input Voltage		-	-	0.3*Vcc	V
V _{IH}	HIGH Level Input Voltage		0.7*Vcc	-	-	V
V _{th} (LH)	Positive going Threshold Voltage		-	3.22	-	V
V _{th} (HL)	Negative going Threshold Voltage		-	1.84	-	V
I _{LI}	Input Leakage Current		-	-	±1	μA
l _{oz}	Tri-State Leakage Current		-	-	±10	μA
V _{OL}	Output Voltage (Low)		-	-	0.4	V
V _{OH}	Output Voltage (High)		3.5	-	-	V


Dynamic Characteristics – Analog I/O Pins (DP, DM); Full-Speed Mode $V_{\rm CC}$ = 4.5V to 5.5V; GND = 0V; Temp = 0 to +70° C; unless otherwise specified


Symbol	Parameter	Condition	Min	Typical	Max	Unit
T _{FR}	Rise Time	$C_L = 50pF$ 10% to 90% of $ V_{OH} - V_{OL} $	4	-	20	nS
T _{FF}	Fall Time	$C_L = 50pF$ 10% to 90% of $ V_{OH} - V_{OL} $	4	-	20	nS

Page 16 Rev.

USB-1.1 to Single Serial Port

48-Pin QFP Package Dimensions

SYMBOL	MILLIMETERS			INCHES			
STIVIBUL	MIN	TYPICAL	MAX	MIN	TYPICAL	MAX	
A1	0.05		0.15	0.002		0.006	
A2	1.35		1.45	0.053		0.057	
b	0.17		0.27	0.007		0.011	
С	0.09		0.20	0.004		0.008	
е		0.50			0.0197		
L	0.45		0.75	0.018		0.030	
HD	8.80		9.20	0.346		0.362	
D	7.20		6.80	0.283		0.268	
HE	8.80		9.20	0.346		0.362	
E	7.20		6.80	0.2.83		0.268	
E	7.20		6.80	0.2.83		0.268	

USB-1.1 to Single Serial Port

IMPORTANT NOTICE

MosChip Semiconductor Technology, LTD products are not authorized for use as critical components in life support devices or systems. Life support devices are applications that may involve potential risks of death, personal injury or severe property or environmental damages. These critical components are semiconductor products whose failure to perform can be reasonably expected to cause the failure of the life support systems or device, or to adversely impact its effectiveness or safety. The use of MosChip Semiconductor Technology LTD's products in such devices or systems is done so fully at the customer risk and liability.

As in all designs and applications it is recommended that the customer apply sufficient safeguards and guard bands in both the design and operating parameters. MosChip Semiconductor Technology LTD assumes no liability for customer's applications assistance or for any customer's product design(s) that use MosChip Semiconductor Technology, LTD's products.

MosChip Semiconductor Technology, LTD warrants the performance of its products to the current specifications in effect at the time of sale per MosChip Semiconductor Technology, LTD standard limited warranty. MosChip Semiconductor Technology, LTD imposes testing and quality control processes that it deems necessary to support this warranty. The customer should be aware that not all parameters are 100% tested for each device. Sufficient testing is done to ensure product reliability in accordance with MosChip Semiconductor Technology LTD's warranty.

MosChip Semiconductor Technology, LTD believes the information in this document to be accurate and reliable but assumes no responsibility for any errors or omissions that may have occurred in its generation or printing. The information contained herein is subject to change without notice and no responsibility is assumed by MosChip Semiconductor Technology, LTD to update or keep current the information contained in this document, nor for its use or for infringement of patent or other rights of third parties. MosChip Semiconductor Technology, LTD does not warrant or represent that any license, either expressed or implied, is granted to the user.

Page 18 Rev. 1.1

USB-1.1 to Single Serial Port

Revision History

Revision	Changes	Date
1.0	Preliminary Release	7-Nov-2002
1.1	Revised Data Sheet	27-Mar-2006