

ANALOG 2.5 V to 5.5 V, 500 µA, Quad Voltage Output DEVICES 12-Rit DAC in 10 Load Backers 12-Bit DAC in 10-Lead Package

AD5324-EP

FEATURES

Enhanced product features

Supports defense and aerospace applications (AQEC)

Military temperature range (-55°C to +125°C)

Controlled manufacturing baseline

One assembly/test site

One fabrication site

Enhanced product change notification

Qualification data available on request

4 buffered 12-Bit DACs in 10-lead MSOP

S Version: ±10 LSB INL

Low power operation: 500 µA @ 3 V, 600 µA @ 5 V

2.5 V to 5.5 V power supply

Guaranteed monotonic by design over all codes

Power-down to 80 nA @ 3 V, 200 nA @ 5 V

Double-buffered input logic Output range: 0 V to VREE Power-on reset to 0 V

Simultaneous update of outputs (LDAC function)

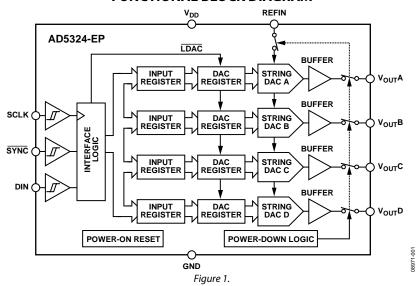
On-chip, rail-to-rail output buffer amplifiers

Temperature range -55°C to +125°C

APPLICATIONS

Portable battery-powered instruments Digital gain and offset adjustment Programmable voltage and current sources **Programmable attenuators Industrial process control**

GENERAL DESCRIPTION


The AD5324-EP¹ is a quad 12-bit buffered voltage output DAC in a 10-lead MSOP package that operates from a single 2.5 V to 5.5~V supply, consuming $500~\mu A$ at 3~V. Its on-chip output amplifiers allows rail-to-rail output swing to be achieved with a slew rate of 0.7 V/µs. A 3-wire serial interface is used; it operates at clock rates up to 30 MHz and is compatible with standard SPI, QSPI™, MICROWIRE™, and DSP interface standards.

The references for the four DACs are derived from one reference pin. The outputs of all DACs can be updated simultaneously using the software LDAC function. The part incorporates a power-on reset circuit, and ensures that the DAC outputs power up to 0 V and remains there until a valid write takes place to the device. The part contains a power-down feature that reduces the current consumption of the device to 200 nA at 5 V (80 nA at 3 V).

The low power consumption of this part in normal operation makes it ideally suited to portable battery-operated equipment. The power consumption is 3 mW at 5 V, and 1.5 mW at 3 V, reducing to 1 µW in power-down mode.

Full details about this enhanced product are available in the AD5324 data sheet, which should be consulted in conjunction with this data sheet.

FUNCTIONAL BLOCK DIAGRAM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.

 $^{^{\}rm 1}$ Protected by U.S. Patent No. 5,969,657; other patents pending.

TABLE OF CONTENTS

Features	l
Applications	
General Description	
Functional Block Diagram	
Revision History	
Specifications	3
AC Characteristics	4

I ming Characteristics	.:
Absolute Maximum Ratings	
ESD Caution	
Pin Configuration and Function Descriptions	
Typical Performance Characteristics	
Outline Dimensions	
Ordering Guide	1:

REVISION HISTORY

4/10—Revision 0: Initial Version

SPECIFICATIONS

 $V_{DD} = 2.5 \text{ V to } 5.5 \text{ V; } V_{REF} = 2 \text{ V; } R_{L} = 2 \text{ k}\Omega \text{ to GND; } C_{L} = 200 \text{ pF to GND; all specifications } T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$

Table 1.

