FEATURES

2-channel, 256-position potentiometers

One-time programmable (OTP) set-and-forget resistance setting provides a low cost alternative to EEMEM
Unlimited adjustments prior to OTP activation
OTP overwrite allows dynamic adjustments with userdefined preset
End-to-end resistance: $\mathbf{2 . 5} \mathbf{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$
Compact MSOP-10 ($3 \mathrm{~mm} \times 4.9 \mathrm{~mm}$) package
Fast settling time: $t_{s}=5 \mu$ typical in power-up
Full read/write of wiper register
Power-on preset to midscale
Extra package address decode pins AD0 and AD1 (AD5173)
Single supply: 2.7 V to 5.5 V
Low temperature coefficient: $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Low power: $\mathrm{IDD}_{\mathrm{D}}=6 \mu \mathrm{~A}$ maximum
Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Software available for factory programming applications

APPLICATIONS

Systems calibration

Electronics level setting
Mechanical trimmers replacement in new designs
Permanent factory PCB setting
Transducer adjustment of pressure, temperature, position, chemical, and optical sensors
RF amplifier biasing
Automotive electronics adjustment
Gain control and offset adjustment

GENERAL OVERVIEW

The AD5172/AD5173 are dual-channel, 256-position, one-time programmable (OTP) digital potentiometers ${ }^{1}$ that employ fuse link technology to achieve memory retention of resistance settings. OTP is a cost-effective alternative to EEMEM for users who do not need to program the digital potentiometer setting in memory more than once. These devices perform the same electronic adjustment function as mechanical potentiometers or variable resistors with enhanced resolution, solid-state reliability, and superior low temperature coefficient performance.

The AD5172/AD5173 are programmed using a 2 -wire, $\mathrm{I}^{2} \mathrm{C}$ compatible digital interface. Unlimited adjustments are allowed before permanently setting the resistance value. During OTP activation, a permanent blow fuse command freezes the wiper position (analogous to placing epoxy on a mechanical trimmer).

Rev. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. AD5172 Functional Block Diagram

Figure 2. AD5173 Functional Block Diagram
Unlike traditional OTP digital potentiometers, the AD5172/ AD5173 have a unique temporary OTP overwrite feature that allows for new adjustments even after a fuse is blown. However, the OTP setting is restored during subsequent power-up conditions. This allows users to treat these digital potentiometers as volatile potentiometers with a programmable preset.

For applications that program the AD5172/AD5173 at the factory, Analog Devices offers device programming software running on Windows ${ }^{\circledR}$ 2000, Windows NT^{\oplus}, and Windows XP operating systems. This software effectively replaces any external $\mathrm{I}^{2} \mathrm{C}$ controllers, thus enhancing the time-to-market of the user's systems.

[^0]
AD5172/AD5173

TABLE OF CONTENTS

Features 1
Applications 1
General Overview 1
Functional Block Diagrams. 1
Revision History 2
Electrical Characteristics- $2.5 \mathrm{k} \Omega$ Version 3
Electrical Characteristics- $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ Versions 5
Timing Characteristics- $2.5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ Versions 7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics 10
Test Circuits 14
Theory of Operation 15
One-Time Programming (OTP) 15
REVISION HISTORY
6/06-Rev. C to Rev. D
Changes to Features 1
Changes to One-Time Programming (OTP) Section 15
Changes to Figure 44 and Figure 45 17
Changes to Power Supply Considerations Section 18
Changes to Figure 46 and Figure 47 18
Changes to Device Programming Software Section 19
Updated Outline Dimensions 24
6/05-Rev. B to Rev. C
Added Footnote 8, Footnote 9, and Footnote 10 to Table 1 3
Added Footnote 8 to Table 2 5
Changes to Table 5 and Table 6 9
Changes to Power Supply Considerations Section 17
Changes to $\mathrm{I}^{2} \mathrm{C}$-Compatible 2-Wire Serial Bus Section. 23
Added Level Shifting for Different Voltage Operation Section 24
Updated Outline Dimensions 25
Changes to Ordering Guide 25
Programming the Variable Resistor and Voltage 15
Programming the Potentiometer Divider 16
ESD Protection 17
Terminal Voltage Operating Range 17
Power-Up Sequence 17
Power Supply Considerations 17
Layout Considerations 18
Device Programming Software 19
$\mathrm{I}^{2} \mathrm{C}$ Interface 20
$\mathrm{I}^{2} \mathrm{C}$-Compatible, 2-Wire Serial Bus 22
Level Shifting for Different Voltage Operation 23
Outline Dimensions 24
Ordering Guide 25
10/04-Rev. A to Rev. B
Updated Format Universal
Changes to Specifications 3
Changes to One-Time Programming (OTP) Section 13
Changes to Power Supply Considerations Section 15
Changes to Figure 44 and Figure 45 15
Changes to Figure 46 and Figure 47 16
11/03-Rev. 0 to Rev. A
Changes to Electrical Characteristics- $2.5 \mathrm{k} \Omega$ 3

