feATURES

- 1A, $0.5 \Omega, 30 \mathrm{~V}$ Internal Switch
- 1.1MHz Fixed Frequency Operation
- Operates with V_{IN} as Low as 1.5 V
- Low-Battery Detector Stays Active in Shutdown
- Low V CESAT Switch: 410 mV at 800 mA
- Pin-for-Pin Compatible with the LT1317B
- Uses Ceramic Capacitors
- Small 8-Lead MSOP Package

APPLICATIONS

- LCD Bias Supplies
- GPS Receivers
- Battery Backup
- Portable Electronic Equipment
- Diagnostic Medical Instrumentation

1.1MHz, 1 A Switch PWM DC/DC Converter

June 2000

DESCRIPTIOn

The $L T^{\circledR} 1949-1$ is a fixed frequency step-up DC/DC converter with a $1 \mathrm{~A}, 0.5 \Omega$ internal switch. Capable of generating 10 V at 175 mA from a 3.3 V input, the LT1949-1 is ideal for generating bias voltages for large screen LCD panels. Constant frequency 1.1 MHz operation results in a low noise output that is easy to filter and the 30V switch rating allows output voltage up to 28 V using a single inductor. The high switching frequency allows the use of ceramic output capacitors. An external compensation pin gives the user flexibility in optimizing loop compensation, allowing small, low ESR ceramic capacitors to be used at the output. The 8 -lead MSOP package ensures a low profile overall solution.

The LT1949-1 includes a low-battery detector that stays alive when the device goes into shutdown. Quiescent current in shutdown is $50 \mu \mathrm{~A}$, while operating current is 8 mA .
$\overline{\mathbf{L Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Figure 1. 3.3V to 10V/175mA DC/DC Converter

Figure 2. 3.3V to 10V Converter Efficiency

ABSOLUTE MAXImUM RATINGS
(Note 1)
VIN, LBO Voltage .. 12V
SW Voltage ... - 0.4 V to 30V
FB Voltage .. $\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}$
VC Voltage .. 2 V
LBI Voltage ... $0 V \leq V_{\text {LBI }} \leq 1 V$
SHDN Voltage ... 6V
Junction Temperature .. $125^{\circ} \mathrm{C}$
Operating Temperature Range (Note 2) $\ldots-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

	ORDER PART NUMBER
	LT1949-1EMS8
	MS8 PART MARKING
	LTQX

Consult factory for Industrial and Military grade parts.

ELECTRACPLCHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=2 \mathrm{~V}, \mathrm{~V} \overline{\text { SHDN }}=2 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{Q}	Quiescent Current	$V_{\text {SHDN }}=0 \mathrm{~V}$	\bullet		$\begin{gathered} 8 \\ 50 \end{gathered}$	$\begin{aligned} & 14 \\ & 80 \end{aligned}$	mA $\mu \mathrm{A}$
$V_{\text {FB }}$	Feedback Voltage		\bullet	$\begin{aligned} & 1.22 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 1.24 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 1.26 \end{aligned}$	V
IB	FB Pin Bias Current (Note 3)		\bullet		24	150	nA
	Input Voltage Range		\bullet	1.7		12	V
$\underline{g_{m}}$	Error Amp Transconductance	$\Delta \mathrm{l}=5 \mu \mathrm{~A}$	\bullet	140	280	480	$\mu \mathrm{mhos}$
A_{V}	Error Amp Voltage Gain				700		V/V
	Maximum Duty Cycle		\bullet	80	85		\%
	Switch Current Limit (Note 4)	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$, Duty Cycle $=30 \%$		1	1.1	1.5	A
fosc	Switching Frequency		\bullet	0.85	1.1	1.35	MHz
	Shutdown Pin Current	$\begin{aligned} & V_{\overline{S H D N}}=V_{\text {IN }} \\ & V \overline{S H D N}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 0.015 \\ -5 \end{gathered}$	$\begin{gathered} 0.1 \\ -14 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	LBI Threshold Voltage		\bullet	$\begin{aligned} & 190 \\ & 180 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 210 \\ & 220 \end{aligned}$	mV mV
	LBO Output Low	$\mathrm{I}_{\text {SINK }}=10 \mu \mathrm{~A}$	\bullet		0.15	0.25	V
	LBO Leakage Current	$\mathrm{V}_{\mathrm{LBI}}=250 \mathrm{mV}, \mathrm{V}_{\text {LBO }}=5 \mathrm{~V}$	\bullet		20	100	nA
	LBI Input Bias Current (Note 5)	$V_{L B I}=150 \mathrm{mV}$	\bullet		30	120	nA
	Low-Battery Detector Gain	$1 \mathrm{M} \Omega$ Pull-Up			2000		V / V
	Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$	\bullet		0.01	3	$\mu \mathrm{A}$
	Switch V CESAT	$\begin{aligned} & I_{\mathrm{SW}}=800 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SW}}=500 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 410 \\ & 270 \end{aligned}$	400	mV mV
	Reference Line Regulation	$1.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 12 \mathrm{~V}$			0.08		\%/V
	$\overline{\text { SHDN }}$ Input Voltage High		\bullet	1.4		6	V
	$\overline{\text { SHDN }}$ Input Voltage Low		\bullet			0.4	V