		S Version			
Parameter	Min	Тур	Max	Unit	Conditions/Comments
DC PERFORMANCE ¹					
Resolution		12		Bits	
Relative Accuracy		±2	±10	LSB	
Differential Nonlinearity ²		±0.2	±1	LSB	Guaranteed monotonic by design over all codes
Offset Error		±0.4	±3	% of FSR	See Figure 2
Gain Error		±0.15	±1	% of FSR	See Figure 2
Lower Dead Band		20	60	mV	Lower dead band exists only if offset error is negative
Offset Error Drift ³		-12		ppm of FSR/°C	
Gain Error Drift ³		-5		ppm of FSR/°C	
DC Power Supply Rejection Ratio ³		-60		dB	$\Delta V_{DD} = \pm 10\%$
DC Crosstalk ³		200		μV	$R_L = 2 \text{ k}\Omega \text{ to GND or } V_{DD}$
DAC REFERENCE INPUTS ³					
V _{RFF} Input Range	0.25		$V_{\scriptscriptstyle DD}$	V	
V _{RFF} Input Impedance	37	45		kΩ	Normal operation
		>10		ΜΩ	Power-down mode
Reference Feedthrough		-90		dB	Frequency = 10 kHz
OUTPUT CHARACTERISTICS ³					
Minimum Output Voltage⁴		0.001		V	Measurement of the minimum and maximum
		$V_{DD} - 0.001$			V drive capability of the output amplifier
DC Output Impedance		0.5		Ω	
Short Circuit Current		25		mA	$V_{DD} = 5 \text{ V}$
		16		mA	$V_{DD} = 3 \text{ V}$
Power-Up Time		2.5		μs	Coming out of power-down mode $V_{DD} = 5 \text{ V}$
·		5		μs	Coming out of power-down mode $V_{DD} = 3 \text{ V}$
LOGIC INPUTS ³					
Input Current			±1	μΑ	
V _L , Input Low Voltage			0.8	v	$V_{DD} = 5 \text{ V} \pm 10\%$
			0.6	V	$V_{DD} = 3 \text{ V} \pm 10\%$
			0.5	V	$V_{DD} = 2.5 \text{ V}$
V _⊪ , Input High Voltage	2.4			V	$V_{DD} = 5 \text{ V} \pm 10\%$
"" I 3 3	2.1			V	$V_{DD} = 3 \text{ V} \pm 10\%$
	2.0			V	$V_{DD} = 2.5 \text{ V}$
Pin Capacitance		3		pF	
POWER REQUIREMENTS					
V _{DD}	2.5		5.5	V	
I _{DD} (Normal Mode) ⁵					
$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$		600	900	μA	$V_{IH} = V_{DD}$ and $V_{IL} = GND$
$V_{DD} = 2.5 \text{ V to } 3.6 \text{ V}$		500	700	μΑ	$V_{IH} = V_{DD}$ and $V_{IL} = GND$
I _{DD} (Power-Down Mode)					111 DU IL
$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$		0.2	1	μΑ	$V_{IH} = V_{DD}$ and $V_{II} = GND$
$V_{DD} = 1.5 \text{ V to } 3.6 \text{ V}$		0.08	1	μA	$V_{IH} = V_{DD}$ and $V_{IL} = GND$

¹ DC specifications tested with the outputs unloaded.

² Linearity is tested using a reduced code range: Code 115 to Code 3981.

³ Guaranteed by design and characterization, not production tested.
⁴ For the amplifier output to reach its minimum voltage, V_{REF} = V_{DD} and offset plus gain error must be positive.

⁵ I_{DD} specification is valid for all DAC codes; interface inactive; all DACs active; load currents excluded.

AC CHARACTERISTICS

 V_{DD} = 2.5 V to 5.5 V; R_L = 2 k Ω to GND; C_L = 200 pF to GND; all specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 2.

	S Version ²				
Parameter ¹	Min	Тур	Max	Unit	Conditions/Comments
Output Voltage Settling Time					$V_{REF} = V_{DD} = 5 V$
		8	10	μs	1/4 scale to 3/4 scale change (0x400 to 0xC00)
Slew Rate		0.7		V/µs	
Major-Code Transition Glitch Energy		12		nV-sec	1 LSB change around major carry
Digital Feedthrough		1		nV-sec	
Digital Crosstalk		1		nV-sec	
DAC-to-DAC Crosstalk		3		nV-sec	
Multiplying Bandwidth		200		kHz	$V_{REF} = 2 V \pm 0.1 V p-p$
Total Harmonic Distortion		-70		dB	$V_{REF} = 2.5 \text{ V} \pm 0.1 \text{ V} \text{ p-p; frequency} = 10 \text{ kHz}$

 $^{^1}$ Guaranteed by design and characterization, not production tested. 2 Temperature range (S Version): –55°C to +125°C; typical at +25°C.

TIMING CHARACTERISTICS

 $\rm V_{\rm DD}$ = 2.5 V to 5.5 V; all specifications $\rm T_{\rm MIN}$ to $\rm T_{\rm MAX}$ unless otherwise noted.

Table 3.