ELECTRICAL CHARACTERISTICS— $2.5 \mathrm{k} \Omega$ VERSION

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ or $3 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
DC CHARACTERISTICS—RHEOSTAT MODE Resistor Differential Nonlinearity ${ }^{2}$ Resistor Integral Nonlinearity ${ }^{2}$ Nominal Resistor Tolerance ${ }^{3}$ Resistance Temperature Coefficient RWB (Wiper Resistance)	R-DNL R-INL $\Delta \mathrm{R}_{\mathrm{AB}}$ $\left(\Delta R_{A B} / R_{A B}\right) / \Delta T$ Rws	Rwb, $\mathrm{V}_{\mathrm{A}}=$ No connect Rwb, $V_{A}=$ No connect $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Code $=0 \times 00, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$	$\begin{aligned} & -2 \\ & -6 \\ & -20 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.75 \\ & \\ & 35 \\ & 160 \end{aligned}$	$\begin{aligned} & +2 \\ & +6 \\ & +55 \\ & \\ & 200 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \% \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \Omega \end{aligned}$
DC CHARACTERISTICS—POTENTIOMETER D Differential Nonlinearity ${ }^{4}$ Integral Nonlinearity ${ }^{4}$ Voltage Divider Temperature Coefficient Full-Scale Error Zero-Scale Error	DNL INL $\left(\Delta V_{w} / V_{w}\right) / \Delta T$ $V_{\text {wfse }}$ $V_{\text {wZSE }}$	ECIFICATIONS APPLYTO ALL VRs) $\begin{aligned} & \text { Code }=0 \times 80 \\ & \text { Code }=0 \times F F \\ & \text { Code }=0 \times 00 \end{aligned}$	$\begin{aligned} & -1.5 \\ & -2 \\ & -10 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.6 \\ & 15 \\ & -2.5 \\ & 2 \end{aligned}$	$\begin{aligned} & +1.5 \\ & +2 \\ & 0 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
RESISTOR TERMINALS Voltage Range ${ }^{5}$ Capacitance ${ }^{6}$ A, B Capacitance ${ }^{6}$ W Shutdown Supply Current ${ }^{7}$ Common-Mode Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{B},}, \mathrm{~V}_{\mathrm{W}} \\ & \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}} \\ & \mathrm{C}_{\mathrm{w}} \\ & \mathrm{I}_{\mathrm{A} _\mathrm{SD}} \\ & \mathrm{I}_{\mathrm{CM}} \\ & \hline \end{aligned}$	$\begin{aligned} & f=1 \mathrm{MHz} \text {, measured to } \mathrm{GND}, \\ & \mathrm{code}=0 \times 80 \\ & \mathrm{f}=1 \mathrm{MHz} \text {, measured to } G N D, \\ & \text { code }=0 \times 80 \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$	GND	45 60 0.01 1	VDD	V pF pF $\mu \mathrm{A}$ nA
DIGITAL INPUTS AND OUTPUTS Input Logic High (SDA and SCL) ${ }^{8}$ Input Logic Low (SDA and SCL) ${ }^{8}$ Input Logic High (AD0 and AD1) Input Logic Low (AD0 and AD1) Input Current Input Capacitance ${ }^{6}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{IILL}^{2} \\ & \mathrm{C}_{\mathrm{I}} \end{aligned}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{DD}} \\ & -0.5 \\ & 2.1 \end{aligned}$	5	$\begin{aligned} & V_{D D}+0.5 \\ & +0.3 V_{D D} \\ & \\ & 0.6 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \end{aligned}$ pF
POWER SUPPLIES Power Supply Range OTP Supply Voltage ${ }^{8,9}$ Supply Current OTP Supply Current ${ }^{8,10}$ Power Dissipation ${ }^{11}$ Power Supply Sensitivity	Vddrange VDD_otP ldo ldo_otp PDISS PSS	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} _ \text {otp }}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \text { code }=\text { midscale } \end{aligned}$	$\begin{aligned} & 2.7 \\ & 5.25 \\ & 100 \end{aligned}$	3.5 ± 0.02	$\begin{aligned} & 5.5 \\ & 5.5 \\ & 6 \\ & \\ & 30 \\ & \pm 0.08 \end{aligned}$	V V $\mu \mathrm{A}$ mA $\mu \mathrm{W}$ \%/\%
DYNAMIC CHARACTERISTICS ${ }^{12}$ Bandwidth -3 dB Total Harmonic Distortion Vw Settling Time Resistor Noise Voltage Density	BW_2.5K THDw ts $\mathrm{e}_{\mathrm{N}, \mathrm{wb}}$	$\begin{aligned} & \text { Code }=0 \times 80 \\ & V_{A}=1 \mathrm{Vrms}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{A}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \pm 1 \mathrm{LSB} \text { error band } \\ & \mathrm{R}_{\mathrm{w} B}=1.25 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=0 \end{aligned}$		$\begin{aligned} & 4.8 \\ & 0.1 \\ & 1 \\ & 3.2 \end{aligned}$		MHz \% $\mu \mathrm{s}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

AD5172/AD5173

${ }^{1}$ Typical specifications represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.
${ }^{2}$ Resistor position nonlinearity error, R-INL, is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from the ideal between successive tap positions. Parts are guaranteed monotonic.
${ }^{3} \mathrm{~V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}$, Wiper $\left(\mathrm{V}_{\mathrm{W}}\right)=$ no connect.
${ }^{4}$ INL and DNL are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output DAC. $V_{A}=V_{D D}$ and $V_{B}=0 \mathrm{~V}$. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions.
${ }^{5}$ Resistor Terminal A, Terminal B, and Terminal W have no limitations on polarity with respect to each other.
${ }^{6}$ Guaranteed by design and not subject to production test.
${ }^{7}$ Measured at the A terminal. The A terminal is open circuited in shutdown mode.
${ }^{8}$ The minimum voltage requirement on the $\mathrm{V}_{\mathbb{H}}$ is $0.7 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD}}$. For example, $\mathrm{V}_{\mathbb{H}} \min =3.5 \mathrm{~V}$ when $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$. It is typical for the SCL and SDA resistors to be pulled up to $V_{D D}$. However, care must be taken to ensure that the minimum $V_{I H}$ is met when the SCL and SDA are driven directly from a low voltage logic controller without pullup resistors.
${ }^{9}$ Different from operating power supply; power supply for OTP is used one time only.
${ }^{10}$ Different from operating current; supply current for OTP lasts approximately 400 ms for one time only.
${ }^{11} P_{\text {DISS }}$ is calculated from ($I_{D D} \times V_{D D}$). CMOS logic level inputs result in minimum power dissipation.
${ }^{12}$ All dynamic characteristics use $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.

