(I)IDT

 128K X 36, 256K X 183.3V Synchronous SRAMs
3.3V I/O, Flow-Through Outputs
Burst Counter, Single Cycle Deselect

Features

- $128 \mathrm{~K} \times 36,256 \mathrm{~K} \times 18$ memory configurations
- Supports fast access times:

Commercial:

- 7.5 ns up to 117 MHz clock frequency

Commercial and Industrial:

- 8.Ons up to 100 MHz clock frequency
- 8.5ns up to 87MHz clock frequency
- $\overline{\text { LBO }}$ input selects interleaved or linear burst mode
- Self-timed write cycle with global write control (楽), byte write enable ($\overline{\mathrm{BWE}}$), and byte writes ($\overline{\mathrm{BW}} \mathrm{x}$)
- 3.3 V core power supply
- Power down controlled by ZZ input
- 3.3V I/O
- Optional - Boundary Scan JTAG Interface (IEEE 1149.1 compliant)
- Packaged in a JEDEC Standard 100 -pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array

Description

The IDT71V3577/79 are high-speed SRAMs organized as $128 \mathrm{~K} \times 36 / 256 \mathrm{~K} \times 18$. The IDT71V3577/79 SRAMs contain write, data, address and control registers. There are no registers in the data output path (flow-through architecture). Internal logic allows the SRAM to generate a self-timed write based upon a decision which can be left until the end of the write cycle.

The burstmodefeature offers the highestlevel of performance to the system designer, as the IDT71V3577/79 can provide four cycles of data for a single address presented to the SRAM. An internal burst address counter accepts the firstcycle address from the processor, initiating the access sequence. The firstcycle of outputdata will flow-through from the array aftera clock-to-data access time delayfrom the rising clockedge of the same cycle. If burst mode operation is selected ($\overline{\mathrm{ADV}}=\mathrm{LOW}$), the subsequent three cycles of output data will be available to the user on the next three rising clock edges. The order of these three addresses are defined by the internal burst counter and the $\overline{\mathrm{LBO}}$ input pin.

The IDT71V3577/79 SRAMs utilize IDT's latest high-performance CMOS process and are packaged in a JEDEC standard $14 \mathrm{~mm} \times 20 \mathrm{~mm}$ 100-pinthin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA) and a 165 fine pitch ball grid array (fBGA).

Pin Description Summary

A0-A17	Address Inputs	Input	Synchronous
$\bar{C} \bar{E}$	Chip Enable	Input	Synchronous
CSo, $\overline{\mathrm{C}} \bar{S}_{1}$	Chip Selects	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
$\overline{\text { GW }}$	Global Write Enable	Input	Synchronous
$\overline{\text { BWE }}$	Byte Write Enable	Input	Synchronous
$\overline{\mathrm{BW}}_{1}, \overline{\mathrm{BW}}_{2}, \overline{\mathrm{BW}}_{3}, \overline{\mathrm{BW}}_{4}{ }^{(1)}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
$\overline{\text { ADV }}$	Burst Address Advance	Input	Synchronous
$\overline{\text { ADSC }}$	Address Status (Cache Controller)	Input	Synchronous
$\overline{\text { ADS } \bar{P}}$	Address Status (Processor)	Input	Synchronous
$\overline{\text { LBO }}$	Linear / Interleaved Burst Order	Input	DC
TMS	Test Mode Select	Input	Synchronous
TDI	Test Data Input	Input	Synchronous
TCK	Test Clock	Input	N/A
TDO	Test Data Output	Output	Synchronous
TRST	JTAG Reset (Optional)	Input	Asynchronous
ZZ	Sleep Mode	Input	Asynchronous
//O--//O31, //Op 1 -//Op4	Data Input / Output	1/0	Synchronous
Vdd, VdDQ	Core Power, I/O Power	Supply	N/A
Vss	Ground	Supply	N/A
NOIE:			

