

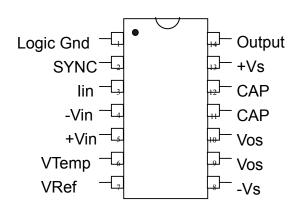
Voltage to Frequency Converter

AD537

1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.

The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. <u>http://www.analog.com/aerospace</u>


This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at <u>www.analog.com/AD537</u>

2.0 **Part Number**. The complete part number(s) of this specification follow:

Part NumberDescriptionAD537-703DVoltage to Frequency Converter with 0 to 150kHz frequency range

2.1 Case Outline.

LetterDescriptive designatorCase Outline (Lead Finish per MIL-PRF-38535)XGDIP1-T14 or CDIP2-T1414-Lead side-brazed ceramic dual-in-line package

3.0	Absolute Maximum Ratings. ($T_A = 25^{\circ}C$, unless otherwise noted)		
	Voltage, Rated Performance Single Supply	4.5 to 36V	
	Voltage, Rated Performance Dual Supply	$\dots \pm 5V$ to $\pm 18V$	
	Operating Temperature Range	55°C to +125°C	
	Storage Temperature Range	65°C to +150°C	
	Lead Temperature (Soldering, 10 sec.)	+300°C	

ASD0016511 Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2008 Analog Devices, Inc. All rights reserved.

AD537

Thermal Characteristics: 3.1

Thermal Resistance, 14 DIP (X) Package Junction-to-Case (Θ_{JC}) = 25°C/W Max Junction-to-Ambient (Θ_{JA}) = 95°C/W Max

4.0 Table I. Electrical Table:

		Table I				
Parameter	Symbol	Conditions	Sub-	Limit	Limit	Units
See notes at end of table		Note 1/	group	Min	Max	
Frequency Range	Fo		1	0	150	Khz
Linearity Error (Nonlinearity)	LE	$F_o = 10 Khz$	1		0.07	%
Ellicanty Error (Nonlinearity)	LD	$F_o = 100 Khz$	4		0.1	%
Gain Error (Full-Scale Calibration Error)	\mathbf{A}_{E}	C=0.01uF, Iin=1.00mA	1	-5	5	%
Gain vs. Supply	$\Delta A_{\rm E} / \Delta V s$	$F_0 = 10 Khz, 15 V < Vs < 20 V$	1		0.1	%/V
Gain Drift		+25C to +125C	2	-250	250	ppm/C
Gain Dint	$\Delta A_E / \Delta T$	+25C to -55C	3	-250	250	
Voltage Input Range	V _{IR}	Vs Single Supply	1	0	+Vs-4	V
Voltage input Kange	V IR	Vs Dual Supply	1	-Vs	+Vs-4	V
Input Bias Current	I _{IB}		1	-100	+100	nA
Input Resistance 4/	R _I			250		Mohms
Input Offset Voltage 2/	V _{os}		1		2	mV
Offset vs. Supply	$\Delta V_{os}/\Delta Vs$	15V <vs<20v< td=""><td>1</td><td></td><td>100</td><td>uV/V</td></vs<20v<>	1		100	uV/V
Offset Drift	$\Delta V_{os} / \Delta T$	+25C to +125C	2	-10	10	uV/C
		+25C to -55C	3	-10	10	
Voltage Ref Absolute Value 3/	V _{REF}		1	-5	5	%
V _{REF} vs. Temp	$\Delta \mathrm{V_{REF}}$ /	+25C to +125C	2	-100	100	ppm/C
v _{REF} vs. remp	ΔT	+25C to -55C	3	-100	100	ppm/C
V _{REF} vs. Supply	ΔV_{REF} /	15V <vs<35v< td=""><td>1</td><td></td><td>0.03</td><td>%/V</td></vs<35v<>	1		0.03	%/V
V _{REF} vs. Suppry	ΔVs				0.03	70/ V
Initial Calibration - Absolute	V		1	278	318	mV
Temperature Reference	V _{Temp}					111 V
Output Voltage Logic Low	V _{OL}	$I_{SINK} = 10 mA$	1,2,3		0.4	V
Output Leakage Current	I _{OH}	Logic 1	1,2,3		2	uA
Quiescent Current	I _S	Vs = 5V & 36V	1,2,3		2.5	mA

TABLE I NOTES:

- Ta = +25C, $V_S = +15V$, C = 0.01uF unless otherwise noted
- $\frac{\frac{1}{2}}{\frac{3}{4}}$ Trimmable for 14 pin DIP package only.
- Nominal value 1.00V.
- Guaranteed by design

4.1 Table II. Electrical Test Requirements:

Table II	
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)
Interim Electrical Parameters	1
Final Electrical Parameters	1, 2, 3, 4 <u>1</u> / <u>2</u> /
Group A Test Requirements	1, 2, 3, 4
Group C end-point electrical parameters	1 <u>2</u> /
Group D end-point electrical parameters	1
Group E end-point electrical parameters	N/A

Notes:

1/ PDA applies to subgroup 1. Delta's excluded from PDA.

2/ See table III for delta limits.

	-	Table III		
TEST TITLE	BURN-IN ENDPOINT	LIFETEST ENDPOINT	DELTA LIMIT	UNITS
Is@15V	2.5	2.5	±0.3	mA
Vos	2	2	±1	mV

4.2 Table III. Burn-in test delta limits.

5.0 Life Test/Burn-In Circuit:

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005, test condition B.

6.0 MIL-STD-38535 QMLV exceptions:

6.1 Full WLA per MIL-STD-883 TM 5007 is not available for this product. SEM Inspection only is available per MIL-STD-883, TM2018.

AD537

Rev	Description of Change	Date
Α	Initiate	July 17, 2007
В	Update header/footer and add to 1.0 Scope description.	March 6, 2008

© 2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 2/08

www.analog.com

ASD0016511 Rev. B | Page 4 of 4