

Hi-Rel NPN and PNP bipolar transistor 60 V, 2 A

Target specification

Features

Polarity	BV _{CEO}	I _C (max)	h _{FE} ⁽¹⁾
NPN	60 V	0.8 A	160
PNP	-60 V	- 0.8 A	160

- 1. @ $Ic = 1 A and V_{CE} = 2 V$.
- Very low collector-emitter saturation voltage
- High current gain characteristic
- Fast-switching speed: FT= 130 MHz
- Hermetic package
- Manufactured "according to ESCC 5000 specification"

Applications

■ Power MOSFET driver

Description

The 2ST3360 power bipolar transistor is a fast dual complementary device (NPN and PNP) housed in a single LCC-6 hermetic Hi-Rel package, specifically designed for Aerospace Hi-Rel applications. Its radiation hardness allows key parameters such as gain and leakage current to stay at best in class post irradiation levels.

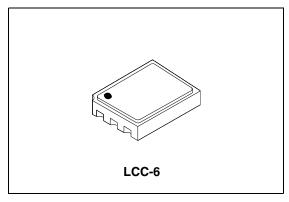
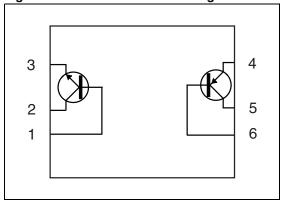



Figure 1. Internal schematic diagram

ST proprietary technology also allows a high level of electrical performances for both devices of the pair. In particular, the high switching performance of both device makes this pair ideal for applications such as power MOSFET driver.

Table 1. Device summary⁽¹⁾

Order code	ESCC part number	Quality Level	Radiation level	Package	Lead finish	Mass	EPPL
2ST3360U1	-	Engineering model	-	LCC-6	Gold	0.20 g	-

^{1.} Contact ST sales office for information about the specific conditions for tape and reel packing.

July 2011 Doc ID 022014 Rev 1 1/11

Contents 2ST3360

Contents

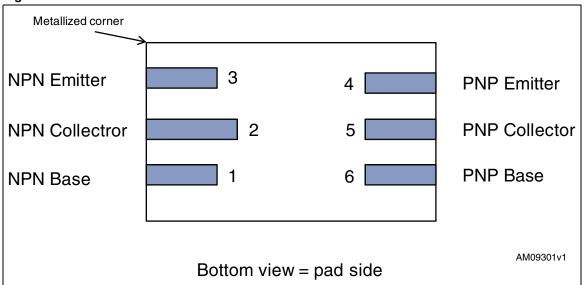
1	Absolute maximum ratings3
2	Pin configuration
3	Electrical characteristics 5
	3.1 Test circuits
4	Package mechanical data 7
5	Order code
6	Revision history

1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Combal	Deventer	Va	Unit	
Symbol	Parameter	NPN	PNP	Unit
V _{CBO}	Collector-base voltage (I _E = 0)	60	-60	V
V _{CEO}	Collector-emitter voltage (I _B = 0)	60	-60	V
V _{EBO}	Emitter-base voltage (I _C = 0)	6	-6	V
I _C	Collector current	0.8	-0.8	Α
I _{CM}	Collector peak current (t _P < 5 ms)	4	-4	Α
I _B	Base current	0.2	-0.2	Α
I _{BM}	Base peak current (t _P < 5 ms)	0.4	-0.4	Α
P _{TOT}	Total dissipation at T _{amb} = 25 °C	1.	4	W
T _{stg}	Storage temperature	-65 to	°C	
TJ	Max. operating junction temperature	20	00	°C

Table 3. Thermal data


Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient max	125	°C/W

Note: Mounted on a 15 x 15 x 0.6 mm ceramic subsrate.

Pin configuration 2ST3360

2 Pin configuration

Figure 2. Pin connection

Downloaded from Elcodis.com electronic components distributor

3 Electrical characteristics

 T_{CASE} = 25 °C; unless otherwise specified.

Table 4. Electrical characteristics for NPN

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current	V _{CB} = 60 V			100	nA
-СВО	$(I_E = 0)$	$V_{CB} = 60 \text{ V}, T_A = 110 ^{\circ}\text{C}$			10	μΑ
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 6 V			100	nA
V _{BE(on)}	Base-emitter on voltage	$V_{CE} = 2 V$ $I_{C} = 100 \text{ mA}$		650		mV
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	I _C = 2 A I _B = 100 mA		550		mV
h _{FE} ⁽¹⁾	DC current gain	$I_C = 100 \text{ mA}$ $V_{CE} = 2 \text{ V}$ $I_C = 1 \text{ A}$ $V_{CE} = 2 \text{ V}$	80 160		400	
	Resistive load					
t _d	Delay time	$I_C = 2 A$ $V_{CC} = 10 V$		20		ns
t _r	Rise time	$I_{B(on)} = -I_{B(off)} = 200 \text{ mA}$		70		ns
t _s	Storage time	$V_{BE(off)} = -5 V$		830		ns
t _f	Fall time			67		ns
f _T	Transition frequency	I _C = 0.1 A V _{CE} = 10 V		130		MHz