ELECTRICAL CHARACTERISTICS— $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ VERSIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ or $3 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
DC CHARACTERISTICS—RHEOSTAT MODE Resistor Differential Nonlinearity ${ }^{2}$ Resistor Integral Nonlinearity ${ }^{2}$ Nominal Resistor Tolerance ${ }^{3}$ Resistance Temperature Coefficient Rwb (Wiper Resistance)	R-DNL R-INL $\Delta \mathrm{R}_{\mathrm{AB}}$ $\left(\Delta \mathrm{R}_{\mathrm{AB}} / \mathrm{R}_{\mathrm{AB}}\right) / \Delta \mathrm{T}$ Rwb	Rwb, $V_{A}=$ No connect Rwb, $V_{A}=$ No connect $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\text { Code }=0 \times 00, V_{D D}=5 \mathrm{~V}$	$\begin{aligned} & -1 \\ & -2.5 \\ & -20 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \\ & 35 \\ & 160 \end{aligned}$	$\begin{aligned} & +1 \\ & +2.5 \\ & +20 \\ & \\ & 200 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \% \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \Omega \end{aligned}$
DC CHARACTERISTICS—POTENTIOMETER D Differential Nonlinearity ${ }^{4}$ Integral Nonlinearity ${ }^{4}$ Voltage Divider Temperature Coefficient Full-Scale Error Zero-Scale Error	IDER MODE (SP DNL INL $\left(\Delta V_{w} / V_{w}\right) / \Delta T$ $V_{\text {WFSE }}$ VWZE	ECIFICATIONS APPLY TO ALL VRs) $\begin{aligned} & \text { Code }=0 \times 80 \\ & \text { Code }=0 \times F F \\ & \text { Code }=0 \times 00 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \\ & -2.5 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.3 \\ & 15 \\ & -1 \\ & 1 \end{aligned}$	$\begin{aligned} & +1 \\ & +1 \\ & 0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
RESISTOR TERMINALS Voltage Range ${ }^{5}$ Capacitance ${ }^{6}$ A, B Capacitance ${ }^{6}{ }^{6}$ Shutdown Supply Current ${ }^{7}$ Common-Mode Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{B}}, \mathrm{~V}_{\mathrm{W}} \\ & \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}} \\ & \mathrm{C}_{\mathrm{W}} \\ & \mathrm{I}_{\mathrm{A} _\mathrm{SD}} \\ & \mathrm{I}_{\mathrm{CM}} \\ & \hline \end{aligned}$	$\begin{aligned} & f=1 \mathrm{MHz} \text {, measured to GND, } \\ & \text { code }=0 \times 80 \\ & f=1 \mathrm{MHz} \text {, measured to GND, } \\ & \text { code }=0 \times 80 \\ & V_{D D}=5.5 \mathrm{~V} \\ & V_{A}=V_{B}=V_{D D} / 2 \end{aligned}$	GND	$\begin{aligned} & 45 \\ & 60 \\ & \\ & 0.01 \\ & 1 \\ & \hline \end{aligned}$	VDD	V pF pF $\mu \mathrm{A}$ nA
DIGITAL INPUTS AND OUTPUTS Input Logic High (SDA and SCL) ${ }^{8}$ Input Logic Low (SDA and SCL) ${ }^{8}$ Input Logic High (AD0 and AD1) Input Logic Low (AD0 and AD1) Input Current Input Capacitance ${ }^{6}$	$\begin{aligned} & \mathrm{V}_{\mathrm{HH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{IIL}^{2} \\ & \mathrm{C}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 V_{D D} \\ & -0.5 \\ & 2.1 \end{aligned}$	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}+0.5 \\ & +0.3 \mathrm{~V}_{\mathrm{DD}} \\ & 0.6 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLIES Power Supply Range OTP Supply Voltage ${ }^{8,9}$ Supply Current OTP Supply Current ${ }^{8,10}$ Power Dissipation ${ }^{11}$ Power Supply Sensitivity	Vddange VDD_otp IDD ldD_otp PDiss PSS	$\begin{aligned} & \mathrm{V}_{\mathrm{HH}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} _ \text {oTP }}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V} \mathrm{VD}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \text { code }=\text { midscale } \end{aligned}$	$\begin{aligned} & 2.7 \\ & 5.25 \\ & 100 \end{aligned}$	3.5 ± 0.02	$\begin{aligned} & 5.5 \\ & 5.5 \\ & 6 \\ & \\ & 30 \\ & \pm 0.08 \end{aligned}$	V V $\mu \mathrm{A}$ mA $\mu \mathrm{W}$ \%/\%
DYNAMIC CHARACTERISTICS ${ }^{12}$ Bandwidth -3 dB Total Harmonic Distortion V_{w} Settling Time ($10 \mathrm{k} \Omega / 50 \mathrm{k} \Omega / 100 \mathrm{k} \Omega$) Resistor Noise Voltage Density	BW THD w ts $\mathrm{e}_{\text {n_wb }}$	$\begin{aligned} & \mathrm{R}_{A B}=10 \mathrm{k} \Omega, \text { code }=0 \times 80 \\ & \mathrm{R}_{A B}=50 \mathrm{k} \Omega, \text { code }=0 \times 80 \\ & \mathrm{R}_{A B}=100 \mathrm{k} \Omega, \text { code }=0 \times 80 \\ & \mathrm{~V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{~V}_{B}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{R}_{A B}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{A}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \pm 1 \mathrm{LSB} \text { error band } \\ & \mathrm{R}_{\mathrm{wB}}=5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=0 \end{aligned}$		$\begin{aligned} & 600 \\ & 100 \\ & 40 \\ & 0.1 \\ & 2 \\ & 9 \end{aligned}$		kHz kHz kHz \% $\mu \mathrm{s}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

AD5172/AD5173

${ }^{1}$ Typical specifications represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.
${ }^{2}$ Resistor position nonlinearity error, R-INL, is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from the ideal between successive tap positions. Parts are guaranteed monotonic.
${ }^{3} \mathrm{~V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}$, Wiper $\left(\mathrm{V}_{\mathrm{W}}\right)=$ no connect.
${ }^{4}$ INL and DNL are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output DAC. $V_{A}=V_{D D}$ and $V_{B}=0 \mathrm{~V}$. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions.
${ }^{5}$ Resistor Terminal A, Terminal B, and Terminal W have no limitations on polarity with respect to each other.
${ }^{6}$ Guaranteed by design and not subject to production test.
${ }^{7}$ Measured at the A terminal. The A terminal is open circuited in shutdown mode.
${ }^{8}$ The minimum voltage requirement on the $\mathrm{V}_{I H}$ is $0.7 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD}}$. For example, $\mathrm{V}_{H H} \mathrm{~min}=3.5 \mathrm{~V}$ when $\mathrm{V}_{D D}=5 \mathrm{~V}$. It is typical for the SCL and SDA have resistors to be pulled up to $V_{D D}$. However, care must be taken to ensure that the minimum $V_{I H}$ is met when the SCL and SDA are driven directly from a low voltage logic controller without pull-up resistors.
${ }^{9}$ Different from operating power supply, power supply OTP is used one time only.
${ }^{10}$ Different from operating current, supply current for OTP lasts approximately 400 ms for one time only.
${ }^{11} \mathrm{P}_{\text {DISS }}$ is calculated from ($\mathrm{I}_{\mathrm{DD}} \times \mathrm{V}_{D D}$). CMOS logic level inputs result in minimum power dissipation.
${ }^{12}$ All dynamic characteristics use $V_{D D}=5 \mathrm{~V}$.

