

LT1355/LT1356

Dual and Quad 12MHz, 400V/µs Op Amps

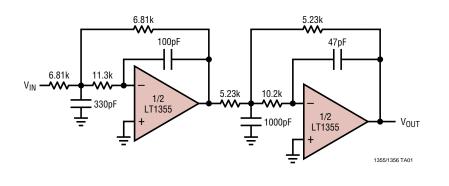
FEATURES

- 12MHz Gain Bandwidth
- 400V/µs Slew Rate
- 1.25mA Maximum Supply Current per Amplifier
- Unity-Gain Stable
- C-Load[™] Op Amp Drives All Capacitive Loads
- 10nV/√Hz Input Noise Voltage
- 800µV Maximum Input Offset Voltage
- 300nA Maximum Input Bias Current
- 70nA Maximum Input Offset Current
- 12V/mV Minimum DC Gain, R_L=1k
- 230ns Settling Time to 0.1%, 10V Step
- 280ns Settling Time to 0.01%, 10V Step
- $\pm 12.5V$ Minimum Output Swing into 500Ω
- $\pm 3V$ Minimum Output Swing into 150Ω
- Specified at $\pm 2.5V$, $\pm 5V$, and $\pm 15V$

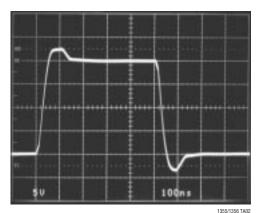
APPLICATIONS

- Wideband Amplifiers
- Buffers
- Active Filters
- Data Acquisition Systems
- Photodiode Amplifiers

DESCRIPTION


The LT1355/LT1356 are dual and quad low power high speed operational amplifiers with outstanding AC and DC performance. The amplifiers feature much lower supply current and higher slew rate than devices with comparable bandwidth. The circuit topology is a voltage feedback amplifier with matched high impedance inputs and the slewing performance of a current feedback amplifier. The high slew rate and single stage design provide excellent settling characteristics which make the circuit an ideal choice for data acquisition systems. Each output drives a 500 Ω load to ±12.5V with ±15V supplies and a 150 Ω load to ±3V on ±5V supplies. The amplifiers are stable with any capacitive load making them useful in buffer applications.

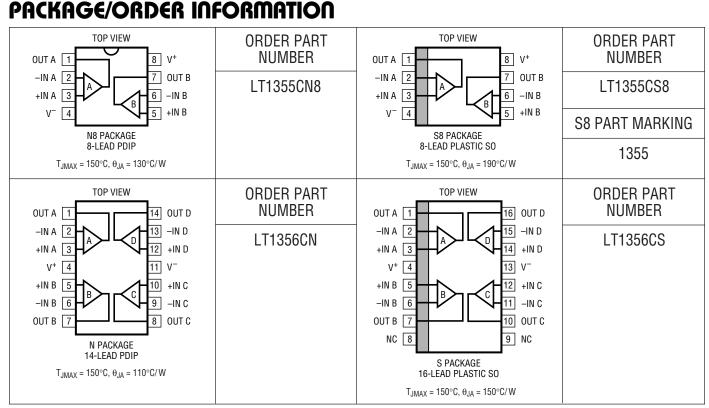
The LT1355/LT1356 are members of a family of fast, high performance amplifiers using this unique topology and employing Linear Technology Corporation's advanced bipolar complementary processing. For a single amplifier version of the LT1355/LT1356 see the LT1354 data sheet. For higher bandwidth devices with higher supply currents see the LT1357 through LT1365 data sheets. Bandwidths of 25MHz, 50MHz, and 70MHz are available with 2mA, 4mA, and 6mA of supply current per amplifier. Singles, duals, and quads of each amplifier are available.


