Voltage Detector IC Series
 Low Voltage Free Delay Time Setting CMOS Voltage Detector IC Series BU42ロロG／F／FVE，BU43ロロG／F／FVE Series

－General Description
ROHM CMOS reset IC series with adjustable output delay is a high－accuracy low current consumption reset IC series with a built－in delay circuit．The lineup was established with two output types（Nch open drain and CMOS output）and detection voltages range from 0.9 V to 4.8 V in increments of 0.1 V ，so that the series may be selected according to the application at hand．
－Features
1）Detection voltage from 0.9 V to 4.8 V in 0.1 V increments
2）Highly accurate detection voltage：$\pm 1.0 \%$
3）Ultra－low current consumption
4）Nch open drain output（BU42■ロG／F／FVE）and CMOS output（BU43口ロG／F／FVE）
5）Small surface package ：SSOP5（BU42■ロG，BU43ロロG）
SOP4（BU42ロロF，BU43ロロF）
VSOF5（BU42ロロFVE，BU43ロロFVE）
－Applications
All electronics devices that use microcontrollers and logic circuits．

Part Number ：BU4 $\square \square \square \square$	Number	Specification	Details
	（1）	Output Circuit Type	2 ：Open drain output 3 ：CMOS output
	（2）	Detection voltage	Example）VDET ：Represented as 0.1 V steps in the range from 0.9 V to 4.8 V （Displayed as 0.9 in the case of 0.9 V ）
	（3）	Package	G ：SSOP5（SMP5C2） F：SOP4 FVE ：VSOF5（EMP5）

Making	Detection voltage	Part Number									
ZR	4.8 V	BU4248	YV	2.8 V	BU4228	1H	4.8 V	BU4348	OM	2.8 V	BU4328
ZQ	4.7 V	BU4247	YU	2.7 V	BU4227	1G	4.7 V	BU4347	OL	2.7 V	BU4327
ZP	4.6 V	BU4246	YT	2.6 V	BU4226	1F	4.6 V	BU4346	OK	2.6 V	BU4326
ZN	4.5 V	BU4245	YS	2.5 V	BU4225	1E	4.5 V	BU4345	OJ	2.5 V	BU4325
ZM	4.4 V	BU4244	YR	2.4 V	BU4224	1D	4.4 V	BU4344	OH	2.4 V	BU4324
ZL	4.3 V	BU4243	YQ	2.3 V	BU4223	1C	4.3 V	BU4343	OG	2.3 V	BU4323
ZK	4.2 V	BU4242	YP	2.2 V	BU4222	1B	4.2 V	BU4342	0F	2.2 V	BU4322
ZJ	4.1 V	BU4241	YN	2.1 V	BU4221	1A	4.1 V	BU4341	0E	2.1 V	BU4321
ZH	4.0 V	BU4240	YM	2.0 V	BU4220	OZ	4.0 V	BU4340	OD	2.0 V	BU4320
ZG	3.9 V	BU4239	YL	1.9 V	BU4219	OY	3.9 V	BU4339	OC	1.9 V	BU4319
ZF	3.8 V	BU4238	YK	1.8 V	BU4218	OX	3.8 V	BU4338	0B	1.8 V	BU4318
ZE	3.7 V	BU4237	YJ	1.7 V	BU4217	OW	3.7 V	BU4337	OA	1.7 V	BU4317
ZD	3.6 V	BU4236	YH	1.6 V	BU4216	OV	3.6 V	BU4336	ZZ	1.6 V	BU4316
ZC	3.5 V	BU4235	YG	1.5 V	BU4215	OU	3.5 V	BU4335	ZY	1.5 V	BU4315
ZB	3.4 V	BU4234	YF	1.4 V	BU4214	OT	3.4 V	BU4334	ZX	1.4 V	BU4314
ZA	3.3 V	BU4233	YE	1.3 V	BU4213	OS	3.3 V	BU4333	ZW	1.3 V	BU4313
YZ	3.2 V	BU4232	YD	1.2 V	BU4212	OR	3.2 V	BU4332	ZV	1.2 V	BU4312
YY	3.1 V	BU4231	YC	1.1 V	BU4211	0Q	3.1 V	BU4331	ZU	1.1 V	BU4311
YX	3.0 V	BU4230	YB	1．0V	BU4210	OP	3.0 V	BU4330	ZT	1．0V	BU4310
YW	2.9 V	BU4229	YA	0.9 V	BU4209	ON	2.9 V	BU4329	ZS	0.9 V	BU4309