^{1.} Pulse test: pulse duration ≤300 µs, duty cycle ≤2 %

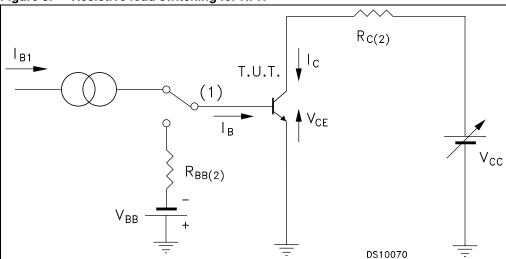
Table 5. Electrical characteristics for PNP⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current (I _E = 0)	V _{CB} = 60 V V _{CB} = 60 V, T _A = 110 °C			100 10	nΑ μΑ
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 6 V			100	nA
V _{BE(on)}	Base-emitter on voltage	$V_{CE} = 2 V$ $I_{C} = 100 \text{ mA}$		650		mV
V _{CE(sat)} ⁽²⁾	Collector-emitter saturation voltage	I _C = 2 A I _B = 100 mA		550		mV
h _{FE} ⁽¹⁾	DC current gain	$I_C = 100 \text{ mA}$ $V_{CE} = 2 \text{ V}$ $I_C = 1 \text{ A}$ $V_{CE} = 2 \text{ V}$	80 160		400	
	Resistive load					
t _d	Delay time	$I_C = 2 A$ $V_{CC} = 10 V$		22		ns
t _r	Rise time	$I_{B(on)} = -I_{B(off)} = 200 \text{ mA}$		54		ns
t _s	Storage time	$V_{BE(off)} = -5 V$		360		ns
t _f	Fall time			42		ns
f _T	Transition frequency	I _C = 0.1 A V _{CE} = 10 V		130		MHz

^{1.} For PNP type voltage and current values are negative.

577

Doc ID 022014 Rev 1


5/11

^{2.} Pulse test: pulse duration \leq 300 µs, duty cycle \leq 2 %

Electrical characteristics 2ST3360

3.1 Test circuits

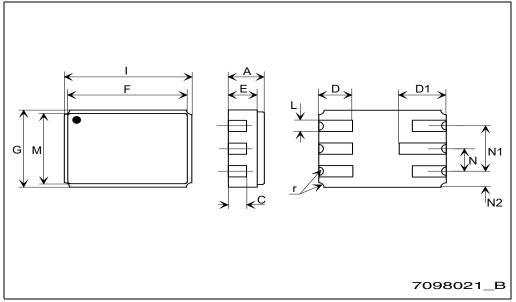
Figure 3. Resistive load switching for NPN

- 1. Fast electronic switch.
- 2. Non-inductive resistor.

Figure 4. Resistive load switching for PNP

- 1. Fast electronic switch.
- 2. Non-inductive resistor.

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

577

Table 6. Ceramic leadless chip carrier 6 mechanical data

	Í	mm.		inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	1.53		1.96	.060		.077
С	0.78	0.89	0.99	.031	.035	.039
D	1.52	1.65	1.78	.060	.065	.070
Е	1.24	1.40	1.55	.049	.055	.059
F	5.77	5.84	5.92	.227	.230	.233
G	4.19	4.31	4.45	.165	.170	.175
I	6.10	6.22	6.35	.240	.245	.250
L	0.56	0.63	0.71	.022	.025	.028
М	3.86	3.94	4.01	.152	.155	.158
N	1.14	1.27	1.40	.045	.050	.055
N1	2.41	2.54	2.67	.095	.100	.105
N2	0.64	0.89	1.14	.025	.035	.045
r		0.23			.009	
D1	2.08	2.28	2.49	.082	.090	.098

Figure 5. Drawing dimension ceramic leadless chip carrier 6

577

2ST3360 Order code

5 Order code

Table 7. Ordering information⁽¹⁾

Order code	ESCC part number	Quality level	Radiation level	Package	Lead finish	Marking	EPPL	Packing
2ST3360U1	-	Engineering model	-	LCC-6	Gold	2ST3360U1	-	Wafflepack

^{1.} Contact ST sales office for information about the specific conditions for tape and reel packing.

Revision history 2ST3360

6 Revision history

Table 8. Document revision history

Date	Revision	Changes
18-Jul-2011	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 022014 Rev 1

11/11