AD5172/AD5173

TIMING CHARACTERISTICS— $2.5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ VERSIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ or $3 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

[^1]
AD5172/AD5173

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +7V
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$ to GND	VDD
Terminal Current, Ax to Bx, Ax to Wx, Bx to W x^{1}	
Pulsed	$\pm 20 \mathrm{~mA}$
Continuous	$\pm 5 \mathrm{~mA}$
Digital Inputs and Output Voltage to GND	0 V to 7 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature (TJmax)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Thermal Resistance ${ }^{2}$	
$\theta_{\text {JA: }}$: MSOP-10	$230^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Maximum terminal current is bound by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
${ }^{2}$ Package power dissipation $=\left(\mathrm{T}_{\mathrm{J}} \max -\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. AD5172 Pin Configuration

Figure 4. AD5173 Pin Configuration

Table 5. AD5172 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	B1	B1 Terminal. GND $\leq \mathrm{V}_{\mathrm{B} 1} \leq \mathrm{V}_{\mathrm{DD}}$.
2	A1	A1 Terminal. GND $\leq \mathrm{V}_{\mathrm{A} 1} \leq \mathrm{V}_{\mathrm{DD}}$.
3	W2	W2 Terminal. GND $\leq \mathrm{V}_{\mathrm{W} 2} \leq \mathrm{V}_{\mathrm{DD}}$.
4	GND	Digital Ground.
5	$V_{\text {D }}$	Positive Power Supply. Specified for operation from 2.7 V to 5.5 V . For OTP programming, $V_{D D}$ needs to be a minimum of 5.25 V but no more than 5.5 V and have a 100 mA driving capability.
6	SCL	Serial Clock Input. Positive-edge triggered. Requires a pull-up resistor. If it is driven direct from a logic controller without the pull-up resistor, ensure that V_{IH} min is $0.7 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD}}$.
7	SDA	Serial Data Input/Output. Requires a pullup resistor. If it is driven direct from a logic controller without the pull-up resistor, ensure that $\mathrm{V}_{I H} \min$ is $0.7 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD}}$.
8	A2	A2 Terminal. GND $\leq \mathrm{V}_{\mathrm{A} 2} \leq \mathrm{V}_{\mathrm{DD}}$.
9	B2	B 2 Terminal. $\mathrm{GND} \leq \mathrm{V}_{\mathrm{B} 2} \leq \mathrm{V}_{\mathrm{DD}}$.
10	W1	W 1 Terminal. GND $\leq \mathrm{V}_{\mathrm{W}_{1}} \leq \mathrm{V}_{\mathrm{DD}}$.

Table 6. AD5173 Pin Function Descriptions

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Mnemonic	Description
1	B1	B1 Terminal. GND $\leq \mathrm{V}_{\mathrm{B} 1} \leq \mathrm{V}_{\mathrm{DD}}$.
2	ADO	Programmable Address Bit 0 for Multiple Package Decoding.
3	W2	W 2 Terminal. GND $\leq \mathrm{V}_{\mathrm{W} 2} \leq \mathrm{V}_{\mathrm{DD}}$.
4	GND	Digital Ground.
5	VDD	Positive Power Supply. Specified for operation from 2.7 V to 5.5 V . For OTP programming, V_{DD} needs to be a minimum of 5.25 V but no more than 5.5 V and have a 100 mA driving capability.
6	SCL	Serial Clock Input. Positive-edge triggered. Requires a pull-up resistor. If it is driven direct from a logic controller without the pull-up resistor, ensure that $\mathrm{V}_{\mathrm{IH}} \mathrm{min}$ is $0.7 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD}}$.
7	SDA	Serial Data Input/Output. Requires a pullup resistor. If it is driven direct from a logic controller without the pull-up resistor, ensure that $\mathrm{V}_{\mathrm{IH}} \min$ is $0.7 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD}}$.
8	AD1	Programmable Address Bit 1 for Multiple Package Decoding.
9	B2	B2 Terminal. GND $\leq \mathrm{V}_{\mathrm{B} 2} \leq \mathrm{V}_{\mathrm{DD}}$.
10	W1	W 1 Terminal. $\mathrm{GND} \leq \mathrm{V}_{\mathrm{W} 1} \leq \mathrm{V}_{\mathrm{DD}}$.

AD5172/AD5173

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. R-INL vs. Code vs. Supply Voltages

Figure 6. R-DNL vs. Code vs. Supply Voltages

Figure 7. INL vs. Code vs. Temperature

Figure 8. DNL vs. Code vs. Temperature

Figure 9. INL vs. Code vs. Supply Voltages

Figure 10. DNL vs. Code vs. Supply Voltages

Figure 11. R-INL vs. Code vs. Temperature

Figure 12. R-DNL vs. Code vs. Temperature

Figure 13. Full-Scale Error vs. Temperature

Figure 14. Zero-Scale Error vs. Temperature

Figure 15. Supply Current vs. Temperature

Figure 16. Rheostat Mode Tempco $\Delta R_{w B} / \Delta T$ vs. Code

AD5172/AD5173

Figure 17. AD5172 Potentiometer Mode Tempco $\Delta V_{w b} / \Delta T$ vs. Code

Figure 18. Gain vs. Frequency vs. Code, $R_{A B}=2.5 \mathrm{k} \Omega$

Figure 19. Gain vs. Frequency vs. Code, $R_{A B}=10 \mathrm{k} \Omega$

Figure 20. Gain vs. Frequency vs. Code, $R_{A B}=50 \mathrm{k} \Omega$

Figure 21. Gain vs. Frequency vs. Code, $R_{A B}=100 \mathrm{k} \Omega$

Figure 22. $-3 d B$ Bandwidth @ Code $=0 \times 80$

Figure 24. Digital Feedthrough

Figure 25. Digital Crosstalk

Figure 26. Analog Crosstalk

Figure 27. Midscale Glitch, Code 0x80 to Code 0x7F

Figure 28. Large Signal Settling Time

AD5172/AD5173

TEST CIRCUITS

Figure 29 to Figure 36 illustrate the test circuits that define the test conditions used in the product specification tables.