	Limit	at T _{MIN} , T _{MAX}					
Parameter ^{1, 2, 3}	$V_{DD} = 2.5 \text{ V to } 3.6 \text{ V}$	$V_{DD} = 3.6 \text{ V to } 5.5 \text{ V}$	Unit	Conditions/Comments			
t ₁	40	33	ns min	SCLK cycle time			
t ₂	16	13	ns min	SCLK high time			
t ₃	16	13	ns min SCLK low time				
t ₄	16	13	ns min	SYNC to SCLK falling edge setup time			
t ₅	5	5	ns min	Data setup time			
t ₆	4.5	4.5	ns min	Data hold time			
t ₇	0	0	ns min	SCLK falling edge to SYNC rising edge			
t ₈	80	33	ns min	Minimum SYNC high time			

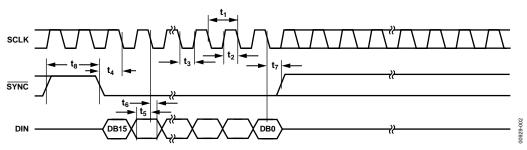


Figure 2. Serial Interface Timing Diagram

 $^{^1}$ Guaranteed by design and characterization, not production tested. 2 All input signals are specified with tr = tf = 5 ns (10% to 90 % of V_DD) and timed from a voltage level of (V_{IL} + V_{IH})/2. 3 See Figure 2.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

Rating		
-0.3 V to +7 V		
$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$		
$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$		
$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$		
−55°C to +125°C		
-65°C to +150°C		
150°C		
$(T_J \max - T_A)/\theta_{JA}$		
206°C/W		
44°C/W		
220°C		
10 sec to 40 sec		

¹ Transient currents of up to 100 mA do not cause SCR latch-up.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. MSOP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V_{DD}	Power Supply Input. This part can be operated from 2.5 V to 5.5 V and the supply can be decoupled to GND.
2	V _{OUT} A	Buffered Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.
3	V _{OUT} B	Buffered Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.
4	V _{OUT} C	Buffered Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.
5	REFIN	Reference Input Pin for All Four DACs. It has an input range from 0.25 V to V _{DD} .
6	$V_{OUT}D$	Buffered Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.
7	GND	Ground Reference Point for All Circuitry on the Part.
8	DIN	Serial Data Input. This device has a 16-bit shift register. Data is clocked into the register on the falling edge of the serial clock input. The DIN input buffer is powered down after each write cycle.
9	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at clock speeds up to 30 MHz. The SCLK input buffer is powered down after each write cycle.
10	SYNC	Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it enables the input shift register and data is transferred in on the falling edges of the following 16 clocks. If SYNC is taken high before the 16 th falling edge of SCLK, the rising edge of SYNC acts as an interrupt and the write sequence is ignored by the device.