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The LT1949-1E is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

Note 3: Bias current flows into FB pin.
Note 4: Switch current limit guaranteed by design and/or correlation to static tests. Duty cycle affects current limit due to ramp generator.
Note 5: Bias current flows out of LBI pin.

TYPICAL PGRFORMANCG CHARACTGRISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

PIn functions

\mathbf{V}_{C} (Pin 1): Compensation Pin for Error Amplifier. Connect a series RC network from this pin to ground. Typical values for compensation are a $30 \mathrm{k} / 330 \mathrm{pF}$ combination when using ceramic output capacitors. Minimize trace area at V_{C}.
FB (Pin 2): Feedback Pin. Reference voltage is 1.24 V . Connect resistor divider tap here. Minimize trace area at FB. Set $\mathrm{V}_{\text {OUT }}$ according to: $\mathrm{V}_{\text {OUT }}=1.24 \mathrm{~V}(1+\mathrm{R} 1 / \mathrm{R} 2)$.
SHDN (Pin 3): Shutdown. Pull this pin low for shutdown mode (only the low-battery detector remains active). Leave this pin floating or tie to a voltage between 1.4 V and 6 V to enable the device. $\overline{\text { SHDN }}$ pin is logic level and need only meet the logic specification (1.4V for high, 0.4 V for low).

GND (Pin 4): Ground. Connect directly to local ground plane.
SW (Pin 5): Switch Pin. Connect inductor/diode here. Minimize trace area at this pin to keep EMI down.
$\mathbf{V}_{\text {IN }}$ (Pin 6): Supply Pin. Must be bypassed close to the pin.
LBI (Pin 7): Low-Battery Detector Input. 200mV reference. Voltage on LBI must stay between ground and 700 mV . Low-battery detector remains active in shutdown mode.
LBO (Pin 8): Low-Battery Detector Output. Open collector, can sink $10 \mu \mathrm{~A}$. A $1 \mathrm{M} \Omega$ pull-up is recommended.

BLOCK DIAGRAm

Figure 3. LT1949-1 Block Diagram

OPERATION

The LT1949-1 is a current mode, fixed frequency step-up DC/DC converter with an internal 1A NPN power transistor. Operation can best be understood by referring to the Block Diagram.
At the beginning of each oscillator cycle, the flip-flop is set and the switch is turned on. Current in the switch ramps up until the voltage at $A 2$'s positive input reaches the V_{C} pin voltage, causing A2's output to change state and the switch to be turned off. The signal at A2's positive input is a summation of a signal representing switch current and a ramp generator (introduced to avoid subharmonic oscillations at duty factors greater than 50%). If the load increases, $\mathrm{V}_{\text {OUT }}$ (and FB) will drop slightly and the error amplifier will drive V_{C} to a higher voltage, causing current in the switch to increase. In this way, the error amplifier drives the V_{C} pin to the voltage necessary to satisfy the Ioad. Frequency compensation is provided by an external series RC network connected between the V_{C} pin and ground.