Figure 29. Potentiometer Divider Nonlinearity Error (INL, DNL)

Figure 30. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)

Figure 31. Wiper Resistance

Figure 32. Power Supply Sensitivity (PSS, PSSR)

Figure 33. Test Circuit for Gain vs. Frequency

Figure 34. Incremental On Resistance

Figure 35. Common-Mode Leakage Current

Figure 36. Analog Crosstalk

THEORY OF OPERATION

Figure 37. Detailed Functional Block Diagram

The AD5172/AD5173 are 256-position, digitally controlled variable resistors (VRs) that employ fuse link technology to achieve memory retention of resistance setting.

An internal power-on preset places the wiper at midscale during power-on. If the OTP function is activated, the device powers up at the user-defined permanent setting.

ONE-TIME PROGRAMMING (OTP)

Prior to OTP activation, the AD5172/AD5173 presets to midscale during initial power-on. After the wiper is set to the desired position, the resistance can be permanently set by programming the T bit high, the proper coding (see Table 7 and Table 8), and one-time VDd_otr. The fuse link technology of the AD517x family of digital potentiometers requires $V_{\text {DD_otp }}$ to be between 5.25 V and 5.5 V to blow the fuses to achieve a given nonvolatile setting. Conversely, V_{DD} can be 2.7 V to 5.5 V during operation. As a result, system supply that is lower than 5.25 V requires an external supply for one-time programming. The user is allowed only one attempt to blow the fuses. If the user fails to blow the fuses during this attempt, the structure of the fuses can change such that they may never be blown, regardless of the energy applied at subsequent events. For details, see the Power Supply Considerations section.

The device control circuit has two validation bits, E1 and E0, that can be read back to check the programming status (see Table 10). Users should always read back the validation bits to ensure that the fuses are properly blown. After the fuses are blown, all fuse latches are enabled upon subsequent power-on; therefore, the output corresponds to the stored setting. Figure 37 shows a detailed functional block diagram.

PROGRAMMING THE VARIABLE RESISTOR AND VOLTAGE

Rheostat Operation

The nominal resistance of the RDAC between Terminal A and Terminal B is available in $2.5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. The nominal resistance ($\mathrm{R}_{A B}$) of the VR has 256 contact points accessed by the wiper terminal and the B terminal contact. The 8 -bit data in the RDAC latch is decoded to select one of the 256 possible settings.

Assuming a $10 \mathrm{k} \Omega$ part is used, the wiper's first connection starts at the B terminal for Data 0x00. Because there is a 50Ω wiper contact resistance, such a connection yields a minimum of $100 \Omega(2 \times 50 \Omega)$ resistance between Terminal W and Terminal B. The second connection is the first tap point, which corresponds to $139 \Omega\left(\mathrm{R}_{\mathrm{WB}}=\mathrm{R}_{\mathrm{AB}} / 256+2 \times \mathrm{R}_{\mathrm{w}}=39 \Omega+2 \times 50 \Omega\right)$ for Data 0×01. The third connection is the next tap point, representing $178 \Omega(2 \times 39 \Omega+2 \times 50 \Omega)$ for Data 0×02, and so on. Each LSB data value increase moves the wiper up the resistor ladder until the last tap point is reached at $10100 \Omega\left(\mathrm{R}_{A B}+2 \times \mathrm{R}_{\mathrm{w}}\right)$.

AD5172/AD5173

Figure 39. AD5172/AD5173 Equivalent RDAC Circuit
The general equation that determines the digitally programmed output resistance between W and B is

$$
\begin{equation*}
R_{W B}(D)=\frac{D}{128} \times R_{A B}+2 \times R_{W} \tag{1}
\end{equation*}
$$

where:
D is the decimal equivalent of the binary code loaded in the 8 -bit RDAC register.
$R_{A B}$ is the end-to-end resistance.
R_{W} is the wiper resistance contributed by the on resistance of the internal switch.

In summary, if $\mathrm{R}_{A B}=10 \mathrm{k} \Omega$ and the A terminal is open circuited, the output resistance $\mathrm{R}_{\text {wb }}$ is set for the RDAC latch codes, as shown in Table 7.

Table 7. Codes and Corresponding Rwb $_{\text {wesistance }}$

\mathbf{D} (Dec)	Rwb $^{(\Omega)} \mathbf{\Omega}$	Output State
255	9961	Full scale (RAB -1 LSB + Rw)
128	5060	Midscale
1	139	1 LSB
0	100	Zero scale (wiper contact resistance)

Note that in the zero-scale condition, a finite wiper resistance of 100Ω is present. Care should be taken to limit the current flow between W and B in this state to a maximum pulse current of no more than 20 mA . Otherwise, degradation or possible destruction of the internal switch contact can occur.

Similar to the mechanical potentiometer, the resistance of the RDAC between the Wiper W and Terminal A also produces a digitally controlled complementary resistance, $\mathrm{R}_{\text {wa }}$. When these terminals are used, the B terminal can be opened. Setting the resistance value for R_{WA} starts at a maximum value of resistance and decreases as the data loaded in the latch increases in value.

The general equation for this operation is

$$
\begin{equation*}
R_{W A}(D)=\frac{256-D}{128} \times R_{A B}+2 \times R_{W} \tag{2}
\end{equation*}
$$

For $R_{A B}=10 \mathrm{k} \Omega$ and the B terminal open circuited, the following output resistance RwA is set for the RDAC latch codes, as shown in Table 8.

Table 8. Codes and Corresponding $R_{W A}$ Resistance

D (Dec)	Rwa $(\mathbf{\Omega})$	Output State
255	139	Full scale
128	5060	Midscale
1	9961	1 LSB
0	10060	Zero scale

Typical device-to-device matching is process-lot dependent and can vary up to $\pm 30 \%$. Because the resistance element is processed using thin film technology, the change in R_{AB} with temperature has a very low $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient.

PROGRAMMING THE POTENTIOMETER DIVIDER Voltage Output Operation

The digital potentiometer easily generates a voltage divider at wiper to B and wiper to A proportional to the input voltage at A to B. Unlike the polarity of $V_{D D}$ to GND, which must be positive, voltage across A to B, W to A, and W to B can be at either polarity.