- ABSOLUTE MAXIMUM RATINGS($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Paramet		Symbol	Limits	$\begin{gathered} \text { Unit } \\ \hline \mathrm{V} \end{gathered}$
Power Supply Voltage		VDD-GND	-0.3 to +7	
Output Voltage	Nch Open Drain Output	Vout	GND-0.3 to +7	V
	CMOS O		GND-0.3 to VDD+0.3	
Power Dissipation	SSOP5	Pd	540	mW
	SOP4		400	
	VSOF5		210	
Operating Temperature		Topr	-40 to +125	${ }^{\circ} \mathrm{C}$
Ambient Storage Temperature		Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

*1 When used at temperatures higher than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, the power is reduced by 5.4 mW per $1^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
*2 When used at temperatures higher than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, the power is reduced by 4.0 mW per $1^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
*3 When used at temperatures higher than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, the power is reduced by 2.1 mW per $1^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
*4 When a ROHM standard circuit board ($70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy board) is mounted.

- ELECTRICAL CHARACTERISTICS (Unless specified otherwise, $\mathrm{Ta}=-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Detection Voltage	VDET	$\operatorname{VDET}(\mathrm{T}) \times 0.99$	VDET (T)	$\operatorname{VDET}(\mathrm{T}) \times 1.01$	V	
Detection Voltage Temperature Coefficient	VDET/ $/$ T	-	± 30	-	ppm/ ${ }^{\circ} \mathrm{C}$	Ta $=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Designed Guarantee)
Hysteresis Voltage	$\triangle \mathrm{VDET}$	VDET $\times 0.03$	VDET $\times 0.05$	VDET $\times 0.07$	V	$\mathrm{VDET} \geq 1.1 \mathrm{~V}, \mathrm{RL}=470 \mathrm{k} \Omega, \mathrm{VDD}=\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$
Circuit Current when ON	IDD1	-	0.40	1.75	$\mu \mathrm{A}$	$\mathrm{V} D \mathrm{~F}=\mathrm{VDET}-0.2 \mathrm{~V}, \mathrm{VDET}=4.3$ to 4.8 V
Circuit Current when OFF	IDD2	-	0.55	2.28	$\mu \mathrm{A}$	$\mathrm{VDD}=\mathrm{VDET}+2.0 \mathrm{~V}, \mathrm{VDET}=4.3$ to 4.8 V
Operating Voltage Range	VOPL	0.7	-	-	V	$\mathrm{VOL} \leq 0.4 \mathrm{~V}, \mathrm{RL}=470 \mathrm{k} \Omega, \mathrm{Ta}=25$ to $125^{\circ} \mathrm{C}$
"L" Output Current (Nch)	IOL	3.6	6.5	-	mA	VDS $=0.5 \mathrm{~V}, \mathrm{VDD}=2.4 \mathrm{~V}, \mathrm{VDET}=2.7$ to 4.8 V
"H" Output Current (Pch)	IOH	2.0	4.0	-	mA	$\mathrm{VDS}=0.5 \mathrm{~V}, \mathrm{VDD}=6.0 \mathrm{~V}, \mathrm{VDET}=4.0$ to 4.8 V
CT pin Threshold Voltage	VCTH	VDD $\times 0.40$	VDD $\times 0.50$	VDD $\times 0.60$	V	$\mathrm{VDD}=\mathrm{VDET} \times 1.1, \mathrm{RL}=470 \mathrm{k} \Omega, \mathrm{VDET}=2.6$ to 4.8 V *1
Output Delay Resistance	RCT	9	10	11	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{VDD}=\mathrm{VDET} \times 1.1, \mathrm{VCT}=0.5 \mathrm{~V} \\ & \left(\text { Designed Guarantee)*}{ }^{*} 1\right. \end{aligned}$
CT pin Output Current	ICT	200	400	-	$\mu \mathrm{A}$	$\mathrm{VCT}=0.5 \mathrm{~V}, \mathrm{VDD}=1.5 \mathrm{~V}, \mathrm{VDET}=1.7$ to 4.8 V

*1 Guarantee on $\mathrm{Ta}=25^{\circ} \mathrm{C}$
Note) RL is unnecessary for CMOS output.
Note) Regarding the operating limit voltage
The Vout output is unsettled when Vdd is less than this voltage. It will be Open, High or Low.

