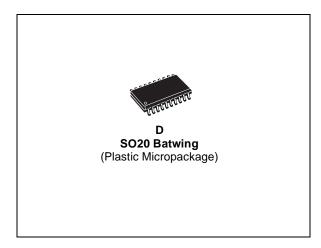


DUAL WIDE BAND OPERATIONAL AMPLIFIER FOR ADSL LINE INTERFACE

■ LOW NOISE: 3.2nV/√Hz, 1.5pA/√Hz

■ HIGH OUTPUT CURRENT : 160mA min.

■ VERY LOW HARMONIC AND INTERMODU-LATION DISTORTION

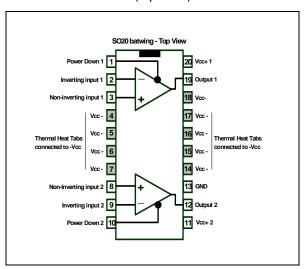

HIGH SLEW RATE : 40V/μsSPECIFIED FOR 25Ω LOAD

DESCRIPTION

This device is particularly intended for applications where multiple carriers must be amplified simultaneously with very low intermodulation products. It has been mainly designed to fit with ADSL chip-set such as ST70134 or ST70135.

The TS634 is a high output current dual operational amplifier, with a large gain-bandwidth product (130MHz) and capable of driving a 25 Ω load at 12V power supply. The TS634 is fitted out with Power Down function in order to decrease the consumption.

The TS634 is housed in SO20 batwing plastic package for a very low thermal resistance.



ORDER CODE

Part	Temperature	Package	
Number	Range	D	Р
TS634ID	-40, +85°C	•	

D=Small Outline Package (SO) - also available in Tape & Reel (DT)

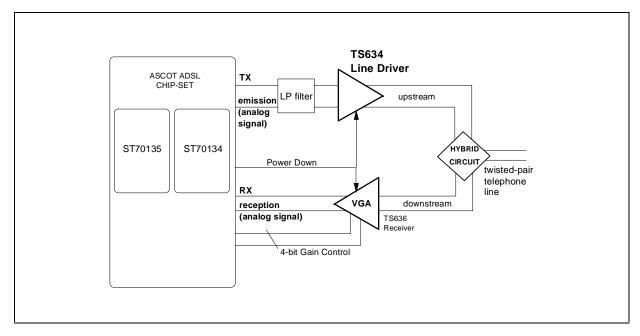
PIN CONNECTIONS (top view)

APPLICATION

■ UPSTREAM line driver for Asymmetric Digital Subscriber Line (ADSL) (NT).

March 2003 1/9

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ¹⁾	±7	V
V_{id}	Differential Input Voltage ²⁾	±2	V
V _{in}	Input Voltage Range 3)	±6	V
T _{oper}	Operating Free Air Temperature Range TS634TS634ID	-40 to +85	°C
T _{std}	Storage Temperature	-65 to +150	°C
T _j	Maximum Junction Temperature	150	°C
SO20-Bat	wing	_	_
R _{thjc}	Thermal Resistance Junction to Case	25	°C/W
R _{thja}	Thermal Resistance Junction to Ambient Area	45	°C/W
P _{max} .	Maximum Power Dissipation (@25°C)	2.7	W

- 1. All voltages values, except differential voltage are with respect to network terminal.
- $2. \ \ \, \text{Differential voltages are non-inverting input terminal with respect to the inverting input terminal.}$
- 3. The magnitude of input and output voltages must never exceed $\rm V_{CC}$ +0.3V.

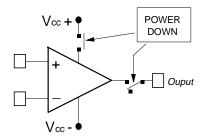
OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	±2.5 to ±6	V
V _{icm}	Common Mode Input Voltage	(V _{CC}) +2 to (V _{CC} ⁺) -1	V

