

Data Sheet June 13, 2008 FN6726.0

Monolithic Quad SPST CMOS Analog Switches

The DG411/883 series monolithic CMOS analog switches are drop-in replacements for the popular DG211 and DG212 series devices. They include four independent single pole throw (SPST) analog switches, and TTL and CMOS compatible digital inputs.

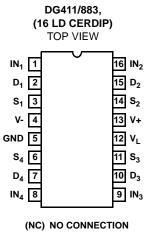
These switches feature lower analog ON-resistance ($<35\Omega$) and faster switch time (t_{ON} <175ns) compared to the DG211 or DG212. Charge injection has been reduced, simplifying sample and hold applications.

The improvements in the DG411/883 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling $40V_{P-P}$ signals. Power supplies may be single-ended from +5V to +34V, or split from ±5V to ±20V.

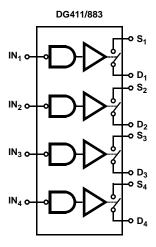
The four switches are bilateral, equally matched for AC or bidirectional signals. The ON-resistance variation with analog signals is quite low over a ±15V analog input range. This permits independent control of turn-on and turn-off times for SPDT configurations, permitting "break-before-make" or "make-before-break" operation with a minimum of external logic.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. DWG. #
DG411AK/883	-55 to +125	16 Ld CerDIP	F16.3


Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- ON-Resistance <35W Max
- Low Power Consumption (P_D <35mW)
- · Fast Switching Action
 - t_{ON} <175ns
 - t_{OFF} <145ns
- Low Charge Injection
- Upgrade from DG211/DG212
- TTL, CMOS Compatible
- Single or Split Supply Operation


Applications

- · Audio Switching
- · Battery Operated Systems
- Data Acquisition
- · Hi-Rel Systems
- · Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

Pinout

Functional Diagram Four SPST Switches per Package Switches Shown for Logic "1" Input

Pin Description

PIN	SYMBOL	DESCRIPTION
1	IN ₁	Logic Control for Switch 1
2	D ₁	Drain (Output) Terminal for Switch 1
3	S ₁	Source (Input) Terminal for Switch 1
4	V-	Negative Power Supply Terminal
5	GND	Ground Terminal (Logic Common)
6	S ₄	Source (Input) Terminal for Switch 4
7	D ₄	Drain (Output) Terminal for Switch 4
8	IN ₄	Logic Control for Switch 4
9	IN ₃	Logic Control for Switch 3
10	D ₃	Drain (Output) Terminal for Switch 3
11	S ₃	Source (Input) Terminal for Switch 3
12	V _L	Logic Reference Voltage
13	V+	Positive Power Supply Terminal (Substrate)
14	S ₂	Source (Input) Terminal for Switch 2
15	D ₂	Drain (Output) Terminal for Switch 2
16	IN ₂	Logic Control for Switch 2

TABLE 1. TRUTH TABLE

LOGIC	SWITCH
0	ON
1	OFF

NOTE: Logic "0" ≤0.8V. Logic "1" ≥2.4V.

intersil

Absolute Maximum Ratings

V+ to V
GND to V25V
V _L (Note 3)(GND -0.3V) to (V+) +0.3V
Digital Inputs, V_S , V_D (Note 4) (V-) -2V to (V+) + 2V or 30mA,
Whichever Occurs First
Continuous Current (Any Terminal)
Current, S or D (Pulsed 1ms, 10% Duty Cycle)100mA

Thermal Information

Thermal Resistance (Typical, Notes 1, 2)	θ _{JA} (°C/W)	θ _{JC} (°C/W)
16 Ld CERDIP Package	75	20
Junction Temperature		+175°C
Operating Temperature (A Suffix)	55'	°C to +125°C
Storage Temperature Range (A Suffix)	65'	°C to +125°C
Lead Temperature (Soldering 10s)		+300°C

Operating Conditions

Operating Voltage Range	.±20V Max
Operating Temperature Range55°C	to +125°C
Input Low Voltage	. 0.8V Max
Input High Voltage	2.4V Min
Input Rise and Fall Time	≤20ns

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.
- 2. For θ_{JC} , the "case temp" location is the center of the exposed metal pad on the package underside.
- 3. V_{IN} = Input Voltage to Perform Proper Function.
- 4. Signals on S_X, D_X or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

DC Electrical Specifications

Device Tested at: V+ = +15V, V- = -15V, V_L = 5V, GND = 0V, Unless Otherwise Specified. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.