T, LTC and LT are registered trademarks of Linear Technology Corporation. C-Load is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

100kHz, 4th Order Butterworth Filter

$A_V = -1$ Large-Signal Response



TECHNOLOGY

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V ⁺ to V ⁻)	36V
Differential Input Voltage	
(Transient Only) (Note 2)	±10V
Input Voltage	±Vs
Output Short-Circuit Duration (Note 3)	. Indefinite

Operating Temperature Range (Note 7)40°C	to 85°C
Specified Temperature Range (Note 8)40°C	to 85°C
Maximum Junction Temperature (See Below)	
Plastic Package	150°C

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_{CM} = 0V$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	VSUPPLY	MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage		±15V		0.3	0.8	mV
			±5V		0.3	0.8	mV
			±2.5V		0.4	1.0	mV
l _{os}	Input Offset Current		±2.5V to ±15V		20	70	nA
I _B	Input Bias Current		±2.5V to ±15V		80	300	nA
e _n	Input Noise Voltage	f = 10kHz	±2.5V to ±15V		10		nV/√Hz
i _n	Input Noise Current	f = 10kHz	±2.5V to ±15V		0.6		pA/√Hz
R _{IN}	Input Resistance	$V_{CM} = \pm 12V$	±15V	70	160		MΩ
	Input Resistance	Differential	±15V		11		MΩ
C _{IN}	Input Capacitance		±15V		3		pF

2

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_{CM} = 0V$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	VSUPPLY	MIN TYP MAX	UNITS
	Input Voltage Range +		±15V ±5V	12.0 13.4 2.5 3.5	V V
			±2.5V	0.5 1.1	V
	Input Voltage Range [–]		±15V	-13.2 -12.0	V
			±5V	-3.4 -2.5	V
			±2.5V	-0.9 -0.5	V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12V$	±15V ±5V	83 97 78 84	dB dB
		$V_{CM} = \pm 2.5V$ $V_{CM} = \pm 0.5V$	±3V ±2.5V	68 75	dВ
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 2.5 \text{V} \text{ to } \pm 15 \text{V}$	<u> </u>	92 106	dB
A _{VOL}	Large-Signal Voltage Gain	$V_{0 1T} = \pm 12V, R_1 = 1k$	±15V	12 36	V/mV
YVUL		$V_{0UT} = \pm 10V, R_L = 500\Omega$	±15V	5 15	V/mV
		$V_{OUT} = \pm 2.5V, R_{L} = 1k$	±5V	12 36	V/mV
		$V_{OUT} = \pm 2.5 V, R_{L} = 500 \Omega$	±5V	5 15	V/mV
		$V_{OUT} = \pm 2.5 V, R_L = 150 \Omega$	±5V	1 4	V/mV
		$V_{OUT} = \pm 1 V, R_L = 500 \Omega$	±2.5V	5 20	V/mV
V _{OUT}	Output Swing	$R_L = 1k$, $V_{IN} = \pm 40mV$	±15V	13.3 13.8	±V
		$R_L = 500\Omega$, $V_{IN} = \pm 40mV$	±15V	12.5 13.0	±V
		$R_{L} = 500\Omega, V_{IN} = \pm 40mV$	±5V	3.5 4.0	±V
		$R_L = 150\Omega, V_{IN} = \pm 40 \text{mV}$	±5V ±2.5V	3.0 3.3 1.3 1.7	±V +V
		$R_L = 500\Omega, V_{IN} = \pm 40 \text{mV}$			±V
I _{OUT}	Output Current	$V_{OUT} = \pm 12.5V$ $V_{OUT} = \pm 3V$	±15V ±5V	25 30 20 25	mA mA
I _{SC}	Short-Circuit Current	$V_{OUT} = 0V, V_{IN} = \pm 3V$	±15V	30 42	mA
SR	Slew Rate	$A_{V} = -2$, (Note 4)	±15V	200 400	V/µs
			±5V	70 120	V/μs
	Full Power Bandwidth	10V Peak, (Note 5)	±15V	6.4	MHz
		3V Peak, (Note 5)	±5V	6.4	MHz
GBW	Gain Bandwidth	$f = 200 kHz, R_L = 2k$	±15V	9.0 12.0	MHz
			±5V	7.5 10.5	MHz
			±2.5V	9.0	MHz
t _r , t _f	Rise Time, Fall Time	A _V = 1, 10%-90%, 0.1V	±15V	14	ns
			±5V	17	ns
	Overshoot	A _V = 1, 0.1V	±15V ±5V	20 18	% %
	Dreperation Delay				
	Propagation Delay	50% V _{IN} to 50% V _{OUT} , 0.1V	±15V ±5V	16 19	ns ns
ts	Settling Time	10V Step, 0.1%, A _V = -1	±15V	230	ns
-5		10V Step, 0.01%, $A_V = -1$	±15V	280	ns
		5V Step, 0.1%, A _V = -1	±5V	240	ns
		5V Step, 0.01%, $A_V = -1$	±5V	380	ns
	Differential Gain	f = 3.58MHz, A _V = 2, R _L = 1k	±15V	2.2	%
			±5V	2.1	%
	Differential Phase	$f = 3.58MHz, A_V = 2, R_L = 1k$	±15V	3.1	Deg
Bo	Output Resistance	A _V = 1, f = 100kHz	±5V ±15V	3.1	Deg
R ₀					Ω
	Channel Separation	$V_{OUT} = \pm 10V, R_L = 500\Omega$	±15V	100 113	dB
I _S	Supply Current	Each Amplifier	±15V	1.0 1.25	mA
		Each Amplifier	±5V	0.9 1.20	mA