APPLICATION: ADSL LINE INTERFACE

ELECTRICAL CHARACTERISTICS $V_{CC} = \pm 6 Volts$, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter Test Condition		Min.	Тур.	Max.	Unit
DC PER	FORMANCE					1
ΔV_{io}	Differential Input Offset Voltage	T _{amb} = 25°C			6	mV
	land Offer to Comment	T_{amb}		0.2	3	<u> </u>
l _{io}	Input Offset Current	$T_{min.} < T_{amb} < T_{max.}$			5	μΑ
ſ	Lead Bird Correct	T_{amb}		5	15	
l _{ib}	Input Bias Current	$T_{min.} < T_{amb} < T_{max.}$			30	μΑ
0145		$V_{ic} = 2V \text{ to } 2V, T_{amb}$	90	108		in.
CMR	Common Mode Rejection Ratio	$T_{\text{min.}} < T_{\text{amb}} < T_{\text{max.}}$	70			dB
		$V_{ic} = \pm 6V \text{ to } \pm 4V, T_{amb}$	70	88		
SVR	Supply Voltage Rejection Ratio	$T_{min.} < T_{amb} < T_{max.}$	50			dB
I _{cc}	Total Supply Current per Operator	No load, V _{out} = 0		14		mA
DYNAM	IC PERFORMANCE			<u>I</u>		<u> </u>
V _{OH}	High Level Output Voltage	I _{out} = 160mA R _L connected to GND	4	4.5		V
V _{OL}	Low Level Output Voltage	I _{out} = 160mA R _L connected to GND		-4.5	-4	V
A _{VD}	Large Signal Voltage Gain	$V_{out} = 7V \text{ peak}$ $R_L = 25\Omega, T_{amb}$	6500	11000		V/V
		$T_{min.} < T_{amb} < T_{max.}$	5000			
GBP	Gain Bandwidth Product	A_{VCL} = +7, f = 20MHz R_L = 100 Ω		130		MHz
SR	Slew Rate	$A_{VCL} = +7, R_L = 50\Omega$	23	40		V/µs
I _{sink}	Output Current	$V_{id} = \pm 1V, T_{amb}$	160			mA
I _{source}	Odipat Odiforit	$T_{\text{min.}} < T_{\text{amb}} < T_{\text{max.}}$	140] ''''
ФМ14	Phase Margin at A _{VCL} = 14dB	$R_L = 25\Omega//15pF$		60		0
ФМ6	Phase Margin at A _{VCL} = 6dB	$R_L = 25\Omega//15pF$		40		٥
NOISE A	AND DISTORTION	•				
en	Equivalent Input Noise Voltage	f = 100kHz		3.2		nV/√Hz
in	Equivalent Input Noise Current	f = 100kHz		1.5		pA/√Hz
THD	Total Harmonic Distortion	$V_{out} = 4Vpp, f = 100kHz$ $A_{VCL} = -10$ $R_L = 25\Omega//15pF$		-69		dB
IM2 ₋₁₀	2nd Order Intermodulation Product	F1 = 80kHz, F2 = 70kHz V_{out} = 8Vpp, A_{VCL} = -10 Load = 25 Ω //15pF		-77		dBc
IM3 ₋₁₀	3rd Order Intermodulation Product	F1 = 80kHz, F2 = 70kHz V_{out} = 8Vpp, A_{VCL} = -10 Load = 25 Ω //15pF		-77		dBc


POWER DOWN MODE

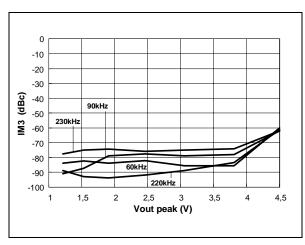
 $V_{CC} = \pm 6 Volts, T_{amb} = 25^{\circ}C$

Symbol	Parameter		Min.	Тур.	Max	Unit
	Thershold Voltage for Power Down Mode					
V_{pdw}		Low Level		0	0.8	V
		High Level	2	3.3		
Icc _{pdw}	Total Power Down Mode Current Consumption				150	μA
R_{pdw}	Power Down Mode Ouput Impedance			1.4		$M\Omega$
C_{pdw}	Power Down Mode Output Capacitance			33		pF

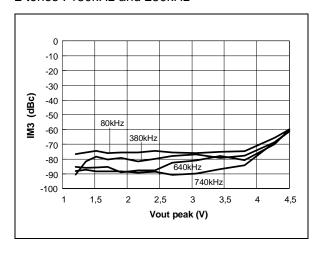
STANDBY CONTROL		OPERATOR STATUS		
operator 1	operator 2	operator 1	operator 2	
V _{high level}	V _{low level}	Standby	Active	
V _{high level}	V _{high level}	Standby	Standby	
V _{low level}	V _{low level}	Active	Active	
V _{low level}	V _{high level}	Active	Standby	

