

4-Mbit (512 K × 8) Static RAM

Features

■ Very high speed: 45 ns

□ Wide voltage range: 2.20 V to 3.60 V

■ Temperature range:

□ Industrial: –40 °C to +85 °C □ Automotive-A: –40 °C to +85 °C

■ Pin compatible with CY62148DV30

■ Ultra low standby power

Typical standby current: 1 μA

□ Maximum standby current: 7 μA (Industrial)

■ Ultra low active power

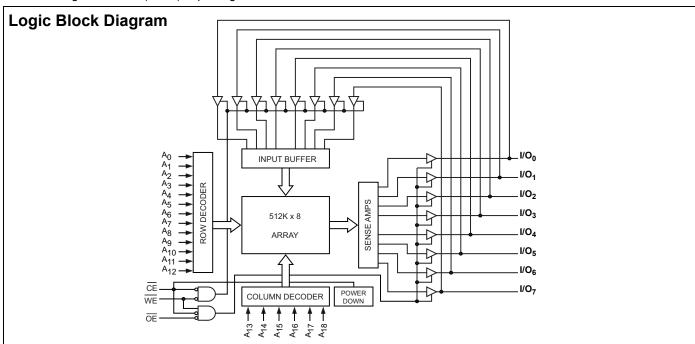
□ Typical active current: 2 mA at f = 1 MHz

■ Easy memory expansion with CE and OE features

■ Automatic power down when deselected

■ Complementary metal oxide semiconductor (CMOS) for optimum speed and power

Available in Pb-free 36-ball very fine ball grid array (VFBGA), 32-pin thin small outline pacage (TSOP) II, and 32-pin small outline integrated circuit (SOIC) [1] packages


Functional Description

The CY62148EV30 is a high performance CMOS static RAM organized as 512 K words by 8 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life[™] (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption. Placing the device into standby mode reduces power consumption by more than 99 percent when deselected ($\overline{\text{CE}}$ HIGH). The eight input and output pins (I/O $_0$ through I/O $_7$) are placed in a high impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW).

 $\overline{\text{To w}}$ rite to the device, take Chip Enable $(\overline{\text{CE}})$ and Write Enable $(\overline{\text{WE}})$ inputs LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A $_0$ through A $_{18}$).

To read from the device, take Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins.

For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.

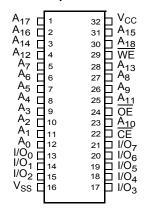
Note

1. SOIC package is available only in 55 ns speed bin.

Contents

Features	1
Functional Description	1
Pin Configuration	3
Product Portfolio	
Maximum Ratings	4
Operating Range	
Electrical Characteristics	
Capacitance	
Data Retention Characteristics	
Switching Characteristics	
Truth Table	

Ordering information	9
Package Diagrams	10
Acronyms	13
Document Conventions	13
Units of Measure	13
Document History Page	14
Sales, Solutions, and Legal Information	15
Worldwide Sales and Design Support	15
Products	
PSoC® Solutions	15



Pin Configuration [2, 3]

36-Ball VFBGA Pinout Top View

32-Pin SOIC/TSOP II Pinout Top View

Product Portfolio

Product						Power Dissipation								
		Range	Vcc	V _{CC} Range (V)		Speed (ns)	Operating I _{CC} (mA)		A)	Standby I _{SB2}				
			f = 1 MH		MHz	f = f _{max}		(μΑ)						
			Min	Typ ^[4]	Max		Typ ^[4]	Max	Typ ^[4]	Max	Typ ^[4]	Max		
	VFBGA	Industrial	2.2	2.2	2.2	3.0	3.6	45	2	2.5	15	20	1	7
CY62148EV30LL	TSOP II	Industrial/Auto-A	2.2	3.0	3.0	40	2	2.5	15	20	ı	/		
	SOIC	Industrial	2.2	3.0	3.6	55	2	2.5	15	20	1	7		

Notes

- 2. SOIC package is available only in 55 ns speed bin.
- 3. NC pins are not connected on the die.
- 4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. Ambient temperature with power applied 55 °C to +125 °C Supply voltage to ground potential-0.3 V to V_{CC(max)} + 0.3 V DC voltage applied to outputs in High-Z State $^{[5,\;6]}$ –0.3 V to V $_{CC(max)}$ + 0.3 V