			GROUP A	TEMPERATURE (°C)	LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP		MIN	MAX	UNITS
Drain-to-Source	r _{DS(ON)}	V+ = +13.5V,	1, 3	+25, -55	0	35	Ω
ON-Resistance		$V- = -13.5V,$ $I_S = -10mA,$ $V_D = \pm 8.5V$ $V_{IN} = 0.8V$	2	+125	0	45	Ω
		V+ = +10.8V,	1, 3	+25, -55	0	80	Ω
		V- = -0V, $I_S = -10mA,$ $V_D = 3.0V$ and $8.0V$ $V_{IN} = 0.8V$	2	+125	0	100	Ω
Source OFF Leakage Current	I _{S(OFF)}	V+ = 16.5V,	1	+25	-0.25	+0.25	nA
		V- = -16.5V, $V_D = -15.5V,$ $V_S = 15.5V$ $V_{IN} = 2.4V$	2, 3	+125, -55	-20	+20	nA
		V+ = 16.5V,	1	+25	-0.25	+0.25	nA
		V- = -16.5V, $V_D = 15.5V,$ $V_S = -15.5V$ $V_{IN} = 2.4V$	2, 3	+125, -55	-20	+20	nA
Drain OFF Leakage Current	I _{D(OFF)}	V+ = 16.5V,	1	+25	-0.25	+0.25	nA
		V- = -16.5V, $V_D = -15.5V,$ $V_S = 15.5V$ $V_{IN} = 2.4V$	2, 3	+125, -55	-20	+20	nA
		V+ = 16.5V,	1	+25	-0.25	+0.25	nA
		V- = -16.5V, $V_D = 15.5V,$ $V_S = -15.5V$ $V_{IN} = 2.4V$	2, 3	+125, -55	-20	+20	nA

FN6726.0 June 13, 2008

DC Electrical Specifications

Device Tested at: V+ = +15V, V- = -15V, V_L = 5V, GND = 0V, Unless Otherwise Specified. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. **(Continued)**

			GROUP A	TEMPERATURE (°C)	LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP		MIN	MAX	UNITS
Channel ON Leakage Current	I _{D(ON) +} I _{S(ON)}	V+ = 16.5V,	1	+25	-0.4	+0.4	nA
		$V_{-} = -16.5V,$ $V_{S} = V_{D} = \pm 15.5V$	2, 3	+125, -55	-40	+40	nA
Input Current with V _{IN} Low	I _{IL}	Input Under Test = 0.8V, All Others = 2.4V	1, 2, 3	+25, +125, -55	-0.5	+0.5	μA
Input Current with V _{IN} High	I _{IH}	Input Under Test = 2.4V, All Others = 0.8V	1, 2, 3	+25, +125, -55	-0.5	+0.5	μA
Positive Supply Current	I+	V+ = 16.5V, V- = -16.5,	1	+25	-	+1.0	μΑ
		$V_{IN} = 0V \text{ or } 5.0V$	2, 3	+125, -55	-	+5.0	μA
		V+ = 13.2V, V- = 0V, V _{IN} = 0V or 5.0V V _L = 5.25V	1	+25	-	+1.0	μA
			2, 3	+125, -55	-	+5.0	μA
Negative Supply Current	I-	V+ = 16.5V, V- = -16.5, V _{IN} = 0V or 5.0V	1	+25	-1.0	-	μA
			2, 3	+125, -55	-5.0	-	μA
		V+ = 13.2V, V- = 0V, V _{IN} = 0V or 5.0V V _L = 5.25V	1	+25	-1.0	-	μA
			2, 3	+125, -55	-5.0	-	μA
Logic Supply Current	ΙL	V+ = 16.5V, V- = -16.5, V _{IN} = 0V or 5.0V	1	+25	-	+1.0	μA
			2, 3	+125, -55	-	+5.0	μA
		V+ = 13.2V, V- = 0V,	1	+25	-	+1.0	μA
		$V_{IN} = 0V \text{ or } 5.0V$ $V_{L} = 5.25V$	2, 3	+125, -55	-	+5.0	μA
Ground Current	I _{GND}	V+ = 16.5V, V- = -16.5,	1	+25	-1.0	-	μA
		$V_{IN} = 0V \text{ or } 5.0V$	2, 3	+125, -55	-5.0	-	μA
		V+ = 13.2V, V- = 0V,	1	+25	-1.0	-	μA
		V _{IN} = 0V or 5.0V V _L = 5.25V	2, 3	+125, -55	-5.0	-	μA

AC Electrical Specifications

Device Tested at: V+ = +15V, V- = -15V, V_L = 5V, GND = 0V, Unless Otherwise Specified. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.