Vdet (T) : Set Value of Detection voltage (0.9 V to $4.8 \mathrm{~V}, 0.1 \mathrm{~V}$ step)
Designed Guarantee. (Outgoing inspection is not done an all products.)
-Block Diagram

Fig. 1

BU43DロG/F/FVE

Fig. 2

						TOP VIEW VSOF5		
PIN No.	Symbol	Function	PIN No.	Symbol	Function	PIN No.	Symbol	Function
1	VOUT	Reset output	1	GND	GND	1	VOUT	Reset output
2	VDD	Power supply voltage	2	VDD	Power supply voltage	2	SUB	Substrate*
3	GND	GND	3	CT	Capacitor connection terminal	3	CT	Capacitor connection terminal
4	N.C.	Unconnected terminal	3		for output delay time	3		for output delay time
5	CT	Capacitor connection	4	VOUT	Reset output	4	VDD	Power supply voltage
		terminal for output delay time				5	GND	GND
						Connect	substrate	VDD

Fig. 3 Circuit Current

Fig. 6 I/O Characteristics

Fig. 9 Detecting Voltage Release Voltage

Fig. 12 Operating Limit Voltage

Fig. 4 "LOW" Output Current

Fig. 7 Operating Limit Voltage

Fig. 10 Circuit Current when ON

Fig. 13 Ct Terminal Circuit Resistance

Fig. 5 "High" Output Current

Fig. 8 Ct Terminal Current

Fig. 11 Circuit Current when OFF

Fig. 14 Delay Time (TPLH) and CT Terminal External Capacitance

－Setting of Detector Delay Time

This detector IC can be set delay time at the rise of VDD by the capacitor connected to CT terminal．
－Delay time at the rise of Vdd Tplh：Time until when Vout rise to $1 / 2$ of Vdd after VDD rise up and beyond the release voltage（VDET＋+ VDET）

Сст ：CT pin Externally Attached Capacitance
Rct ：CT pin Internal Impedance
Vстн：CT pin Threshold Voltage
Ln ：Natural Logarithm

－Reference Data

Examples of Output Failing Value（TPHL）

Part Number	TPHL $[\mu \mathrm{s}]$
BU4245G	275.7
BU4345G	359.3

＊This data is for reference only．
This figure will vary with the application，so please confirm actual operation conditions before use．

－Explanation of Operation

For both the open drain type（Fig．15）and the CMOS output type（Fig．16），the detection and release voltages are used as threshold voltages．When the voltage applied to the Vdd pins reaches the applicable threshold voltage，the Vout terminal voltage switches from either＂High＂to＂Low＂or from＂Low＂to＂High＂．BU42口ロG／F／FVE and BU43ロロG／F／FVE have delay time function which set TpLH（Output＂Low＂\rightarrow＂High＂）using an external capacitor（CcT）．Because the BU42口ロ G／F／FVE series uses an open drain output type，it is possible to connect a pull－up resistor to VDD or another power supply ［The output＂High＂voltage（VOUT）in this case becomes VDD or the voltage of the other power supply］．

Fig． 15 （BU42口ดtype internal block diagram）

Fig． 16 （BU43 $\square \square$ type internal block diagram）

－Timing Waveforms

Example：The following shows the relationship between the input voltage VDD，the CT Terminal Voltage VCT and the output voltage Vout when the input power supply voltage VDD is made to sweep up and sweep down（The circuits are those in Figures 15 and 16）．

Fig． 17
（1）When the power supply is turned on，the output is unsettled from after over the operating limit voltage（VOPL）until TPHL．There fore it is possible that the reset signal is not outputted when the rise time of VDD is faster than TPHL．
（2）When VDD is greater than VopL but less than the reset release voltage（VDET＋VDET），the CT terminal（VCT）and output（Vout） voltages will switch to L ．
（3）If VDD exceeds the reset release voltage（VDET＋VDET），then Vout switches from L to H （with a delay of TpLH for setting the CT terminal）．
（4）If VDD drops below the detection voltage（VDET）when the power supply is powered down or when there is a power supply fluctuation，Vout switches to L（with a delay of TPHL）．
（5）The potential difference between the detection voltage and the release voltage is known as the hysteresis width（VDET）．The system is designed such that the output does not flip－flop with power supply fluctuations within this hysteresis width，preventing malfunctions due to noise．
－Circuit Applications
1）Examples of a common power supply detection reset circuit