 I_B

ls

ELECTRICAL CHARACTERISTICS $0^{\circ}C \leq T_A \leq 70^{\circ}C$, V_{CM} = 0V unless otherwise noted.

The • denotes the specifications which apply over the temperature range

SYMBOL PARAMETER CONDITIONS MIN VSUPPLY TYP MAX Vos Input Offset Voltage ±15V 1.0 ±5V 1.0 • ±2.5V • 1.2 Input V_{OS} Drift (Note 6) ±2.5V to ±15V 5 8 Input Offset Current ±2.5V to ±15V 100 • los Input Bias Current ±2.5V to ±15V 450 • CMRR **Common Mode Rejection Ratio** $V_{CM} = \pm 12V$ ±15V 81 $V_{CM} = \pm 2.5V$ ±5V 77 $V_{CM} = \pm 0.5V$ ±2.5V 67 Power Supply Rejection Ratio PSRR $V_{\rm S}$ = ±2.5V to ±15V 90 • Large-Signal Voltage Gain $V_{OUT} = \pm 12V, R_L = 1k$ 10.0 ±15V Avol $V_{OUT} = \pm 10V, R_L = 500\Omega$ ±15V 3.3 $V_{OUT} = \pm 2.5 V, R_L = 1 k$ 10.0 ±5V $V_{OUT} = \pm 2.5 V$, $R_L = 500 \Omega$ ±5V • 3.3 $V_{OUT} = \pm 2.5 V$, $R_L = 150 \Omega$ ±5V 0.6 $V_{OUT} = \pm 1 V$, $R_L = 500 \Omega$ ±2.5V 3.3 • VOUT **Output Swing** $R_L = 1k$, $V_{IN} = \pm 40mV$ ±15V 13.2 $R_{I} = 500\Omega, V_{IN} = \pm 40 mV$ ±15V • 12.0 $R_L = 500\Omega$, $V_{IN} = \pm 40 mV$ ±5V • 3.4 $R_L = 150\Omega$, $V_{IN} = \pm 40mV$ ±5V 2.8 $R_L = 500\Omega$, $V_{IN} = \pm 40 mV$ ±2.5V • 1.2 24.0 **Output Current** $V_{OUT} = \pm 12V$ ±15V IOUT • $V_{OUT} = \pm 2.8V$ 18.7 ±5V • Short-Circuit Current $V_{OUT} = 0V, V_{IN} = \pm 3V$ ±15V 24 Isc • SR Slew Rate $A_V = -2$, (Note 4) ±15V 150 60 ±5V • GBW $f = 200 kHz, R_1 = 2k$ ±15V 7.5 Gain Bandwidth • ±5V 6.0 •

The \bullet denotes the specifications which apply over the temperature range – 40°C \leq T_A \leq 85°C, V_{CM} = 0V unless otherwise noted. (Note 8)

±15V

±15V

±5V

98

1.45

1.40

 $V_{OUT} = \pm 10V, R_L = 500\Omega$

Each Amplifier

Each Amplifier

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}		MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage		±15V ±5V ±2.5V	•			1.5 1.5 1.7	mV mV mV
	Input V _{OS} Drift	(Note 6)	±2.5V to ±15V	•		5	8	μV/°C
l _{os}	Input Offset Current		±2.5V to ±15V	٠			200	nA
I _B	Input Bias Current		±2.5V to ±15V				550	nA
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12V$ $V_{CM} = \pm 2.5V$ $V_{CM} = \pm 0.5V$	±15V ±5V ±2.5V	•	80 76 66			dB dB dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S}$ = ±2.5V to ±15V			90			dB
A _{VOL}	Large-Signal Voltage Gain	$ \begin{array}{l} V_{0UT} = \pm 12 V, \ R_L = 1 k \\ V_{0UT} = \pm 10 V, \ R_L = 500 \Omega \\ V_{0UT} = \pm 2.5 V, \ R_L = 1 k \\ V_{0UT} = \pm 2.5 V, \ R_L = 500 \Omega \end{array} $	±15V ±15V ±5V ±5V	• • •	7.0 1.7 7.0 1.7			V/mV V/mV V/mV V/mV