TYPICAL PERFORMANCE CHARACTERISTICS

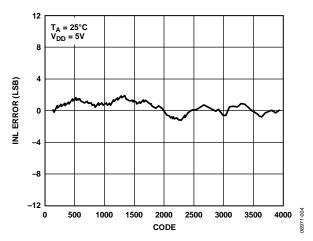


Figure 4. Typical INL Plot

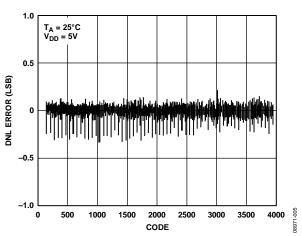


Figure 5. Typical DNL Plot

Figure 6. Offset Error and Gain Error vs. Temperature

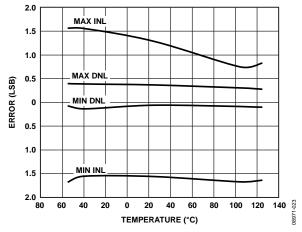


Figure 7. INL and DNL Error vs. Temperature

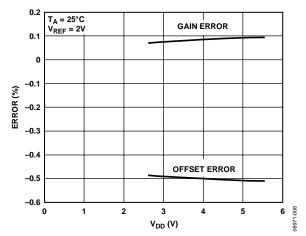


Figure 8. Offset Error and Gain Error vs. V_{DD}

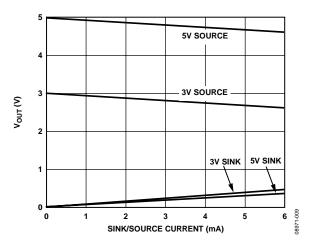


Figure 9. V_{OUT} Source and Sink Current Capability

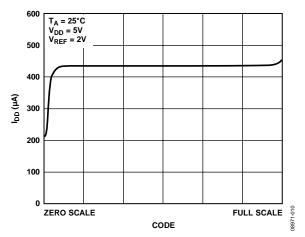


Figure 10. Supply Current vs. DAC Code

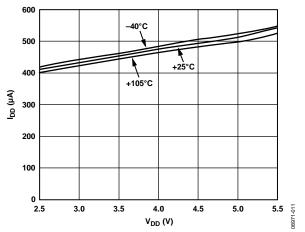


Figure 11. Supply Current vs. Supply Voltage

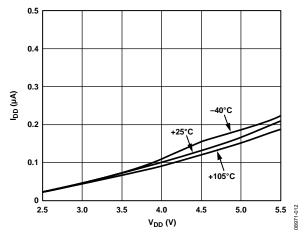


Figure 12. Power-Down Current vs. Supply Voltage

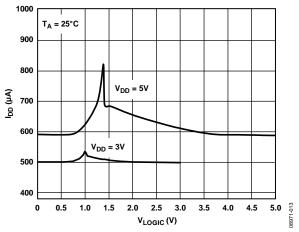


Figure 13. Supply Current vs. Logic Input Voltage

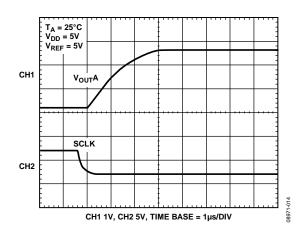


Figure 14. Half-Scale Settling (¼ to ¾ Scale Code Change)

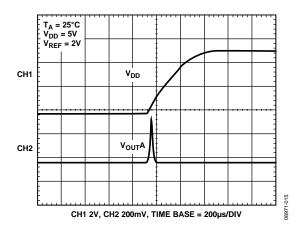


Figure 15. Power-On Reset to 0 V

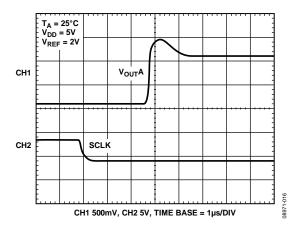


Figure 16. Exiting Power-Down to Midscale

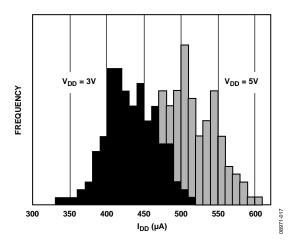


Figure 17. I_{DD} Histogram with $V_{DD} = 3 V$ and $V_{DD} = 5 V$

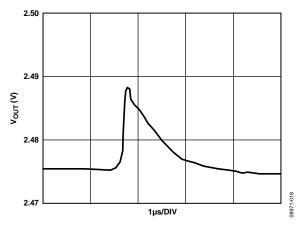


Figure 18. Major-Code Transition Glitch Energy

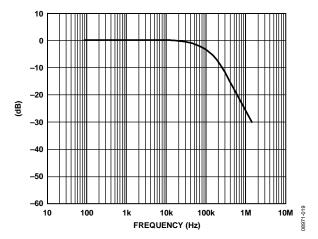


Figure 19. Multiplying Bandwidth (Small-Signal Frequency Response)

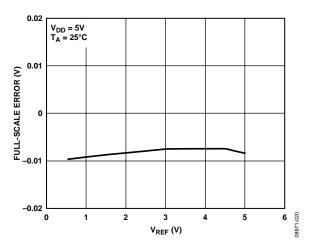


Figure 20. Full-Scale Error vs. V_{REF}

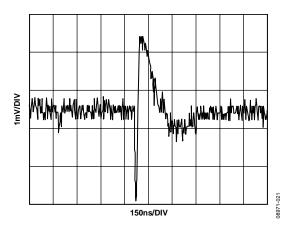
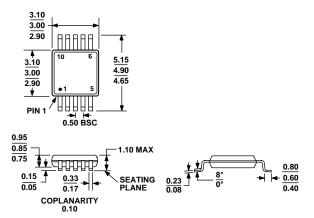



Figure 21. DAC-to-DAC Crosstalk

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA

Figure 22. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
AD5324SRMZ-EP-RL7	−55°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	DFT

¹ Z = RoHS Compliant Part.

Δ	N	5	3	2	4	_	F	P
П	_	u	u	_	_		_	

NOTES