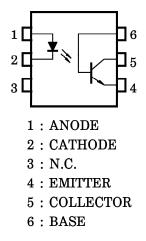

TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRANSISTOR

4N25(Short), 4N25A(Short), 4N26(Short), 4N27(Short), 4N28(Short)

AC LINE/DIGITAL LOGIC ISOLATOR. DIGITAL LOGIC/DIGITAL LOGIC ISOLATOR. TELEPHONE LINE RECEIVER. TWISTED PAIR LINE RECEIVER. HIGH FREQUENCY POWER SUPPLY FEEDBACK CONTROL. **RELAY CONTACT MONITOR.**


The TOSHIBA 4N25 (Short) through 4N28 (Short) consists of a gallium arsenide infrared emitting diode coupled with a silicon phototransistor in a dual in-line package.

- Switching Speeds : 3µs (Typ.)
- DC Current Transfer Ratio : 100% (Typ.)
- : $10^{11}\Omega$ (Min.) **Isolation Resistance**
- **Isolation** Voltage : 2500Vrms (Min.)
- **UL** Recognized : UL1577, File No. E67349

Weight : 0.4g

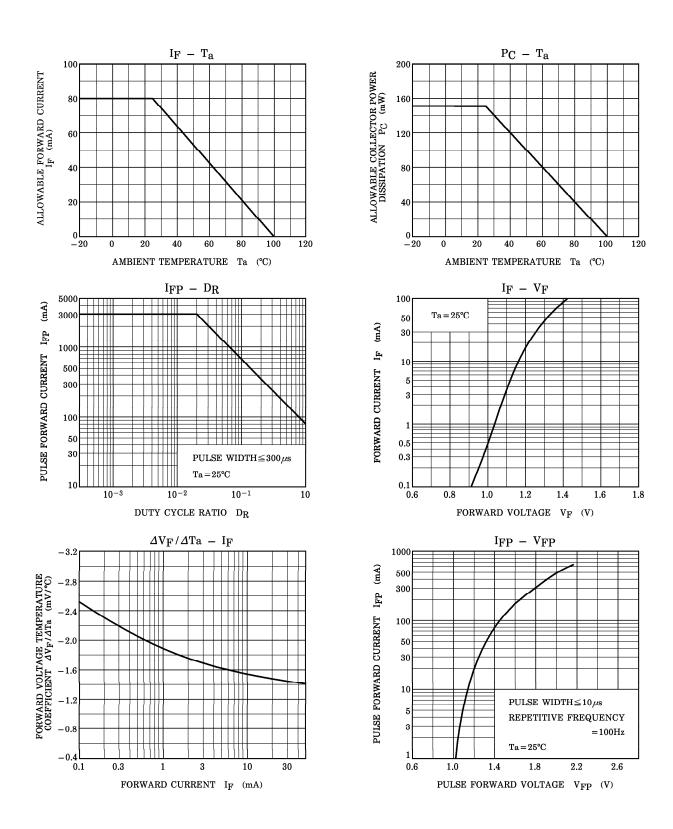
PIN CONFIGURATIONS (Top view)