Channel Separation

Supply Current

UNITS

mV

тV

тV

nA

nA

dB

dB

dB

dB

V/mV

V/mV

V/mV

V/mV

V/mV

V/mV

±V

±V

±V

±V

±V

mΑ

mΑ

mΑ

V/µs

V/µs

MHz

MHz

dB

mΑ

mΑ

μV/°C

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the temperature range $-40^{\circ}C \le T_A \le 85^{\circ}C$, $V_{CM} = 0V$ unless otherwise noted. (Note 8)

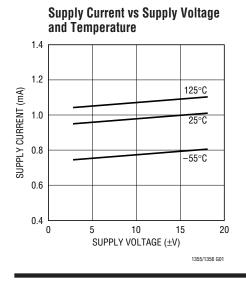
SYMBOL	PARAMETER	CONDITIONS	VSUPPLY		MIN	ТҮР	MAX	UNITS
		$\begin{array}{c} V_{OUT}=\pm2.5V,R_L=150\Omega\\ V_{OUT}=\pm1V,R_L=500\Omega \end{array}$	±5V ±2.5V	•	0.4 1.7			V/mV V/mV
V _{OUT}	Output Swing	$\begin{array}{l} R_L = 1k, V_{IN} = \pm 40mV \\ R_L = 500\Omega, V_{IN} = \pm 40mV \\ R_L = 500\Omega, V_{IN} = \pm 40mV \\ R_L = 150\Omega, V_{IN} = \pm 40mV \\ R_L = 500\Omega, V_{IN} = \pm 40mV \end{array}$	±15V ±15V ±5V ±5V ±2.5V	• • •	13.0 11.5 3.4 2.6 1.2			V± V± V± V± V± V±
I _{OUT}	Output Current	$V_{OUT} = \pm 11.5V$ $V_{OUT} = \pm 2.6V$	±15V ±5V	•	23.0 17.3			mA mA
I _{SC}	Short-Circuit Current	$V_{OUT} = 0V, V_{IN} = \pm 3V$	±15V	•	23			mA
SR	Slew Rate	$A_{\rm V} = -2$, (Note 4)	±15V ±5V	•	120 50			V/µs V/µs
GBW	Gain Bandwidth	f = 200kHz, R _L = 2k	±15V ±5V	•	7.0 5.5			MHz MHz
	Channel Separation	$V_{OUT} = \pm 10V, R_L = 500\Omega$	±15V	•	98			dB
I _S	Supply Current	Each Amplifier Each Amplifier	±15V ±5V	•			1.50 1.45	mA mA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

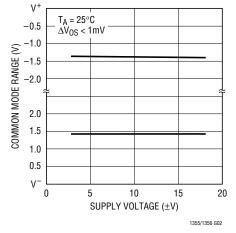
Note 2: Differential inputs of $\pm 10V$ are appropriate for transient operation only, such as during slewing. Large, sustained differential inputs will cause excessive power dissipation and may damage the part. See Input Considerations in the Applications Information section of this data sheet for more details.

Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.

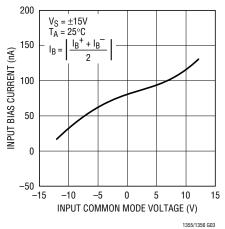
Note 4: Slew rate is measured between $\pm 10V$ on the output with $\pm 6V$ input for $\pm 15V$ supplies and $\pm 1V$ on the output with $\pm 1.75V$ input for $\pm 5V$ supplies.