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	I/0	Active	Description
A0-A17	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combi-nation of the rising edge of CLK and $\overline{\mathrm{ADSC}}$ Low or $\overline{\mathrm{ADSP}}$ Low and $\overline{\mathrm{C}}$ Low.
$\overline{\text { ADSC }}$	Address Status (Cache Controller)	1	LOW	Synchronous Address Status from Cache Controller. $\overline{\text { ADSC }}$ is an active LOW input that is used to load the address registers with new addresses.
$\overline{\text { ADSP }}$	Address Status (Processor)	1	LOW	Synchronous Address Status from Processor. $\overline{\text { ADSP }}$ is an active LOW input that is used to load the address registers with new addresses. $\overline{\mathrm{ADSP}}$ is gated by $\overline{\mathrm{CE}}$.
$\overline{\text { ADV }}$	Burst Address Advance	1	LOW	Synchronous Address Advance. $\overline{\mathrm{ADV}}$ is an active LOW input that is used to advance the internal burst counter, controlling burst access after the initial address is loaded. When the input is HIGH the burst counter is not incremented; that is, there is no address advance.
$\overline{\text { BWE }}$	Byte Write Enable	1	LOW	Synchronous byte write enable gates the byte write inputs $\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4$. If $\overline{\mathrm{BWE}}$ is LOW at the rising edge of CLK then $\overline{\mathrm{BW}} \mathrm{x}$ inputs are passed to the next stage in the circuit. If $\overline{\mathrm{B} W E}$ is HIGH then the byte write inputs are blocked and only $\overline{\mathrm{GW}}$ can initiate a write cycle.
$\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}$	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. $\overline{\mathrm{BW}_{1}}$ controls $/ / O_{0-7,} / / \mathrm{OP}_{\mathrm{P}}, \overline{\mathrm{BW}} 2$ controls $/ / O_{8-15}$, //OP2, etc. Any active byte wite causes all outputs to be disabled.
$\overline{\mathrm{CE}}$	Chip Enable	1	LOW	Synchronous chip enable. $\bar{C} \bar{E}$ is used with CS 0 and $\overline{\mathrm{CS}} 1$ to enable the IDT71V3577/79. $\overline{\mathrm{CE}}$ also gates $\overline{\mathrm{ADSP}}$.
CLK	Clock	I	N/A	This is the clock input. All timing references for the device are made with respect to this input.
CSo	Chip Select 0	1	HIGH	Synchronous active HIGH chip select. CS 0 is used with $\overline{\mathrm{C}}$ and $\overline{\mathrm{C}} 1 \mathrm{~S}_{1}$ to enable the chip.
$\overline{\mathrm{C}} \overline{1}_{1}$	Chip Select 1	1	LOW	Synchronous active LOW chip select. $\overline{\mathrm{C}} \bar{S}_{1}$ is used with $\overline{\mathrm{C}}$ and CS 0 to enable the chip.
$\overline{\text { GW }}$	Global Write Enable	1	LOW	Synchronous global write enable. This input will write all four 9-bit data bytes when LOW on the rising edge of CLK. $\overline{\mathrm{GW}}$ supersedes individual byte write enables.
$\begin{aligned} & \text { I/OO-//O31 } \\ & \text { /OP1-//OP4 } \end{aligned}$	Data Input/Output	I/O	N/A	Synchronous data input/output (//O) pins. The data input path is registered, triggered by the rising edge of CLK. The data output path is flow-through (no output register).
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Asynchronous burst order selection input. When $\overline{\mathrm{LBO}}$ is HIGH, the inter-leaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is LOW the Linear burst sequence is selected. $\overline{\mathrm{LBO}}$ is a static input and must not change state while the device is operating.
$\overline{\mathrm{OE}}$	Ouput Enable	1	LOW	Asynchronous output enable. When $\overline{\mathrm{EE}}$ is LOW the data output drivers are enabled on the //O pins if the chip is also selected. When $\overline{O E}$ is HIGH the I/O pins are in a high-impedance state.
TMS	Test ModeSelect	1	N/A	Gives input command for TAP controller. Sampled on rising edge of TDK. This pin has an internal pullup.
TDI	Test Data Input	1	N/A	Serial input of registers placed between TDI and TDO. Sampled on rising edge of TCK. This pin has an internal pullup.
TCK	Test Clock	1	N/A	Clock input of TAP controller. Each TAP event is clocked. Test inputs are captured on rising edge of TCK, while test outputs are driven from the falling edge of TCK. This pin has an internal pullup.
TDO	Test DataOutput	0	N/A	Serial output of registers placed between TDI and TDO. This output is active depending on the state of the TAP controller.
TRST	JTAG Reset (Optional)	1	LOW	Optional Asynchronous JTAG reset. Can be used to reset the TAP controller, but not required. JTAG reset occurs automatically at power up and also resets using TMS and TCK per IEEE 1149.1. If not used TRST can be left floating. This pin has an internal pullup. Only available in BGA package.
Z	Sleep Mode	1	HIGH	Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT71V3577/79 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.This pin has an internal pull down.
VDD	Power Supply	N/A	N/A	3.3V core power supply.
VDDQ	Power Supply	N/A	N/A	3.3V I/O Supply.
Vss	Ground	N/A	N/A	Ground.
NC	No Connect	N/A	N/A	NC pins are not electrically connected to the device.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	 Industrial Values	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM $^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA $^{(7)}$	Commercial Operating Temperature	-0 to +70	${ }^{\circ} \mathrm{C}$
	Industrial Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
IOUT	DC Output Current	50	mA