POWER DOWN EQUIVALENT SCHEMATIC

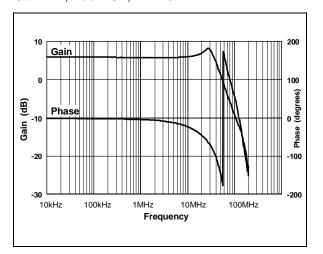
OUPUT IMPEDANCE IN POWER DOWN MODE

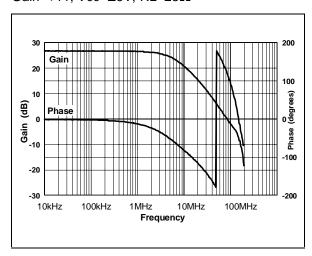

In Power Down Mode the output of the driver is in "high impedance" state. It is really the case for the static mode. Regarding the dynamic mode, the impedance decreases due to a capacitive effect of the collector-substrat and base collector junction. The impedance behaviour comes capacitive, typically: $1.4 \text{M}\Omega$ // 33 pF.

INTERMODULATION DISTORTION


The curves shown below are the measurements results of a single operator wired as an adder with a gain of 15dB. The operational amplifier is supplied by a symmetric $\pm 6\text{V}$ and is loaded with 25Ω . Two synthesizers (Rhode & Schwartz SME) generate two frequencies (tones) (70 & 80kHz or 180 & 280kHz). An HP3585 spectrum analyzer measures the spurious level at different frequencies. The curves are traced for different output levels (the value in the X axis is the value of each tone). The output levels of the two tones are the same. The generators and spectrum analyzer are phase locked to enhance measurement precision.

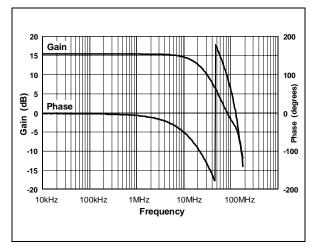
3rd ORDER INTERMODULATION


2 tones: 70kHz and 80kHz


2 tones: 180kHz and 280kHz

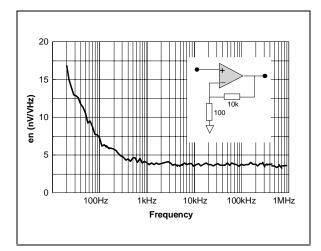
Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= \pm 6V, RL=25 Ω

Closed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= \pm 6V, RL= 25Ω

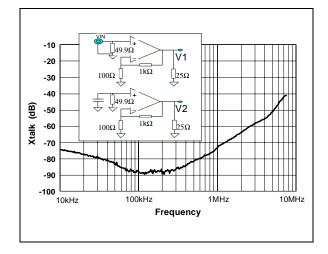


Maximum Output Swing

Vcc= \pm 6V, RL= 25Ω



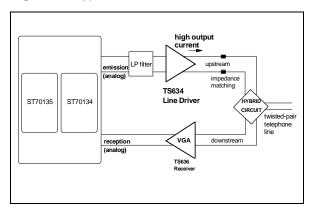
Closed Loop Gain and Phase vs. Frequency Gain=+6, $Vcc=\pm6V$, $RL=25\Omega$


Equivalent Input Voltage Noise

Gain=+100, Vcc=±6V, no load

Channel Separation (Xtalk) vs. Frequency

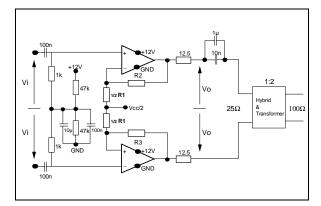
XTalk=20Log(V2/V1), Vcc= \pm 6V, RL=25 Ω



THE TS634 AS LINE DRIVER ON ADSL LINE INTERFACE. SINGLE SUPPLY IMPLEMENTATION WITH PASSIVE OR ACTIVE IMPEDANCE MATCHING.