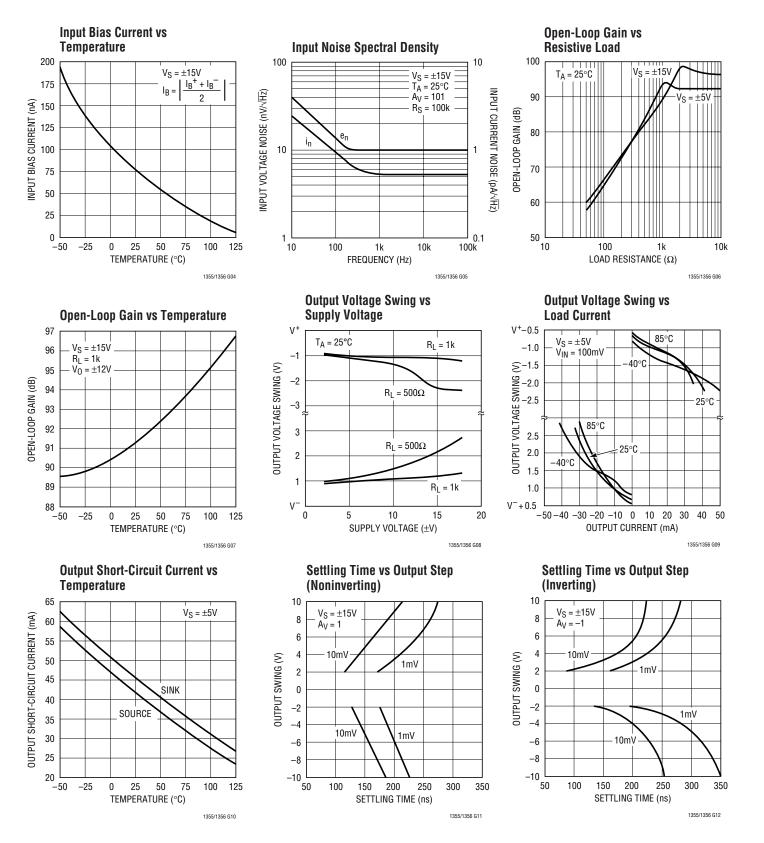

Note 5: Full power bandwidth is calculated from the slew rate measurement: FPBW = $(SR)/2\pi V_P$.

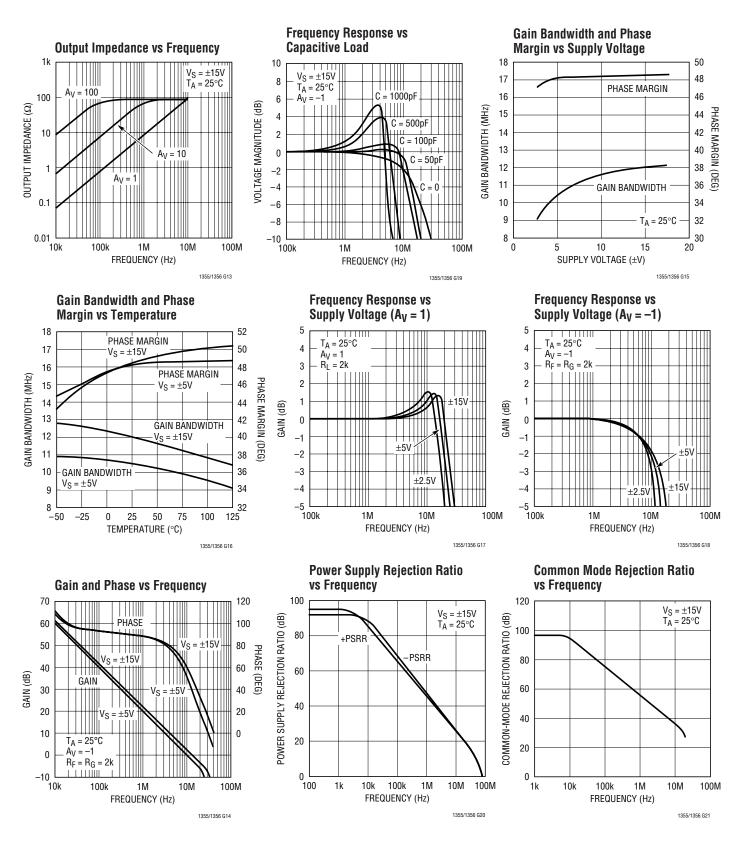
Note 6: This parameter is not 100% tested.

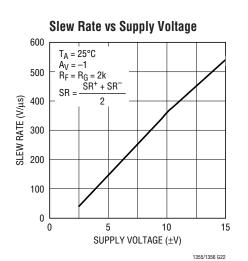

Note 7: The LT1355C/LT1356C are guaranteed functional over the operating temperature range of -40°C to 85°C.