DC input voltage ^[5, 6] 0.3	V to $V_{CC(max)}$ + 0.3 V
Output current into outputs (LOW)	20 mA
Static discharge voltage(MIL-STD-883, Method 3015)	> 2001 V
Latch up current	> 200 mA

Operating Range

Product	Range	Ambient Temperature	V cc ^[7]
CY62148EV30	Industrial/ Auto-A	–40°C to +85°C	2.2V to 3.6V

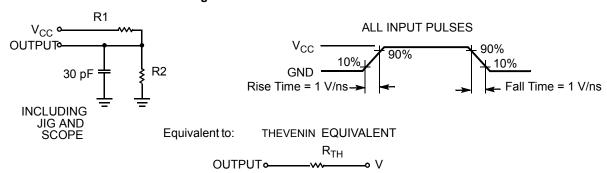
Electrical Characteristics

(Over the Operating Range)

Parameter Description		T O		-45	(Indust	rial/Auto-A)		I Imi4		
Parameter	Description	lest (Test Conditions		Typ ^[9]	Max	Min	Typ ^[9]	Max	Unit
V _{OH}	Output high voltage	$I_{OH} = -0.1 \text{ mA}$		2.0			2.0			V
		I _{OH} = -1.0 mA	, V _{CC} ≥ 2.70 V	2.4			2.4			V
V _{OL}	Output low voltage	I _{OL} = 0.1 mA				0.4			0.2	V
		I _{OL} = 2.1 mA, \	V _{CC} ≥ 2.70 V			0.4			0.4	V
V _{IH}	Input high voltage	$V_{CC} = 2.2V \text{ to } 2.2V \text{ to } 3.2V $	2.7 V	1.8		V _{CC} + 0.3 V	1.8		V _{CC} + 0.3 V	V
		V_{CC} = 2.7V to 3	3.6 V	2.2		V _{CC} + 0.3 V	2.2		V _{CC} + 0.3 V	V
V _{IL}	Input low voltage	V _{CC} = 2.2V to 2.7 V	For VFBGA and TSOP II package	-0.3		0.6				V
			For SOIC package				-0.3		0.4 ^[10]	V
		V _{CC} = 2.7V to 3.6 V	For VFBGA and TSOP II package	-0.3		0.8				V
			For SOIC package				-0.3		0.6 ^[10]	
I _{IX}	Input leakage current	$GND \le V_1 \le V_C$;	–1		+1	-1		+1	μА
I _{OZ}	Output leakage current	$GND \le V_O \le V_O$	_{CC} , Output Disabled	-1		+1	-1		+1	μА
I _{CC}	V _{CC} operating	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CC(max),}$		15	20		15	20	mA
	supply current	f = 1 MHz	I _{OUT} = 0 mA, CMOS levels		2	2.5		2	2.5	
I _{SB1}	Automatic CE power down current — CMOS inputs	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$, $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$, $\text{V}_{\text{IN}} \le 0.2\text{ V}$ $\text{F} = \text{f}_{\text{max}}$ (Address and Data Only), $\text{F} = 0$ ($\overline{\text{OE}}$ and $\overline{\text{WE}}$), $\text{V}_{\text{CC}} = 3.60\text{ V}$			1	7		1	7	μА
I _{SB2} ^[11]	Automatic CE power down current — CMOS inputs		$2 \text{ V or V}_{IN} \leq 0.2 \text{ V},$		1	7		1	7	μА

Notes

- $V_{IL(min)}$ = -2.0V for pulse durations less than 20 ns.
- $V_{IH(max)} = V_{CC} + 0.75V$ for pulse durations less than 20 ns. Full device AC operation assumes a minimum of 100 μ s ramp time from 0 to $V_{CC(min)}$ and 200 μ s wait time after V_{CC} stabilization.
- SOIC package is available only in 55 ns speed bin.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.
 Under DC conditions the device meets a V_{IL} of 0.8V (for V_{CC} range of 2.7V to 3.6V) and 0.6V (for V_{CC} range of 2.2V to 2.7V). However, in dynamic conditions Input LOW voltage applied to the device must not be higher than 0.6V and 0.4V for the above ranges. This is applicable to SOIC package only. Refer to AN13470 for details.
- 11. Only chip enable $\overline{(CE)}$ must be HIGH at CMOS level to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