THE LINE INTERFACE - ADSL Remote Terminal (RT):

The Figure 1 shows a typical analog line interface used for ADSL service. On this note, the accent will be made on the emission path. The TS634 is used as a dual line driver for the upstream signal.


Figure 1: Typical ADSL Line Interface

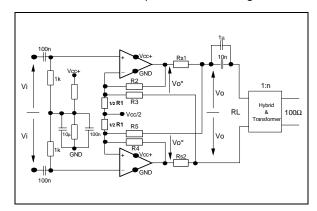
For the remote terminal it is required to create an ADSL modem easy to plug in a PC. In such an application, the driver should be implemented with a +12 volts single power supply. This +12V supply is available on PCI connector of purchase.

The Figure 2 shows a single +12V supply circuit that uses the TS634 as a remote terminal transmitter in differential mode.

Figure 2: TS634 as a differential line driver with a +12V single supply

The driver is biased with a mid supply (nominaly +6V), in order to maintain the DC component of the signal at +6V. This allows the maximum dy-

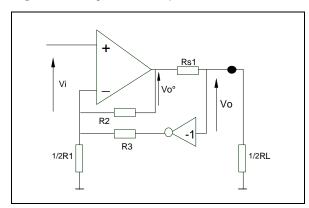
namic range between 0 and +12 V. Several options are possible to provide this bias supply (such as a virtual ground using an operational amplifier), such as a two-resistance divider which is the cheapest solution. A high resistance value is required to limit the current consumption. On the other hand, the current must be high enough to bias the inverting input of the TS634. If we consider this bias current (5 μ A) as the 1% of the current through the resistance divider (500 μ A) to keep a stable mid supply, two 47k Ω resistances can be used.


The input provides two high pass filters with a break frequency of about 1.6kHz which is necessary to remove the DC component of the input signal. To avoid DC current flowing in the primary of the transformer, an output capacitor is used. The this case the load impedance is 25Ω for each driver

For the ADSL upstream path necessary to avoid any distortion. In this simple non-inverting amplification configuration, it will be easy to implement a Sallen-Key lowpass filter by using the TS634. For ADSL over POTS, a maximum frequency of 135kHz is reached. For ADSL over ISDN, the maximum frequency will be 276kHz.

INCREASING THE LINE LEVEL BY USING AN ACTIVE IMPEDANCE MATCHING

With passive matching, the output signal amplitude of the driver must be twice the amplitude on the load. To go beyond this limitation an active maching impedance can be used. With this technique it is possible to keep good impedance matching with an amplitude on the load higher than the half of the ouput driver amplitude. This concept is shown in Figure 3 for a differential line.


Figure 3 : TS634 as a differential line driver with an active impedance matching

Component calculation:

Let us consider the equivalent circuit for a single ended configuration, Figure 4.

Figure 4 : Single ended equivalent circuit

Let us consider the unloaded system. Assuming the currents through R1, R2 and R3 as respectively:

$$\frac{2Vi}{R1}, \frac{(Vi-Vo^\circ)}{R2} and \frac{(Vi+Vo)}{R3}$$

As Vo° equals Vo without load, the gain in this case becomes:

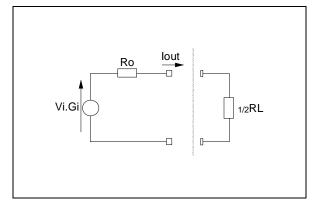
$$G = \frac{Vo(noload)}{Vi} = \frac{1 + \frac{2R2}{R1} + \frac{R2}{R3}}{1 - \frac{R2}{R3}}$$

The gain, for the loaded system will be (1):

$$GL = \frac{Vo(withload)}{Vi} = \frac{1}{2} \frac{1 + \frac{2R2}{R1} + \frac{R2}{R3}}{1 - \frac{R2}{R3}}, (1)$$

As shown in figure5, this system is an ideal generator with a synthesized impedance as the internal impedance of the system. From this, the output voltage becomes:

$$Vo = (ViG) - (RoIout),(2)$$


with Ro the synthesized impedance and lout the output current. On the other hand Vo can be expressed as:

$$Vo = \frac{Vi\left(1 + \frac{2R2}{R1} + \frac{R2}{R3}\right)}{1 - \frac{R2}{R3}} - \frac{Rs1Iout}{1 - \frac{R2}{R3}}, (3)$$