NOTES:
5280 tbl 03

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supplies have ramped up. Power supply sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VdDQ during power supply ramp up.
7. TA is the "instant on" case temperature.

100 Pin TQFP Capacitance

(TA = +25 ${ }^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{mhz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{V} \mathbb{N}=3 \mathrm{dV}$	5	pF
C / o	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

5280 tbl 07

Recommended Operating Temperature Supply Voltage

Grade	Temperature $^{(1)}$	Vss	VdD	VdDQ
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$

NOTES:
5280 tbl 04

1. TA is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Core Supply Voltage	3.135	3.3	3.465	V
VDDQ	I/O Supply Voltage	3.135	3.3	3.465	V
VSS	Supply Voltage	0	0	0	V
VIH	Input High Voltage - Inputs	2.0	-	VDD +0.3	V
VIH	Input High Voltage - I/O	2.0	-	VDDQ $+0.3^{(1)}$	V
VIL	Input Low Voltage	$-0.3^{(2)}$	-	0.8	V

NOTES:
5280 tbl 06

1. $\mathrm{V}_{\mathrm{IH}}(\max)=\mathrm{VDDQ}+1.0 \mathrm{~V}$ for pulse width less than tcYC/2, once per cycle.
2. $\mathrm{V}_{\mathrm{IL}}(\min)=-1.0 \mathrm{~V}$ for pulse width less than $\mathrm{tcYc} / 2$, once per cycle.

119 BGA Capacitance
($\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{mhz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	7	pF
Cro	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

165 fBGA Capacitance
($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{mhz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	7	pF
C / o	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Pin Configuration - 128K x 36

100 TQFP
 Top View

NOTES:

1. Pin 14 does not have to be directly connected to Vss as long as the input voltage is \leq VIL.
2. Pin 64 can be left unconnected and the device will always remain in active mode.

Pin Configuration - 256K x 18

NOTES:

1. Pin 14 does not have to be directly connected to Vss as long as the input voltage is \leq VIL.
2. Pin 64 can be left unconnected and the device will always remain in active mode.

Pin Configuration - 128K x 36, 119 BGA

Pin Configuration - 256K x 18, 119 BGA

NOTES:

Top View

1. R5 does not have to be directly connected to Vss as long as the input voltage is \leq VIL.
2. These pins are NC for the "S" version or the JTAG signal listed for the "SA" version. Note: If NC, these pins can either be tied to Vss, VDD or left floating.
3. T7 can be left unconnected and the device will always remain in active mode.
4. $\overline{\text { TRST }}$ is offered as an optional JTAG Reset if required in the application. If not needed, can be left floating and will internally be pulled to VDD.