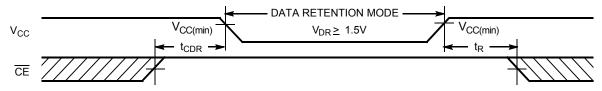

Capacitance (For All packages)[12]

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	T _A = 25°C, f = 1 MHz,	10	pF
C _{OUT}	Output capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance

Parameter ^[12]	Description	Test Conditions	VFBGA Package	TSOP II Package	SOIC Package	Unit
Θ_{JA}	Thermal resistance (Junction to ambient)	Still air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	72	75.13	55	°C/W
Θ _{JC}	Thermal resistance (Junction to case)		8.86	8.95	22	°C/W

Figure 1. AC Test Loads and Waveforms



Parameters	2.50 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions			Typ ^[13]	Max	Unit
V_{DR}	V _{CC} for data retention			1.5			V
I _{CCDR} ^[14]	Data retention current	$V_{CC} = 1.5V, \overline{CE} \ge V_{CC} - 0.2 V, \ V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2 V$	Ind'I/Auto-A		0.8	7	μА
t _{CDR} ^[15]	Chip deselect to data retention time			0			ns
t _R ^[16]	Operation recovery time			t _{RC}			ns

Figure 2. Data Retention Waveform

- 12. Tested initially and after any design or process changes that may affect these parameters.
- 12. Tested initially and after any design or process changes that may affect these parameters.

 13. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.

 14. V_{IH(max)} = V_{CC} + 0.75V for pulse durations less than 20 ns.

 15. Tested initially and after any design or process changes that may affect these parameters.

 16. Full device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

Document #: 38-05576 Rev. *K

Switching Characteristics

(Over the Operating Range)[17]

	-	-45 (Indust	rial/Auto-A)	-55	[18]	
Parameter	Description	Min	Max	Min	Max	Unit
Read Cycle		•	1			
t _{RC}	Read Cycle Time	45		55		ns
t _{AA}	Address to Data Valid		45		55	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		45		55	ns
t _{DOE}	OE LOW to Data Valid		22		25	ns
t _{LZOE}	OE LOW to Low Z ^[19]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[19, 20]		18		20	ns
t _{LZCE}	CE LOW to Low Z ^[19]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[19, 20]		18		20	ns
t _{PU}	CE LOW to Power Up	0		0		ns
t _{PD}	CE HIGH to Power Up		45		55	ns
Write Cycle ^[21]		•			•	•
t _{WC}	Write Cycle Time	45		55		ns
t _{SCE}	CE LOW to Write End	35		40		ns
t _{AW}	Address Setup to Write End	35		40		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Setup to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	35		40		ns
t _{SD}	Data Setup to Write End	25		25		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[19, 20]		18		20	ns
t _{LZWE}	WE HIGH to Low Z ^[19]	10		10		ns

 ^{17.} Test Conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in the AC Test Loads and Waveforms on page 5.
 18. SOIC package is available only in 55 ns speed bin.
 19. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.
 20. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.
 21. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Figure 3. Read Cycle No. 1 (Address Transition Controlled) [22, 23]

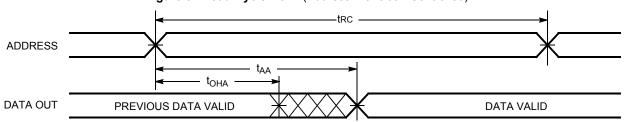


Figure 4. Read Cycle No. 2 ($\overline{\text{OE}}$ Controlled) [23, 24]