Figure 40. Potentiometer Mode Configuration
If ignoring the effect of the wiper resistance for approximation, connecting the A terminal to 5 V and the B terminal to ground produces an output voltage at the wiper to B starting at 0 V up to 1 LSB less than 5 V . Each LSB of voltage is equal to the voltage applied across Terminal A and Terminal B divided by the 256 positions of the potentiometer divider. The general equation defining the output voltage at V_{w} with respect to ground for any valid input voltage applied to Terminal A and Terminal B is

$$
\begin{equation*}
V_{W}(D)=\frac{D}{256} V_{A}+\frac{256-D}{256} V_{B} \tag{3}
\end{equation*}
$$

For a more accurate calculation, which includes the effect of wiper resistance, V_{W} can be found as

$$
\begin{equation*}
V_{W}(D)=\frac{R_{W B}(D)}{R_{A B}} V_{A}+\frac{R_{W A}(D)}{R_{A B}} V_{B} \tag{4}
\end{equation*}
$$

Operation of the digital potentiometer in the divider mode results in a more accurate operation over temperature. Unlike rheostat mode, the output voltage is dependent mainly on the ratio of the internal resistors R_{WA} and R_{wB} and not the absolute values. Thus, the temperature drift reduces to $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

ESD PROTECTION

All digital inputs, SDA, SCL, AD0, and AD1, are protected with a series input resistor and parallel Zener ESD structures, as shown in Figure 41 and Figure 42.

Figure 41. ESD Protection of Digital Pins

Figure 42. ESD Protection of Resistor Terminals

TERMINAL VOLTAGE OPERATING RANGE

The AD5172/AD5173 VDD to GND power supply defines the boundary conditions for proper 3-terminal digital potentiometer operation. Supply signals present on Terminal A, Terminal B, and Terminal W that exceed VDD or GND are clamped by the internal forward-biased diodes (see Figure 43).

Figure 43. Maximum Terminal Voltages Set by $V_{D D}$ and GND

POWER-UP SEQUENCE

Because the ESD protection diodes limit the voltage compliance at Terminal A, Terminal B, and Terminal W (see Figure 43), it is important to power $\mathrm{V}_{\mathrm{DD}} / \mathrm{GND}$ before applying any voltage to Terminal A, Terminal B, and Terminal W. Otherwise, the diode is forward biased such that $V_{D D}$ is powered unintentionally and can affect the rest of the user's circuit. The ideal power-up sequence is GND, $V_{D D}$, the digital inputs, and then $V_{A} / V_{B} / V_{W}$. The relative order of powering $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$, and the digital inputs is not important as long as they are powered after $V_{D D} / G N D$.

POWER SUPPLY CONSIDERATIONS

To minimize the package pin count, both the one-time programming and normal operating voltage supplies are applied to the same V_{DD} terminal of the device. The AD5172/AD5173 employ fuse link technology that requires 5.25 V to 5.5 V to blow the internal fuses to achieve a given setting, but normal $V_{D D}$ can be 2.7 V to 5.5 V . Such dual-voltage requirements need isolation between the supplies if $V_{D D}$ is lower than the required $\mathrm{V}_{\text {DD_otr. }}$. The fuse programming supply (either an on-board regulator or rack-mount power supply) must be rated at 5.25 V to 5.5 V and must be able to provide a 100 mA transient current for 400 ms for successful one-time programming. Once programming is completed, the $\mathrm{V}_{\text {DD_otr }}$ supply must be removed to allow normal operation at 2.7 V to 5.5 V , and the device consumes only microamps of current. Figure 44 shows the simplest implementation to meet the dual-voltage requirement with a jumper. This approach saves one voltage supply but draws additional current and requires manual configuration.

Figure 44. Power Supply Requirements
An alternate approach in 3.5 V to 5.25 V systems adds a signal diode between the system supply and the OTP supply for isolation, as shown in Figure 45. The VDd_otp supply must be removed once OTP is completed.

Figure 45. Isolate 5.5 V OTP Supply from 3.5 V to 5.25 V Normal Operating Supply

AD5172/AD5173

Figure 46. Isolate 5.5 V OTP Supply from 2.7 V Normal Operating Supply
For users who operate their systems at 2.7 V , use of the bidirectional, low threshold P-channel MOSFETs is recommended for the supply's isolation. As shown in Figure 46, this assumes that the 2.7 V system voltage is applied first, and that the P1 and P2 gates are pulled to ground, thus turning on P1 and subsequently P2. As a result, VDD of the AD5172/AD5173 approaches 2.7 V . When the AD5172/AD5173 setting is found, the factory tester applies the V_{DD} _отр to both the V_{DD} and the MOSFET gates, thus turning P1 and P2 off. The OTP command should be executed at this time to program the AD5172/AD5173 while the 2.7 V source is protected. Once the OTP is completed, the tester withdraws the $\mathrm{V}_{\mathrm{DD} _ \text {отp }}$ and the AD5172/AD5173's setting is fixed permanently.

The AD5172/AD5173 achieve the OTP function by blowing internal fuses. Users should always apply the 5.25 V to 5.5 V one-time program voltage requirement at the first fuse programming attempt. Failure to comply with this requirement can lead to the change of fuse structures, rendering programming inoperable.

Care should be taken when SCL and SDA are driven from a low voltage logic controller. Users must ensure that the logic high level is between $0.7 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$.

Poor PCB layout introduces parasitics that can affect fuse programming. Therefore, it is recommended to add a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum capacitor in parallel with a 1 nF ceramic capacitor as close as possible to the $V_{\text {DD }}$ pin. The type and value chosen for both capacitors are important. These capacitors work together to provide both a fast response and large supply current handling with minimum supply droop during transients. As a result, these capacitors increase the OTP programming success by not inhibiting the proper energy needed to blow the internal fuses. Additionally, C1 minimizes transient disturbance and low frequency ripple, while C 2 reduces high frequency noise during normal operation.

LAYOUT CONSIDERATIONS

In PCB layout, it is a good practice to employ compact, minimum lead length design. The leads to the inputs should be as direct as possible with a minimum conductor length. Ground paths should have low resistance and low inductance.