			GROUP A	TEMPERATURE (°C)	LIMITS		
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP		MIN	MAX	UNITS
Turn ON Time	t _{ON}	$C_L = 35pF, V_S = \pm 10V,$	9, 11	+25, -55	0	175	ns
		$R_L = 300\Omega$	10	+125	0	240	ns
		V+ = 12V, V- = 0V, $C_L = 35pF, V_S = +8V,$ $R_L = 300\Omega$	9, 11	+25, -55	0	250	ns
			10	+125	0	400	ns
Turn OFF Time	t _{OFF}	$C_L = 35pF, V_S = \pm 10V,$ $R_L = 300\Omega$	9, 11	+25, -55	0	145	ns
			10	+125	0	160	ns
		V+ = 12V, V- = 0V, $C_L = 35pF, V_S = +8V,$ $R_L = 300\Omega$	9, 11	+25, -55	0	125	ns
			10	+125	0	140	ns

intersil

Electrical Specifications

Device Tested at: V+ = +15V, V- = -15V, $V_L = 5V$, GND = 0V, Unless Otherwise Specified. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ}C$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

		GROUP A TEMPERATURE LIMITS		ITS				
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	(°C)	MIN	MAX	UNITS	
Charge Injection	Q	$V_G = 0V$, $R_G = 0\Omega$, $T_A = +25$ °C,	9	+25	-100	+100	рC	
		C _L = 10nF (see Figure 2)	C _L = 10nF (see Figure 2)		+25			рС
		$V_G = 6V, R_G = 0\Omega, T_A = +25^{\circ}C$	9	+25	-100	+100	рC	
		$C_L = 10nF, V + = 12V, V - = 0V$ (see Figure 2)		+25			рС	

TABLE 2. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (See "Electrical Spec Tables" on page 3 and page 4				
Interim Electrical Parameters (Pre Burn-In)	1				
Final Electrical Test Parameters	1 (Note 5), 2, 3, 9, 10, 11				
Group A Test Requirements	1, 2, 3, 9, 10, 11				
Groups C and D Endpoints	1				

NOTE:

5. PDA applies to Subgroup 1 only.

Typical Performance Curves

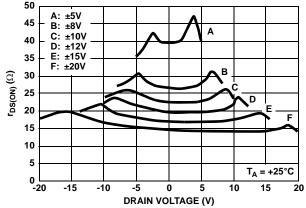


FIGURE 1. ON-RESISTANCE vs $V_{\rm D}$ AND POWER SUPPLY VOLTAGE

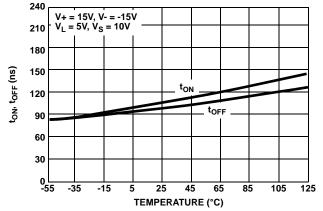


FIGURE 2. SWITCHING TIME vs TEMPERATURE

Typical Performance Curves (Continued)

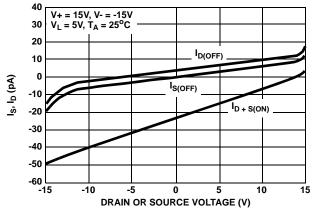


FIGURE 3. LEAKAGE CURRENT vs ANALOG VOLTAGE

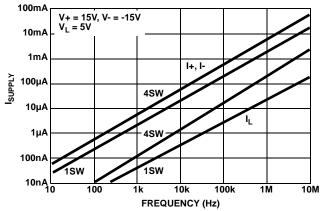


FIGURE 4. SUPPLY CURRENT vs INPUT SWITCHING FREQUENCY

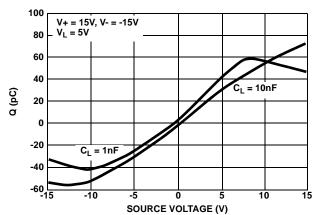


FIGURE 5. CHARGE INJECTION vs ANALOG VOLTAGE (VD)

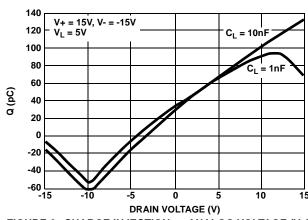
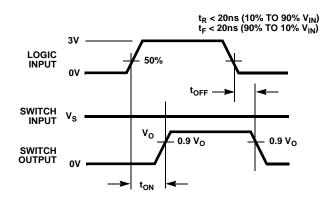
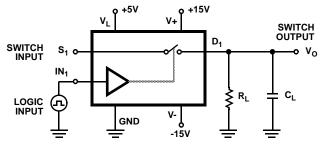



FIGURE 6. CHARGE INJECTION vs ANALOG VOLTAGE (Vs)

Test Circuits

V_O is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform.



NOTE: Logic input waveform is inverted for switches that have the opposite logic sense.