Layout Hints

The LT1949-1 switches current at high speed, mandating careful attention to layout for proper performance. You will not get advertised performance with careless layouts. Figure 4 shows recommended component placement for a boost (step-up) converter. Follow this closely in your PC layout. Note the direct path of the switching loops. Input capacitor C1 must be placed close ($<5 \mathrm{~mm}$) to the IC package. As little as 10 mm of wire or PC trace from $\mathrm{C}_{\text {IN }}$ to $V_{\text {IN }}$ will cause problems such as inability to regulate or oscillation.

The ground terminal of output capacitor C 2 should tie close to Pin 4 of the LT1949-1. Doing this reduces dl/dt in the ground copper which keeps high frequency spikes to a minimum. The DC/DC converter ground should tie to the PC board ground plane at one place only, to avoid introducing $\mathrm{dl} / \mathrm{dt}$ in the ground plane.

OPERATION

Figure 4. Recommended Component Placement for Boost Converter. Note Direct High Current Paths Using Wide PC Traces. Minimize Trace Area at Pin $1\left(V_{c}\right)$ and Pin 2 (FB). Use Multiple Vias to Tie Pin 4 Copper to Ground Plane. Use Vias at One Location Only to Avoid Introducing Switching Currents into the Ground Plane

APPLICATIONS INFORMATION

Low-Battery Detector

The LT1949-1's low-battery detector is a simple PNP input gain stage with an open collector NPN output. The negative input of the gain stage is tied internally to a 200 mV $\pm 5 \%$ reference. The positive input is the LBI pin. Arrangement as a low-battery detector is straightforward.

Figure 5 details hookup. R1 and R2 need only be low enough in value so that the bias current of the LBI pin doesn't cause large errors. For R2, 49.9k is adequate. The 200 mV reference can also be accessed as shown in Figure 6. The low-battery detector remains active in shutdown.

Figure 6. Accessing 200mV Reference

Figure 5. Setting Low-Battery Detector Trip Point

TYPICAL APPLICATION

4 Cell to 5V SEPIC Converter

PACKAGE DESCRIPTIOी Dimensions in inches (millimeters) unless otherwise noted.
MS8 Package
8-Lead Plastic MSOP
(LTC DWG \# 05-08-1660)

* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED $0.006^{\prime \prime}$ (0.152 mm) PER SIDE

TYPICAL APPLICATION

Low Profile Triple Output LCD Bias Generator

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1302	High Output Current Micropower DC/DC Converter	$5 \mathrm{~V} / 600 \mathrm{~mA}$ from 2V, 2 A Internal Switch, $200 \mu \mathrm{~A} \mathrm{I}_{Q}$
LT1304	2-Cell Micropower DC/DC Converter	Low-Battery Detector Active in Shutdown
LT1307B	Single Cell Micropower 600kHz PWM DC/DC Converter	3.3 V at 75 mA from 1 Cell, MSOP Package
LT1308B	2A 600kHz PWM DC/DC Converter	36V Switch, Fixed Frequency Operation, S0-8 and TSSOP Packages
LT1317B	Micropower, 600kHz PWM DC/DC Converter	2 Cells to 3.3 V at 200 mA , MSOP Package
LT1377	Monolithic 1MHz, 1.5A Switching Regulator	Regulates Positive or Negative Outputs, Ext Synchronization
LT1613	Single Cell 1.4MHz PWM DC/DC Converter	3.3 V to 5V at 200 mA , SOT-23 Package
LT1615	Micropower Boost Converter in SOT-23	$\mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A},<1 \mu \mathrm{~A}$ in Shutdown, $\mathrm{V}_{\text {Out }} \mathrm{Up}$ to 34V
LT1930	1.2MHz Boost Converter in SOT-23	$1 \mathrm{~A}, 36 \mathrm{~V}$ Internal Switching, $\mathrm{V}_{\text {IN }}=2.6 \mathrm{~V}$ to 16V
LT1949	600 kHz , 1A Switch PWM DC/DC Converter	1A, $0.5 \Omega, 30 \mathrm{~V}$ Internal Switch, 8-Lead MSOP and S0 Packages