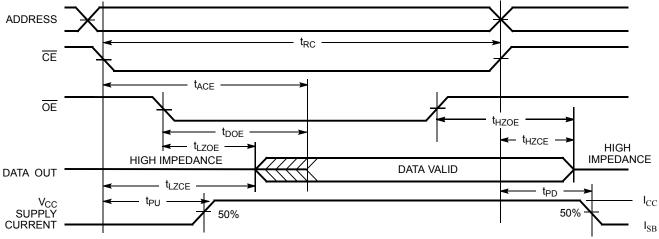
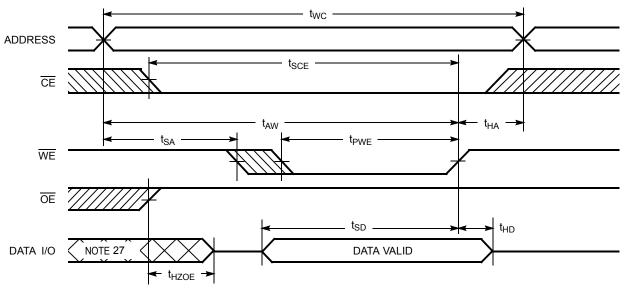



Figure 5. Write Cycle No. 1 (WE Controlled, OE HIGH During Write) [25, 26]

- 22. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 23. WE is HIGH for read cycles.
- 24. Address valid before or similar to $\overline{\text{CE}}$ transition LOW.
- 25. Data I/O is high impedance if \overline{OE} = V_{IH} .
 26. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in high impedance state.
- 27. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 6. Write Cycle No. 2 (CE Controlled) [31, 32]

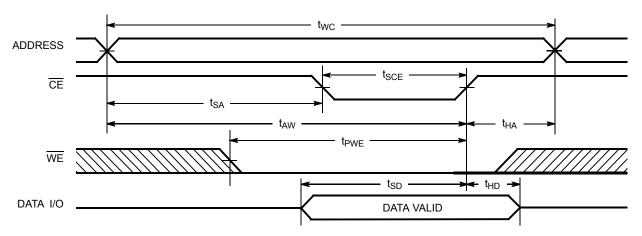
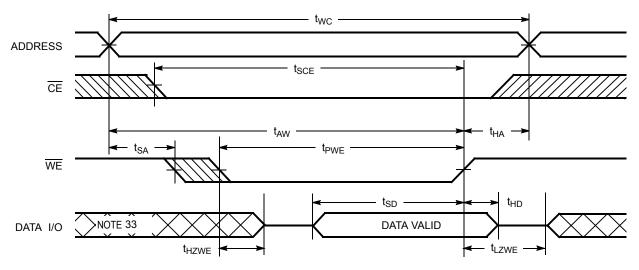



Figure 7. Write Cycle No. 3 (WE Controlled, OE LOW)[32]

Truth Table

CE [34]	WE	OE	Inputs/Outputs	Mode	Power
Н	X	Х	High Z	Deselect/Power down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	Data in	Write	Active (I _{CC})

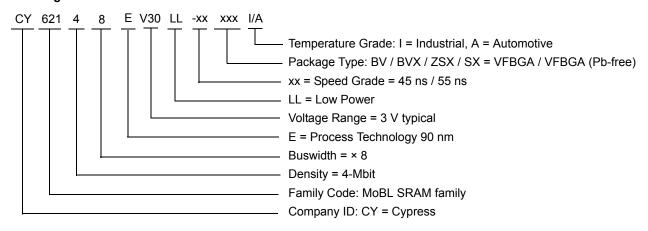
- 28. <u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}. 29. <u>WE</u> is HIGH for read cycles.

- 30. Address valid before or similar to $\overline{\text{CE}}$ transition LOW.

 31. Data I/O is high impedance if $\overline{\text{OE}} = V_{|\underline{\text{H:}}}$.

 32. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in high impedance state.
- 33. During this period, the I/Os are in output state. Do not apply input signals.
- 34. Chip enable must be at CMOS levels (not floating). Intermediate voltage levels on this pin is not permitted.