FIGURE 7A.

intersil

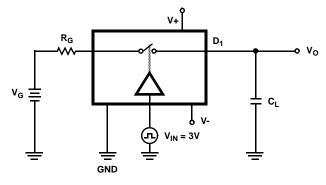
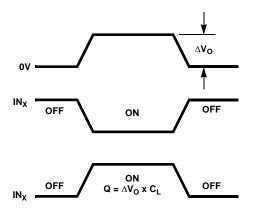
6

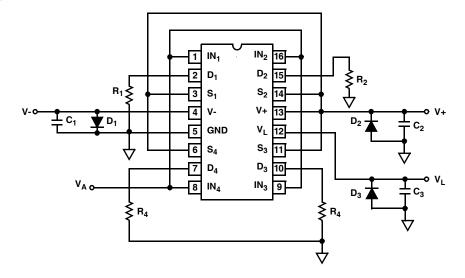
Repeat test for all IN and S.

For load conditions, see Specifications \mathbf{C}_{L} (includes fixture and stray capacitance)

$$V_O = V_S \frac{R_L}{R_L + r_{DS(ON)}}$$

FIGURE 7B. FIGURE 7. SWITCHING TIME


FIGURE 8A.

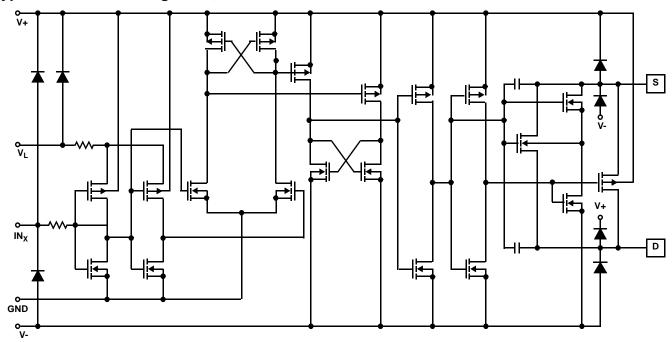

 $\ensuremath{\text{IN}_{\text{X}}}$ dependent on switch configuration input polarity determined by sense of switch.

FIGURE 8B. FIGURE 8. CHARGE INJECTION

Burn-In Circuit

Typical Schematic Diagram (Typical Channel)

Die Characteristics

DIE DIMENSIONS:

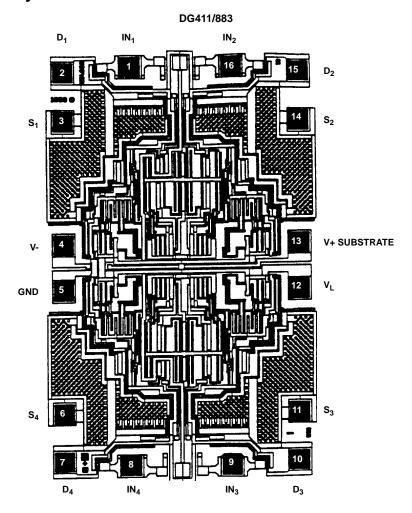
 $2760 \mu m \ x \ 1780 \mu m \ x \ 485 \pm 25 \mu m$

METALLIZATION:

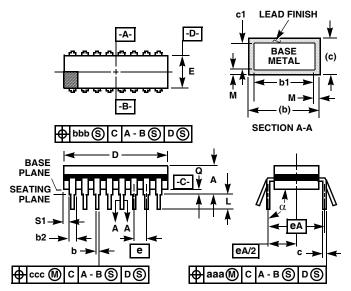
Type: SiAI

Thickness: 12kÅ ± 1kÅ

GLASSIVATION:


Type: Nitride

Thickness: 8kÅ ± 1kÅ


WORST CASE CURRENT DENSITY:

 $1.5 \times 10^5 \text{A/cm}^2$

Metallization Mask Layout

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. This dimension allows for off-center lid, meniscus, and glass
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.

F16.3 MIL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A)
16 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INC	HES	MILLIM	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
Α	-	0.200	-	5.08	-	
b	0.014	0.026	0.36	0.66	2	
b1	0.014	0.023	0.36	0.58	3	
b2	0.045	0.065	1.14	1.65	-	
b3	0.023	0.045	0.58	1.14	4	
С	0.008	0.018	0.20	0.46	2	
c1	0.008	0.015	0.20	0.38	3	
D	-	0.840	-	21.34	5	
Е	0.220	0.310	5.59	7.87	5	
е	0.100	BSC	2.54 BSC		-	
eA	0.300	BSC	7.62 BSC		-	
eA/2	0.150	BSC	3.81 BSC		-	
L	0.125	0.200	3.18	5.08	-	
Q	0.015	0.060	0.38	1.52	6	
S1	0.005	-	0.13	-	7	
α	90°	105°	90°	105°	-	
aaa	-	0.015	-	0.38	-	
bbb	-	0.030	-	0.76	-	
ccc	-	0.010	-	0.25	-	
М	-	0.0015	-	0.038	2, 3	
N	1	6	1	6	8	

Rev. 0 4/94

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com