Note that the digital ground should also be joined remotely to the analog ground at one point to minimize the ground bounce.

Figure 47. Power Supply Bypassing

DEVICE PROGRAMMING SOFTWARE

Figure 48. AD5172/AD5173 Computer Software Interface

Due to the advantages of the one-time programmable feature, consider programming the device in the factory before shipping the final product to end users. ADI offers device programming software that can be implemented in the factory on PCs running Windows 95 or later. As a result, external controllers are not required, which significantly reduces development time. The program is an executable file that does not require knowledge of programming languages or programming skills, and it is easy to set up and use. Figure 48 shows the software interface. The software can be downloaded at: www.analog.com/en/content/0,2886,761\%5F797\%5F29054,00 .html.

The AD5172/AD5173 start at midscale after power-up, prior to OTP programming. To increment or decrement the resistance, move the scrollbars on the left. To write any specific value, use the bit pattern in the upper screen and click Run. The format of writing data to the device is shown in Table 9. Once the desired setting is found, click Program Permanent to blow the internal fuse links.

To read the validation bits and data out from the device, click Read. The format of the read bits is shown in Table 10.

To apply the device programming software in the factory, users must modify a 25 -pin parallel port cable and configure Pin 2, Pin 3, Pin 15, and Pin 25 for SDA_write, SCL, SDA_read, and DGND, respectively, for the control signals (see Figure 49). Users should also layout the PCB of the AD5172/AD5173 as shown in Figure 50. The SCL and SDA pads allow pogo pins to be inserted so that signals can be communicated through the parallel port for the programming.

Figure 49. Parallel Port Connection
(Pin $2=$ SDA_write, Pin $3=$ SCL, Pin $15=$ SDA_read, and Pin $25=$ DGND)

Figure 50. Recommended AD5172/AD5173 PCB Layout

AD5172/AD5173

I ${ }^{2} \mathrm{C}$ INTERFACE

Table 9 and Table 10 use the following codes:
S = Start condition.
$\mathrm{P}=$ Stop condition.
A = Acknowledge.
AD0, AD1 = Package pin programmable address bits.
$\mathrm{X}=$ Don't care.
$\bar{W}=$ Write.
$\mathrm{R}=$ Read.
A $0=$ RDAC subaddress select bit.
SD = Shutdown connects wiper to B terminal and open circuits the A terminal. It does not change contents of wiper register.
$\mathrm{T}=$ OTP programming bit. Logic 1 programs the wiper permanently.

OW = Overwrites the fuse setting and program the digital potentiometer to a different setting. Upon power-up, the digital potentiometer is preset to either midscale or fuse setting, depending on whether or not the fuse link was blown.

D7, D6, D5, D4, D3, D2, D1, D0 = Data bits.
$\mathrm{E} 1, \mathrm{E} 0=\mathrm{OTP}$ validation bits.
$0,0=$ Ready to program.
$1,0=$ Fatal error. Some fuses not blown. Do not retry. Discard this unit.
$1,1=$ Programmed successfully. No further adjustments are possible.

Table 9. Write Mode
AD5172

S	0	1	0	1	1	1	1	$\overline{\mathbf{W}}$	A	A0	SD	T	0	OW	X	X	X	A	D7	D6	D5	D4	D3	D2	D1	D0	A	P
	Slave Address Byte									Instruction By									Data Byte									

AD5173

Table 10. Read Mode
AD5172

AD5173

S	0	1	0	1	1	AD1	ADO	R	A	D7	D6	D5	D4	D3	D2	D1	D0	A	E1	E0	X	X	X	X	X	X	A	P
	Slave Address Byte									Instruction Byte									Data Byte									

Figure 51. ${ }^{2}$ C Interface Detailed Timing Diagram

Figure 52. Writing to the RDAC Register-AD5172

Figure 53. Writing to the RDAC Register-AD5173

Figure 54. Reading Data from a Previously Selected RDAC Register in Write Mode—AD5172

Figure 55. Reading Data from a Previously Selected RDAC Register in Write Mode—AD5173

AD5172/AD5173

I^{2} C-COMPATIBLE, 2-WIRE SERIAL BUS

This section describes how the 2 -wire, $\mathrm{I}^{2} \mathrm{C}$ serial bus protocol operates.

The master initiates a data transfer by establishing a start condition, which is when a high-to-low transition on the SDA line occurs while SCL is high (see Figure 52 and Figure 53). The following byte is the slave address byte, which consists of the slave address followed by an $\mathrm{R} / \overline{\mathrm{W}}$ bit (this bit determines whether data is read from or written to the slave device). The AD5172 has a fixed slave address byte, whereas the AD5173 has two configurable address bits, AD0 and AD1 (see Figure 52 and Figure 53).

The slave whose address corresponds to the transmitted address responds by pulling the SDA line low during the ninth clock pulse (this is called the acknowledge bit). At this stage, all other devices on the bus remain idle while the selected device waits for data to be written to or read from its serial register. If the $\mathrm{R} / \overline{\mathrm{W}}$ bit is high, the master reads from the slave device. If the $\mathrm{R} / \overline{\mathrm{W}}$ bit is low, the master writes to the slave device.

In write mode, the second byte is the instruction byte. The first bit (MSB) of the instruction byte is the RDAC subaddress select bit. Logic low selects Channel 1; logic high selects Channel 2.

The second MSB, SD, is a shutdown bit. A logic high causes an open circuit at Terminal A while shorting the wiper to Terminal B. This operation yields almost 0Ω in rheostat mode or 0 V in potentiometer mode. It is important to note that the shutdown operation does not disturb the contents of the register. When brought out of shutdown, the previous setting is applied to the RDAC. In addition, during shutdown, new settings can be programmed. When the part is returned from shutdown, the corresponding VR setting is applied to the RDAC.

The third MSB, T, is the OTP programming bit. A logic high blows the polyfuses and programs the resistor setting permanently.

The fourth MSB must always be at Logic 0 .
The fifth MSB, OW, is an overwrite bit. When raised to a logic high, OW allows the RDAC setting to be changed even after the internal fuses are blown. However, once OW is returned to Logic 0 , the position of the RDAC returns to the setting prior to the overwrite. Because OW is not static, if the device is powered off and on, the RDAC presets to midscale or to the setting at which the fuses were blown, depending on whether or not the fuses were permanently set already.