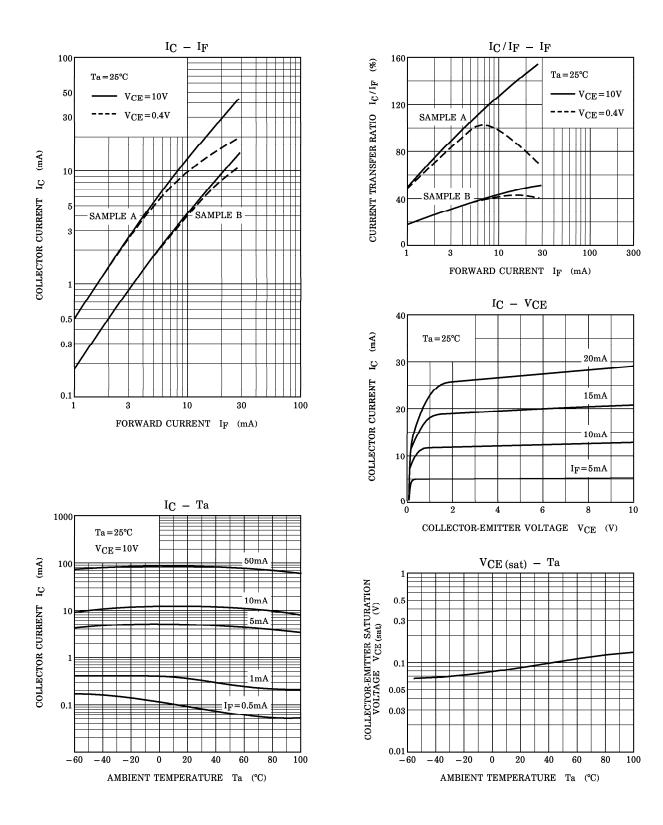
961001EBC2

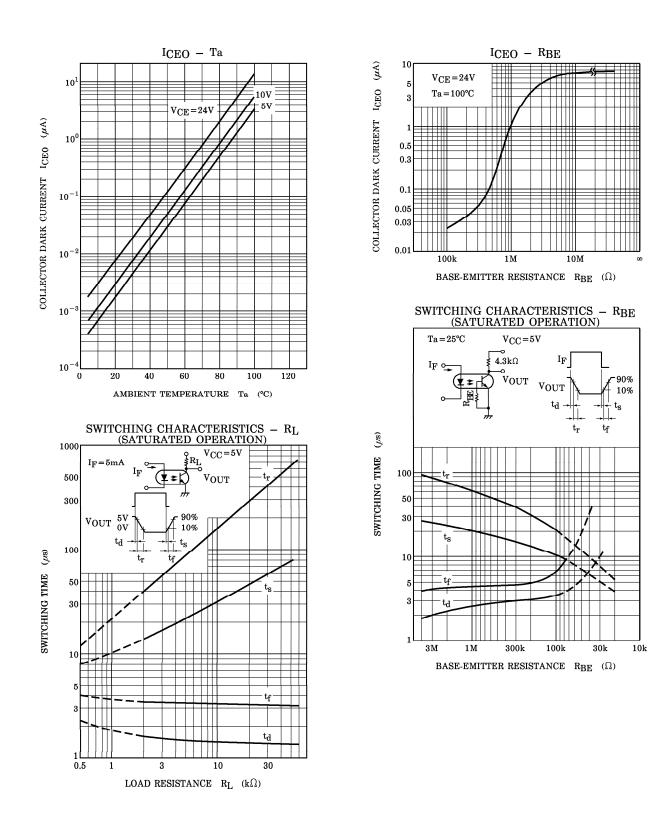
961001EBC2 TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the products, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage. The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice.

MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

	CHARACTERISTIC	SYMBOL	RATING	UNIT
ЕD	Forward Current (Continuous)	$I_{\mathbf{F}}$	80	mA
	Forward Current Derating	⊿I _F /°C	1.07 (*)	mA/°C
	Peak Forward Current (Note 1)	I _{PF}	3	Α
LE	Power Dissipation	PD	150	mW
	Power Dissipation Derating	$\Delta P_D / °C$	2.0 (*)	mW/°C
	Reverse Voltage	VR	3	V
R	Collector-Emitter Voltage	BVCEO	30	V
1 O	Collector-Base Voltage	BVCBO	70	V
ETECI	Emitter-Collector Voltage	BVECO	7	V
	Collector Current (Continuous)	IC	100	mA
	Power Dissipation	PC	150	mW
D	Power Dissipation Derating	ΔPC/°C	2.0 (*)	mW/°C
Ω	Storage Temperature Range	T_{stg}	$-55 \sim 150$	°C
E	Operating Temperature Range	T _{opr}	$-55 \sim 100$	°C
COUPL	Lead Soldering Temperature (10s)	T _{sol}	260	°C
	Total Package Power Dissipation	PT	250	mW
	Total Package Power Dissipation Derating	$\Delta P_T / C$	3.3 (*)	mW/°C


(Note 1) Pulse width $300\mu s$, 2% duty cycle.


(*) Above 25°C ambient.


CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
LED	Forward Voltage		VF	I _F =10mA	_	1.15	1.5	v
	Reverse Current		IR	V _R =3V		_	100	μA
	Capacitance		CD	V=0, f=1MHz	<u> </u>	30	i	pF
DETECTOR	DC Forward Current Gain		hFE	$V_{CE} = 5V, I_{C} = 500 \mu A$	—	200	—	_
	Collector-Emitter Breakdown Voltage		V (BR) CEO	$I_C=1mA$, $I_F=0$	30	_	_	v
	Collector-Base Breakdown Voltage		V (BR) CBO	$I_{C} = 100 \mu A$	70	_	_	v
	Emitter-Collector Breakdown Voltage		V (BR) ECO	$I_E = 100 \mu A$	7	_	_	v
	Collector Dark Current		ICEO	$V_{CE} = 10V$	—	1	50	nA
	Collector Dark Current		I _{CBO}	$V_{CB} = 10V$	—	0.1	20	nA
	Collector-Emitter Capacitance		CCE	V=0, f=1MHz	_	10	_	pF
	Current Transfer Ratio		I _C /I _F	$I_F = 10 mA$, $V_{CE} = 10 V$	20	100	—	%
	Collector-Emitter Saturation Voltage		V _{CE (sat)}	$I_F = 50 \text{mA}, I_C = 2 \text{mA}$	-	0.1	0.5	v
	Capacitance Input to Output		CS	$V_{S}=0, f=1MHz$	-	0.8	_	pF
ΕD	Isolation Resistance		RS	V_{S} =500V, R. H. \leq 60%	1011	_	—	Ω
COUPLE			BVS	AC, 1 minute	2500	_		Vrms
	Isolation Voltage	4N25, 4N25A	BV _S (*)	AC, Peak	2500	_	—	
		4N26, 4N27			1500	_	—	Vpk
		4N28			500	_		
		4N25A		AC, 1 second	1775	—	—	Vrms
	Rise / Fall Time t_r / t_f		t_r/t_f	$V_{CE} = 10V, I_C = 2mA$ $R_L = 100\Omega$	_	2	_	μs
	Rise/Fall Time t _r /t _f		$V_{CB}=10V, I_{CB}=50\mu A$ $R_{L}=100\Omega$	_	200	_	ns	

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

(*) JEDEC registered minimum $\mathrm{BV}_S,$ however, TOSHIBA specifies a minimum BV_S of 2500Vrms, 1 minute.

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.