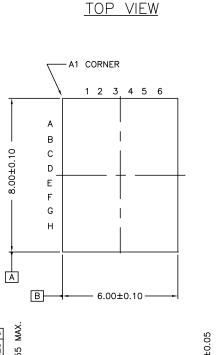
[+] Feedback

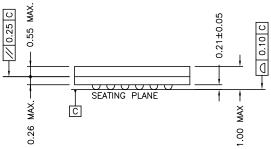


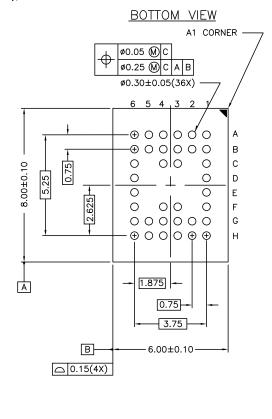
Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62148EV30LL-45BVI	51-85149	36-ball VFBGA	Industrial
	CY62148EV30LL-45BVXI	51-85149	36-ball VFBGA (Pb-free)	
	CY62148EV30LL-45ZSXI	51-85095	32-pin TSOP II (Pb-free)	
	CY62148EV30LL-45ZSXA	51-85095	32-pin TSOP II (Pb-free)	Automotive-A
55	CY62148EV30LL-55SXI	51-85081	32-pin SOIC (Pb-free)	Industrial

Contact your local Cypress sales representative for availability of these parts.

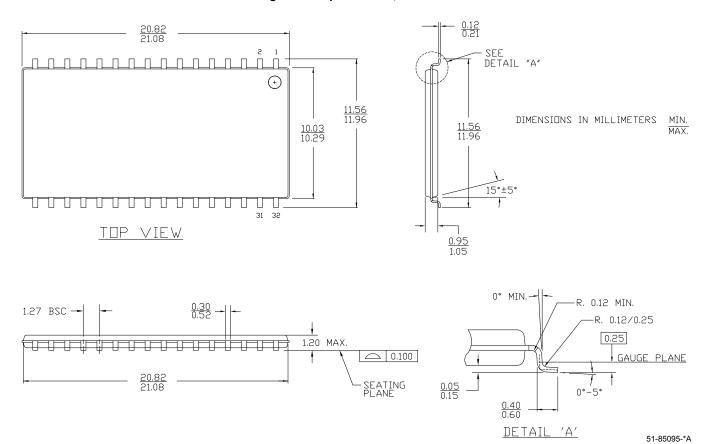

Ordering Code Definitions





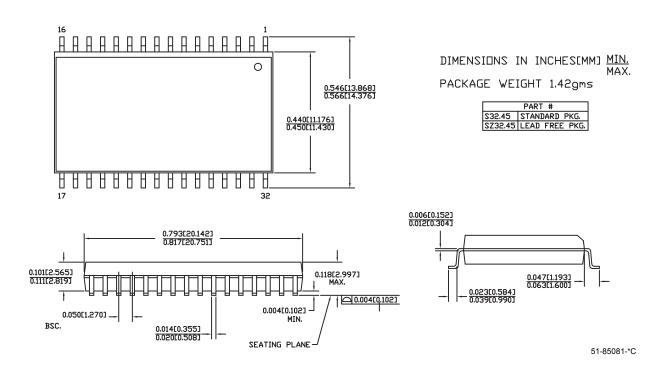
Package Diagrams

Figure 8. 36-ball VFBGA (6 x 8 x 1 mm), 51-85149


51-85149 *D

[+] Feedback

Package Diagrams (continued)


Figure 9. 32-pin TSOP II, 51-85095

Package Diagrams (continued)

Figure 10. 32-pin (450 MIL) Molded SOIC, 51-85081

[+] Feedback

Acronyms

Acronym	Description		
BHE	byte high enable		
BLE	byte low enable		
CMOS	complementary metal oxide semiconductor		
CE	chip enable		
I/O	input/output		
ŌĒ	output enable		
SRAM	static random access memory		
TSOP	thin small outline package		
VFBGA	very fine ball grid array		
WE	write enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure		
ns	nano seconds		
V	volts		
μΑ	micro amperes		
mA	milli amperes		
pF	pico Farad		
°C	degree Celsius		
W	watts		