The remainder of the bits in the instruction byte are don't cares (see Figure 52 and Figure 53).

After acknowledging the instruction byte, the last byte in write mode is the data byte. Data is transmitted over the serial bus in sequences of nine clock pulses (eight data bits followed by an acknowledge bit). The transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL (see Figure 51).

In read mode, the data byte follows immediately after the acknowledgment of the slave address byte. Data is transmitted over the serial bus in sequences of nine clock pulses (a slight difference from the write mode, where there are eight data bits followed by an acknowledge bit). Similarly, transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL (see Figure 54 and Figure 55).

Note that the channel of interest is the one that is previously selected in write mode. In the case where users need to read the RDAC values of both channels, they must program the first channel in the write mode and then change to read mode to read the first channel value. After that, the user must change back to write mode with the second channel selected and read the second channel value in read mode. It is not necessary for users to issue the Frame 3 data byte in write mode for subsequent readback operations. Refer to Figure 54 and Figure 55 for the programming format.

Following the data byte, the validation byte contains two validation bits, E0 and E1. These bits signify the status of the one-time programming (see Figure 54 and Figure 55).
Table 11. Validation Status

E1	E0	Status
0	0	Ready for programming.
1	0	Fatal error. Some fuses not blown. Do not retry. Discard this unit.
1	1	Successful. No further programming is possible.

After all data bits are read or written, a stop condition is established by the master. A stop condition is defined as a low-to-high transition on the SDA line while SCL is high. In write mode, the master pulls the SDA line high during the 10th clock pulse to establish a stop condition (see Figure 52 and Figure 53). In read mode, the master issues a No Acknowledge for the ninth clock pulse (that is, the SDA line remains high). The master brings the SDA line low before the 10th clock pulse and then brings the SDA line high to establish a stop condition (see Figure 54 and Figure 55).

A repeated write function gives the user flexibility to update the RDAC output a number of times after addressing and instructing the part only once. For example, after the RDAC has acknowledged its slave address and instruction bytes in write mode, the RDAC output is updated on each successive byte. If different instructions are needed, the write/read mode has to start again with a new slave address, instruction, and data byte. Similarly, a repeated read function of the RDAC is also allowed.

Multiple Devices on One Bus (AD5173 Only)

Figure 56 shows four AD5173s on the same serial bus. Each has a different slave address because the states of their AD0 and AD1 pins are different. This allows each device on the bus to be written to or read from independently. The master device output bus line drivers are open-drain pull-downs in a fully $\mathrm{I}^{2} \mathrm{C}$-compatible interface.

Figure 56. Multiple AD5173s on One $I^{2} C$ Bus

LEVEL SHIFTING FOR DIFFERENT VOLTAGE OPERATION

If the SCL and SDA signals come from a low voltage logic controller and are below the minimum V_{IH} level $\left(0.7 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD}}\right)$, level shift the signals for read/write communications between the AD5172/AD5173 and the controller. Figure 57 shows one of the implementations. For example, when SDA1 is at $2.5 \mathrm{~V}, \mathrm{M} 1$ turns off, and SDA2 becomes 5 V . When SDA1 is at 0 V , M1 turns on, and SDA2 approaches 0 V . As a result, proper level shifting is established. M1 and M2 should be low threshold N -channel power MOSFETs, such as FDV301N.

Figure 57. Level Shifting for Different Voltage Operation

AD5172/AD5173

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ${ }^{1}$	RAB (k)	Temperature Range	Package Description	Package Option	Branding
AD5172BRM2.5	2.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	DOU
AD5172BRM2.5-RL7	2.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	DOU
AD5172BRMZ2.5²	2.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	DOU\#
AD5172BRM10	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	DOV
AD5172BRM10-RL7	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	DOV
AD5172BRMZ10 ${ }^{2}$	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	DOV\#
AD5172BRMZ10-RL7 ${ }^{2}$	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	DOV\#
AD5172BRM50	50	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D10
AD5172BRM50-RL7	50	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D10
AD5172BRMZ50 ${ }^{2}$	50	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D10\#
AD5172BRMZ50-RL7 ${ }^{2}$	50	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D10\#
AD5172BRM100	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D11
AD5172BRM100-RL7	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D11
AD5172BRMZ100 ${ }^{2}$	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D11\#
AD5172BRMZ100-RL7 ${ }^{2}$	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D11\#
AD5173BRM2.5	2.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1K
AD5173BRM2.5-RL7	2.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1K
AD5173BRMZ2.5 ${ }^{2}$	2.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1K\#
AD5173BRMZ2.5-RL7 ${ }^{2}$	2.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1K\#
AD5173BRM10	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1L
AD5173BRM10-RL7	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1L
AD5173BRMZ10 ${ }^{2}$	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1L\#
AD5173BRMZ10-RL7 ${ }^{2}$	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1L\#
AD5173BRM50	50	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1M
AD5173BRM50-RL7	50	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1M
AD5173BRMZ50 ${ }^{2}$	50	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1M\#
AD5173BRMZ50-RL7 ${ }^{2}$	50	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1M\#
AD5173BRM100	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1N
AD5173BRM100-RL7	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1N
AD5173BRMZ100 ${ }^{2}$	100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	D1N\#

[^2]
AD5172/AD5173

NOTES

NOTES

AD5172/AD5173

NOTES

Purchase of licensed $I^{2} C$ components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $I^{2} C$ Standard Specification as defined by Philips.

[^0]: ${ }^{1}$ The terms digital potentiometer, VR, and RDAC are used interchangeably.

[^1]: ${ }^{1}$ See the timing diagrams for locations of measured values (see Figure 51 to Figure 55).
 ${ }^{2}$ The maximum $\mathrm{t}_{\text {Hi; Dat }}$ only has to be met if the device does not stretch the low period ($\mathrm{t}_{\mathrm{L}} \mathrm{w}$) of the SCL signal.

[^2]: ${ }^{1}$ The part has a YWW or \#YWW label and an assembly lot number label on the bottom side of the package. The \# stands for Pb-free part. The Y shows the year that the part is made; for example, $\mathrm{Y}=5$ means the part was made in 2005. WW shows the work week that the part is made.
 ${ }^{2} \mathrm{Z}=$ Pb-free part, \# denotes lead-free product may be top or bottom marked.