Fig． 18 Open collector Output type

Application examples of BU42口DG／F／FVE series （Open Drain output type）and BU43口ロG／F／FVE series （CMOS output type）are shown below．

CASE1：The power supply of the microcontroller（Vdd2）differs from the power supply of the reset detection（Vdd1）． Use the Open Drain Output Type（BU42口ロG／FVE） attached a load resistance（RL）between the output and Vdd2．（As shown Figure 18）
CASE2：The power supply of the microcontroller（Vdd1）is same as the power supply of the reset detection（Vdd1）． Use CMOS output type（BU43ロロG／FVE）or Open Drain Output Type（BU42ロロG／FVE）attached a load resistance（RL）between the output and Vdd1． （As shown Figure 19）

When a capacitance CL for noise filtering is connected to the Vout pin（the reset signal input terminal of the microcontroller），please take into account the waveform of the rise and fall of the output voltage（Vout）．

2）Examples of the power supply with resistor dividers
In applications where the power supply input terminal（VDD）of an IC with resistor dividers，it is possible that a through－current will momentarily flow into the circuit when the output logic switches，resulting in malfunctions（such as output oscillatory state）．
（Through－current is a current that momentarily flows from the power supply（VDD）to ground（GND）when the output level switches from＂High＂to＂Low＂or vice versa．）
Consider the use of BD52口■when the power supply input it with resistor dividers．

Fig． 20

- Operation Notes

1. Absolute maximum range

Absolute Maximum Ratings are those values beyond which the life of a device may be destroyed. We cannot be defined the failure mode, such as short mode or open mode. Therefore a physical security countermeasure, like fuse, is to be given when a specific mode to be beyond absolute maximum ratings is considered.
2. GND potential

GND terminal should be a lowest voltage potential every state.
Please make sure all pins that are over ground even if include transient feature.

3. Electrical Characteristics

Be sure to check the electrical characteristics, that are one the tentative specification will be changed by temperature, supply voltage, and external circuit.

4. Bypass Capacitor for Noise Rejection

Please put into the to reject noise between VDD pin and GND with $1 u F$ over and between Vout pin and GND with 1000pF. If extremely big capacitor is used, transient response might be late. Please confirm sufficiently for the point.
5. Short Circuit between Terminal and Soldering

Don't short-circuit between Output pin and VDD pin, Output pin and GND pin, or VDD pin and GND pin. When soldering the IC on circuit board please is unusually cautious about the orientation and the position of the IC. When the orientation is mistaken the IC may be destroyed.

6 . Electromagnetic Field

Mal-function may happen when the device is used in the strong electromagnetic field.

7 . The VDD line inpedance might cause oscillation because of the detection current.
8. A VDD -GND capacitor (as close connection as possible) should be used in high VDD line impedance condition.
9. Lower than the mininum input voltage makes the Vout high impedance, and it must be VDD in pull up (VDD) condition.
10. Case of needless Delay time, recommended to insert more $470 \mathrm{k} \Omega$ resister between VDD and CT.
11. Recommended value of RL Resistar is over $50 \mathrm{k} \Omega$ (VDET=1.5 to 4.8 V), over $100 \mathrm{k} \Omega$ (VDET=0.9 to 1.4 V).
12. This IC has extremely high impedance terminals. Small leak current due to the uncleanness of PCB surface might cause unexpected operations. Application values in these conditions should be selected carefully. If $10 \mathrm{M} \Omega$ leakage is assumed between the CT terminal and the GND terminal, $1 \mathrm{M} \Omega$ connection between the CT terminal and the Vdd terminal would be recommended. Also, if the leakage is assumed between the Vout terminal and the GND terminal, the pull up resistor should be less than $1 / 10$ of the assumed leak resistance.
The value of Rct depends on the external resistor that is connected to CT terminal, so please consider the delay time that is decided by $\tau \times$ RCT \times CCT changes.
13. Delay time (tPLH)
tPLH $=\tau \times$ Rct \times Cct (sec)
τ : time constant
Rct : 10M (typ.) (built-in resistor)
Сст : capacitor connected CT pin.
Recommended value of Сст capacitor is over 100 pF .
The reference value

```
\((\tau \times \operatorname{RcT}) \times 10^{6}\)
VDET \(=0.9\) to 2.5 V
    \(\mathrm{Ta}=25^{\circ} \mathrm{C} \quad\left(\mathrm{min} .=5.1 \times 10^{6} \quad\right.\) typ. \(\left.=6.0 \times 10^{6} \quad \max =6.9 \times 10^{6}\right)\)
    \(\mathrm{Ta}=-25\) to \(125^{\circ} \mathrm{C}\left(\mathrm{min} .=3.3 \mathrm{v} 10^{6}\right.\) typ. \(\left.=6.0 \times 10^{6} \max =8.7 \times 10^{6}\right)\)
VDET \(=2.6\) to 4.8 V
    \(\mathrm{Ta}=25^{\circ} \mathrm{C} \quad\left(\min .=5.9 \times 10^{6} \quad\right.\) typ. \(\left.=6.9 \times 10^{6} \quad \max =7.9 \times 10^{6}\right)\)
```