By identification of both equations (2) and (3), the synthesized impedance is, with Rs1=Rs2=Rs:

$$Ro = \frac{Rs}{1 - \frac{R2}{R3}}, (4)$$

Figure 5 : Equivalent schematic. Ro is the synthesized impedance

Unlike the level Vo° required for a passive impedance, Vo° will be smaller than 2Vo in our case. Let us write Vo°=kVo with k the matching factor varying between 1 and 2. Assuming that the current through R3 is negligeable, it comes the following resistance divider:

$$Ro = \frac{kVoRL}{RL + 2Rs1}$$

After choosing the k factor, Rs will equal to 1/2RL(k-1).

A good impedance matching assumes:

$$Ro = \frac{1}{2}RL,(5)$$

From (4) and (5) it becomes:

$$\frac{R2}{R3} = 1 - \frac{2Rs}{RL}$$
,(6)

By fixing an arbitrary value for R2, (6) gives:

$$R3 = \frac{R2}{1 - \frac{2Rs}{RL}}$$

Finally, the values of R2 and R3 allow us to extract R1 from (1), and it comes:

$$R1 = \frac{2R2}{2\left(1 - \frac{R2}{R3}\right)GL - 1 - \frac{R2}{R3}}, (7)$$

with GL the required gain.

GL (gain for the loaded system)	GL is fixed for the application requirements GL=Vo/Vi=0.5(1+2R2/R1+R2/R3)/(1-R2/R3)
R1	2R2/[2(1-R2/R3)GL-1-R2/R3]
R2 (=R4)	Abritrary fixed
R3 (=R5)	R2/(1-Rs/0.5RL)
Rs	0.5RL(k-1)

CAPABILITIES

The table below shows the calculated components for different values of k. In this case R2=1000 Ω and the gain=16dB. The last column displays the maximum amplitude level on the line regarding the TS634 maximum output capabilities (18Vpp diff.) and a 1:2 line transformer ratio.

F	Active n	natchin	9		
k	R1 (Ω)	R3 (Ω)	Rs (Ω)	TS634 Output Level to get 12.4Vpp on the line (Vpp diff)	Maximum Line level (Vpp diff)
1.3	820	1500	3.9	8	27.5
1.4	490	1600	5.1	8.7	25.7
1.5	360	2200	6.2	9.3	25.3
1.6	270	2400	7.5	9.9	23.7
1.7	240	3300	9.1	10.5	22.3
P	assive	matchir	ıg	12.4	18

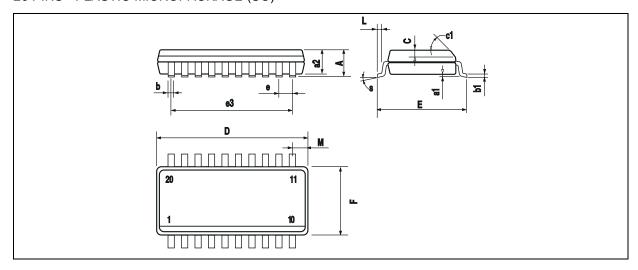
MEASUREMENT OF THE POWER CONSUMPTION

Conditions:

Power Supply: 12V

Passive impedance matching Transformer turns ratio: 2

Maximum level required on the line: 12.4Vpp Maximum output level of the driver: 12.4Vpp


Crest factor: 5.3 (Vp/Vrms)

The TS634 power consumption during emission on 900 and 4550 meter twisted pair telephone

lines: 450mW

PACKAGE MECHANICAL DATA

20 PINS - PLASTIC MICROPACKAGE (SO)

Dim		Millimeters			Inches	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			2.65			0.104
a1	0.1		0.3	0.004		0.012
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
С		0.5			0.020	
c1			45°	(typ.)	-	
D	12.6		13.0	0.496		0.512
E	10		10.65	0.394		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.4		7.6	0.291		0.299
L	0.5		1.27	0.020		0.050
М			0.75			0.030
S		_	8° (r	nax.)		-

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com