Document History Page

Rev.	ECN	Submission Date	Orig. of Change	Description of Change
**	223225	See ECN	AJU	New data sheet
*A	247373	See ECN	SYT	Changed from Advance Information to Preliminary Moved Product Portfolio to Page 2 Changed V_{CC} stabilization time in footnote #7 from 100 μ s to 200 μ s Changed I_{CCDR} from 2.0 μ A to 2.5 μ A Changed typo in Data Retention Characteristics (t_R) from 100 μ s to t_{RC} ns Changed t_{OHA} from 6 ns to 10 ns for both 35 ns and 45 ns Speed Bin Changed t_{HZOE} , t_{HZWE} from 12 to 15 ns for 35 ns Speed Bin and 15 to 18 ns for 45 ns Speed Bin Changed t_{SCE} from 25 to 30 ns for 35 ns Speed Bin and 40 to 35 ns for 45 ns Speed Bin Changed t_{HZCE} from 12 to 18 ns for 35 ns Speed Bin and 15 to 22 ns for 45 ns Speed Bin Changed t_{SD} from 15 to 18 ns for 35 ns Speed Bin and 20 to 22 ns for 45 ns Speed Bin Changed t_{DOE} from 15 to 18 ns for 35 ns Speed Bin Changed Ordering Information to include Pb-Free Packages
*B	414807	See ECN	ZSD	Changed from Preliminary information to Final Changed the address of Cypress Semiconductor Corporation on Page #1 from "3901 North First Street" to "198 Champion Court" Removed 35ns Speed Bin Removed "L" version of CY62148EV30 Changed ball C3 from DNU to NC. Removed the redundant footnote on DNU. Changed I_{CC} (max) value from 2 mA to 2.5 mA and I_{CC} (Typ) value from 1.5 mA to 2 mA at f=1 MHz Changed I_{CC} (Typ) value from 12 mA to 15 mA at f = f_{max} Changed I_{SB1} and I_{SB2} Typ values from 0.7 μ A to 1 μ A and Max values from 2.5 μ A to 7 μ A. Changed the AC test load capacitance value from 50pF to 30pF. Changed I_{CCDR} from 2.5 μ A to 7 μ A. Added I_{CCDR} typical value. Changed t_{LZOE} from 3 ns to 5 ns Changed t_{LZOE} from 22 ns to 18 ns Changed t_{LZCE} and t_{LZWE} from 6 ns to 10 ns Changed t_{PWE} from 30 ns to 35 ns. Changed t_{SD} from 22 ns to 25 ns. Updated the package diagram 36-pin VFBGA from *B to *C Added 32-pin SOIC package diagram and pin diagram Updated the ordering information table and replaced the Package Name column with Package Diagram.
*C	464503	See ECN	NXR	Included Automotive Range in product offering Updated Thermal Resistance table Updated the Ordering Information
*D	833080	See ECN	VKN	Added footnote 8 Added V _{IL} spec for SOIC package
*E	890962	See ECN	VKN	Removed Automotive part and its related information Added footnote 2 related to SOIC package Added footnote 9 related to I _{SB2} Added AC values for 55 ns Industrial-SOIC range Updated Ordering Information table

	Document Title: CY62148EV30 MoBL [®] 4-Mbit (512 K × 8) Static RAM Document Number: 38-05576						
Rev.	ECN	Submission Date	Orig. of Change	Description of Change			
*F	987940	See ECN	VKN	Changed V_{OL} spec from 0.4V to 0.2V for SOIC package at I_{OL} = 0.1 mA Changed V_{IL} spec from 0.6V to 0.4V for SOIC package at V_{CC} = 2.2V to 2.7V Updated footnote 8 Made footnote 9 applicable for both I_{SB2} and I_{CCDR}			
*G	2548575	08/05/08	NXR	Added Auto-A information. Included -45BVI			
*H	2769239	09/25/09	VKN/AESA	Included -45BVI in the Ordering Information table			
*	2944332	06/04/2010	VKN	Added footnote related to chip enable in Truth Table Updated Package Diagrams			
*J	3007403	08/13/2010	AJU	Updated new template.			
*K	3110202	12/14/2010	PRAS	Updated Logic Block Diagram and Ordering Code Definitions.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive cypress.com/go/clocks
Interface cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc

Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2004-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-05576 Rev. *K

Revised December 14, 2010

Page 15 of 15

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders. All products and company names mentioned in this document may be the trademarks of their respective holders.