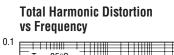
Note 8: The LT1355C/LT1356C are guaranteed to meet specified performance from 0°C to 70°C. The LT1355C/LT1356C are designed, characterized and expected to meet specified performance from -40°C to 85°C, but are not tested or QA sampled at these temperatures. For guaranteed I-grade parts, consult the factory.

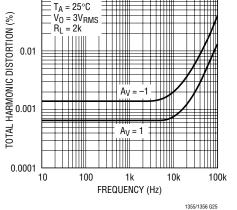

TYPICAL PERFORMANCE CHARACTERISTICS

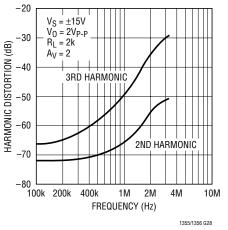

Input Common Mode Range vs **Supply Voltage**

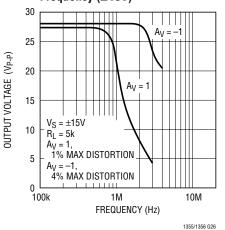

Input Bias Current vs Input Common Mode Voltage











Undistorted Output Swing vs Frequency (±15V)

Crosstalk vs Frequency

1M

FREQUENCY (Hz)

10M

100M

1355/1356 G29

 $T_A = 25^{\circ}C$

V_{IN} = 0dBm

 $R_L = 500\Omega$

 $A_V = 1$

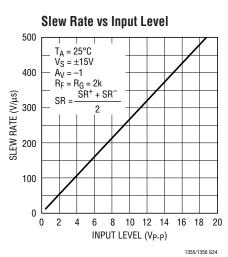
-40

-50

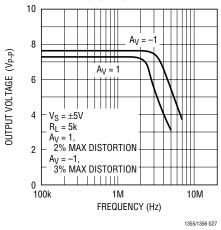
-60

-70

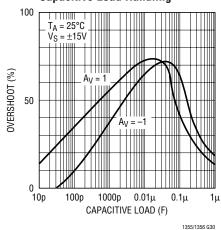
-80


-90

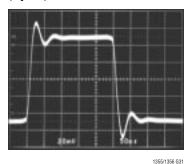
-100

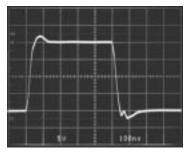

-110 -120

. 100k


CROSSTALK (dB)

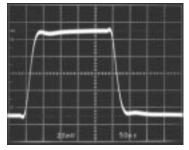
Undistorted Output Swing vs Frequency (±5V)


Capacitive Load Handling

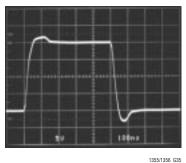


B Downloaded from <u>Elcodis.com</u> electronic components distributor

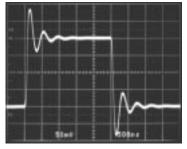
Small-Signal Transient (A_V = 1)



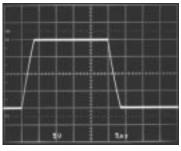
Large-Signal Transient (A_V = 1)


1355/1356 G34

Small-Signal Transient $(A_V = -1)$



1355/1356 G32



Small- Signal Transient $(A_V = -1, C_L = 1000 pF)$

1355/1356 G33

Large-Signal Transient $(A_V = 1, C_L = 10,000 pF)$

1355/1356 G36

APPLICATIONS INFORMATION

Layout and Passive Components

The LT1355/LT1356 amplifiers are easy to use and tolerant of less than ideal layouts. For maximum performance (for example, fast 0.01% settling) use a ground plane, short lead lengths, and RF-quality bypass capacitors (0.01 μ F to 0.1 μ F). For high drive current applications use low ESR bypass capacitors (1 μ F to 10 μ F tantalum).

The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole which can cause peaking or oscillations. If feedback resistors greater than $5k\Omega$ are used, a parallel capacitor of value

$$C_F > R_G \times C_{IN}/R_F$$

should be used to cancel the input pole and optimize dynamic performance. For unity-gain applications where a large feedback resistor is used, C_F should be greater than or equal to C_{IN} .