$$
\mathrm{Ta}=-25 \text { to } 125^{\circ} \mathrm{C}\left(\min .=3.8 \times 10^{6} \quad \text { typ. }=6.9 \times 10^{6} \quad \max =10.0 \times 10^{6}\right)
$$

14. External parameters

The recommended parameter range for $C T$ is 100 pF to $0.1 \mu \mathrm{~F}$. For RL , the recommended range is $50 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. There are many factors (board layout, etc) that can affect characteristics. Please verify and confirm using practical applications.
15. CT pin discharge

Due to the capabilities of the CT pin discharge transistor, the CT pin may not completely discharge when a short input pulse is applied, and in this case the delay time may not be controlled. Please verify the actual operation.
16. Power on reset operation

Please note that the power on reset output varies with the Vcc rise up time. Please verify the actual operation.
17. Precautions for board inspection

Connecting low-impedance capacitors to run inspections with the board may produce stress on the IC. Therefore, be certain to use proper discharge procedure before each process of the test operation. To prevent electrostatic accumulation and discharge in the assembly process, thoroughly ground yourself and any equipment that could sustain ESD damage, and continue observing ESD-prevention procedures in all handing, transfer and storage operations. Before attempting to connect components to the test setup, make certain that the power supply is OFF. Likewise, be sure the power supply is OFF before removing any component connected to the test setup.
18. When the power supply, is turned on because of incertain cases, momentary Rash-current flow into the IC at the logic unsettled, the couple capacitance, GND pattern of width and leading line must be considered.
-Part Number Selection

BU42 : Adjustable Delay Time
CMOS Reset IC Open Drain Type Output Type

$\begin{aligned} 09: & 0.9 \mathrm{~V} \\ & 2(0.1 \mathrm{~V} \text { step })\end{aligned}$
48 : 4.8V

F : SOP4 Embossed taping FVE : VSOF5

BU43 : Adjustable Delay Time
CMOS Reset IC
CMOS Output Type

SSOP5

SOP4

Tape Tape	
Quantity	Embossed carrier tape
Qu00pcs	
Direction of feed	TR (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand)

VSOF5

The contents described herein are correct as of October, 2005

- The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD
- Any part of this application note must not be duplicated or copied without our permission
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer
- The products described herein utilize silicon as the main material.
- The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys)
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Excellence in Electronics

ROHM CO., LTD.
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto
615-8585, Japan
EL: (075)311-2121 FAX: (075)315-0172
JRL http: // www. rohm. com
Published by
Application Engineering Group

Contact us for further information about the products.
Beijing China / BEIIING REPRESENTATIVE OFFICE
Taiwan /ROHM ELECTRONICS TAIWAN CO., LTD
TEL: +886(2)2500-6956 FAX:+886(2)2503-2869
Korea / ROHM ELECTRONICS KOREA CORPRATION
TEL: $+82(2) 8182-700$ FAX: $+82(2) 8182-715$
Singapore / ROHM ELECTRONICS ASIA PTE, LTD. (RES/REI)

Philippines / ROHM ELECTRONICS (PHILIPPINES) SALES CORPORATION
Thailand /ROHM ELECTRONICS (THAILAND) CO., LTD
TEL- $+66(2) 254-4890$ FAX: $+66(2) 256-6334$

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System
www.rohm.com
Contact us : webmaster@rohm.co.jp