APPLICATIONS INFORMATION

Capacitive Loading

The LT1355/LT1356 are stable with any capacitive load. As the capacitive load increases, both the bandwidth and phase margin decrease so there will be peaking in the frequency domain and in the transient response. Coaxial cable can be driven directly, but for best pulse fidelity a resistor of value equal to the characteristic impedance of the cable (i.e., 75Ω) should be placed in series with the output. The other end of the cable should be terminated with the same value resistor to ground.

Input Considerations

Each of the LT1355/LT1356 inputs is the base of an NPN and a PNP transistor whose base currents are of opposite polarity and provide first-order bias current cancellation. Because of variation in the matching of NPN and PNP beta, the polarity of the input bias current can be positive or negative. The offset current does not depend on NPN/PNP beta matching and is well controlled. The use of balanced source resistance at each input is recommended for applications where DC accuracy must be maximized.

The inputs can withstand transient differential input voltages up to 10V without damage and need no clamping or source resistance for protection. Differential inputs, however, generate large supply currents (tens of mA) as required for high slew rates. If the device is used with sustained differential inputs, the average supply current will increase, excessive power dissipation will result and the part may be damaged. The part should not be used as a comparator, peak detector or other open-loop application with large, sustained differential inputs. Under normal, closed-loop operation, an increase of power dissipation is only noticeable in applications with large slewing outputs and is proportional to the magnitude of the differential input voltage and the percent of the time that the inputs are apart. Measure the average supply current for the application in order to calculate the power dissipation.

Circuit Operation

The LT1355/LT1356 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a current feedback amplifier. The operation of the circuit can be understood by referring to the simplified schematic. The inputs are buffered by complementary NPN and PNP emitter followers which drive an 800Ω resistor. The input voltage appears across the resistor generating currents which are mirrored into the high impedance node. Complementary followers form an output stage which buffers the gain node from the load. The bandwidth is set by the input resistor and the capacitance on the high impedance node. The slew rate is determined by the current available to charge the gain node capacitance. This current is the differential input voltage divided by R1, so the slew rate is proportional to the input. Highest slew rates are therefore seen in the lowest gain configurations. For example, a 10V output step in a gain of 10 has only a 1V input step, whereas the same output step in unity gain has a 10 times greater input step. The curve of Slew Rate vs Input Level illustrates this relationship. The LT1355/ LT1356 are tested for slew rate in a gain of -2 so higher slew rates can be expected in gains of 1 and -1, and lower slew rates in higher gain configurations.

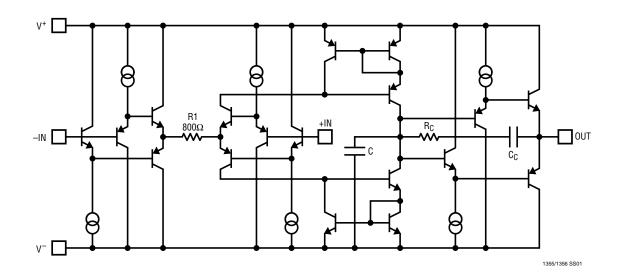
The RC network across the output stage is bootstrapped when the amplifier is driving a light or moderate load and has no effect under normal operation. When driving a capacitive load (or a low value resistive load) the network is incompletely bootstrapped and adds to the compensation at the high impedance node. The added capacitance slows down the amplifier which improves the phase margin by moving the unity-gain frequency away from the pole formed by the output impedance and the capacitive load. The zero created by the RC combination adds phase to ensure that even for very large load capacitances, the total phase lag can never exceed 180 degrees (zero phase margin) and the amplifier remains stable.

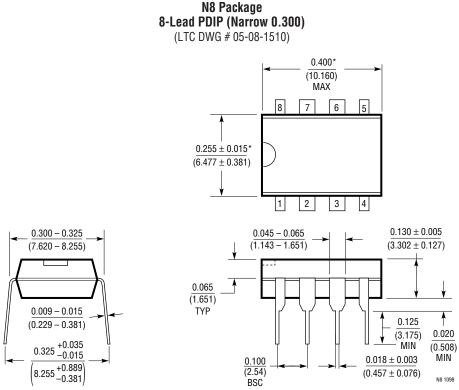
APPLICATIONS INFORMATION

Power Dissipation

The LT1355/LT1356 combine high speed and large output drive in small packages. Because of the wide supply voltage range, it is possible to exceed the maximum junction temperature under certain conditions. Maximum junction temperature (T_J) is calculated from the ambient temperature (T_A) and power dissipation (P_D) as follows:

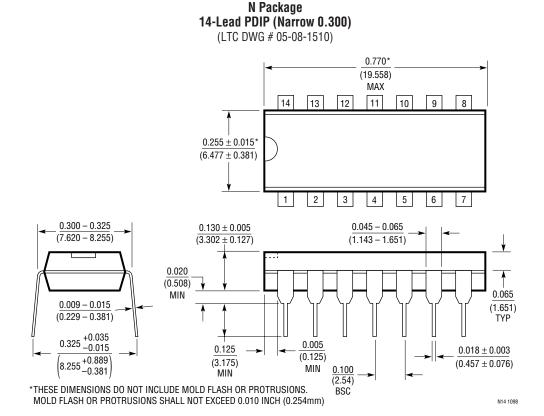
Worst case power dissipation occurs at the maximum supply current and when the output voltage is at 1/2 of either supply voltage (or the maximum swing if less than 1/2 supply voltage). For each amplifier P_{DMAX} is:

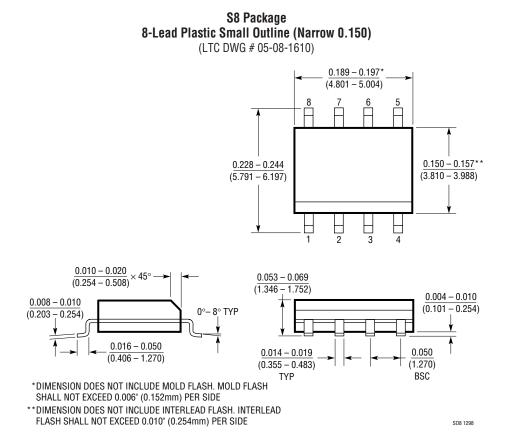

 $P_{DMAX} = (V^+ - V^-)(I_{SMAX}) + (V^+/2)^2/R_L$


Example: LT1356 in S16 at 70°C, $V_S = \pm 15V$, $R_L = 1k$

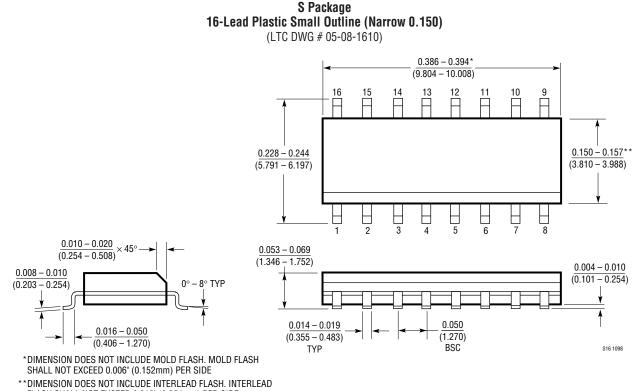
 $P_{DMAX} = (30V)(1.45mA) + (7.5V)^2/1kW = 99.8mW$

 $T_{JMAX} = 70^{\circ}C + (4 \times 99.8 \text{mW})(150^{\circ}C/\text{W}) = 130^{\circ}C$

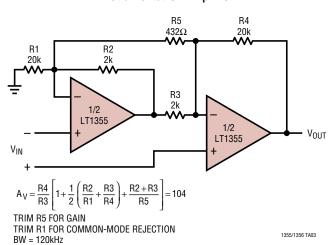

SIMPLIFIED SCHEMATIC



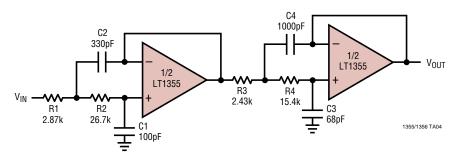
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)



Downloaded from Elcodis.com electronic components distributor



FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE


Downloaded from Elcodis.com electronic components distributor

TYPICAL APPLICATIONS

Instrumentation Amplifier

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1354	12MHz, 400V/µs Op Amp	Single Version of LT1355/LT1356
LT1352/LT1353	Dual and Quad 250µA, 3MHz, 200V/µs Op Amps	Lower Power Version of LT1355/LT1356, V_{OS} = 0.6mV, I_{S} = 250µA/Amplifier
LT1358/LT1359	Dual and Quad 25MHz, 600Vµs Op Amps	Faster Version of LT1355/LT1356, V_{OS} = 0.6mV, I_{S} = 2mA/Amplifier