Pin Configuration - 128K x 36, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	$N C^{(4)}$	A7	$\overline{\mathrm{C}} \overline{1}_{1}$	$\overline{\mathrm{BW}} 3$	$\overline{\mathrm{B}} \mathrm{W}_{2}$	$\overline{\mathrm{C}}$ 1	$\overline{\text { BWE }}$	$\overline{\text { ADSC }}$	$\overline{\mathrm{AD}} \overline{\mathrm{V}}$	A8	NC
B	NC	A6	CSo	$\overline{\mathrm{BW}} 4$	$\overline{\mathrm{BW}} 1$	CLK	$\overline{\mathrm{GW}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{ADSP}}$	A9	$N C^{(4)}$
C	//OP3	NC	VDDQ	Vss	Vss	VSS	Vss	VSS	VDDQ	NC	//Op2
D	//O17	//O16	VDDQ	VDD	Vss	VSS	Vss	VDD	VDDQ	I/O15	VO14
E	//O19	//O18	VDDQ	VDD	Vss	VSS	Vss	VDD	VDDQ	I/O13	VO12
F	I/O21	//O20	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	//O11	VO10
G	1/O23	//O22	VDDQ	VDD	VSS	VSS	Vss	VDD	VDDQ	I/O9	I/O8
H	VSS ${ }^{(1)}$	NC	NC	VDD	VSS	VSS	Vss	VDD	NC	NC	$\not Z^{(3)}$
J	//O25	//O24	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	I/O7	I/O6
K	//O27	//O26	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	I/O5	I/O4
L	//O29	//O28	VDDQ	VDD	VSS	VSS	Vss	VDD	VDDQ	I/O3	I/O2
M	1/O31	//O30	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	I/O1	I/Oo
N	//OP4	NC	VDDQ	VSS	$\mathrm{NC} / \overline{\text { TRST }}{ }^{(2,5)}$	$N C^{(4)}$	NC	VSS	VDDQ	NC	//Op1
P	NC	NC ${ }^{(4)}$	A5	A2	NC/TD ${ }^{(2)}$	A1	NC/TDO ${ }^{(2)}$	A10	A13	A14	NC ${ }^{(4)}$
R	$\overline{\mathrm{LBO}}$	$\mathrm{NC}^{(4)}$	A4	A3	NC/TMS ${ }^{(2)}$	A0	NC/TCK ${ }^{(2)}$	A11	A12	A15	A16

5280 tbl 17

Pin Configuration - 256K x 18, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	$N C^{(4)}$	A7	$\overline{\mathrm{C}} \overline{1}_{1}$	$\overline{\mathrm{BW}} 2$	NC	$\overline{\mathrm{C}}$ 1	$\overline{\text { BWE }}$	$\overline{\text { ADSC }}$	$\overline{\mathrm{AD}} \mathrm{V}$	A8	A10
B	NC	A6	CSo	NC	$\overline{B W}_{1}$	CLK	$\overline{\mathrm{GW}}$	$\overline{\mathrm{OE}}$	$\overline{\text { ADSP }}$	A9	$\mathrm{NC}^{(4)}$
C	NC	NC	VDDQ	VSS	VSS	VSS	VSS	Vss	VDDQ	NC	//OP1
D	NC	//08	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	NC	I/O7
E	NC	//O9	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	NC	I/O6
F	NC	I/O10	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	NC	I/O5
G	NC	I/O11	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	NC	I/O4
H	Vss ${ }^{(1)}$	NC	NC	VDD	VSS	VSS	VSS	VDD	NC	NC	Z ${ }^{(3)}$
J	I/O12	NC	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	I/O3	NC
K	I/O13	NC	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	I/O2	NC
L	I/O14	NC	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	//O1	NC
M	I/O15	NC	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	I/Oo	NC
N	I/OP2	NC	VDDQ	VSS	$\mathrm{NC} / \overline{\text { TRST }}{ }^{(2,5)}$	$N C^{(4)}$	NC	VSS	VDDQ	NC	NC
P	NC	NC ${ }^{(4)}$	A5	A2	NC/TD ${ }^{(2)}$	A1	NC/TDO ${ }^{(2)}$	A11	A14	A15	$\mathrm{NC}^{(4)}$
R	$\overline{\text { LBO }}$	NC ${ }^{(4)}$	A4	A3	NC/TMS ${ }^{(2)}$	A0	NC/TCK ${ }^{(2)}$	A12	A13	A16	A17

NOTES:

1. H1 does not have to be directly Vss as long as input voltage is \leq VIL
2. These pins are NC for the "S" version or the JTAG signal listed for the "SA" version. Note: If NC, these pins can either be tied to Vss, VDD or left floating.
3. H11 can be left unconnected and the device will always remain in active mode.
4. Pins P11, N6, B11, A1, R2 and P2 are reserved for 9M, 18M, 36M, 72M, 144M and 288M respectively.
5. TRST is offered as an optional JTAG Reset if required in the application. If not needed, can be left floating and will internally be pulled to VDD.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range (Vdo $=3.3 \mathrm{~V} \pm 5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit			
\|	Lإ	Input Leakage Current	VDD $=$ Max., V IN $=0 \mathrm{~V}$ to $\mathrm{V} D \mathrm{D}$	-	5	$\mu \mathrm{A}$		
\|	L			ZZ , $\overline{\text { LBO }}$ and JTAG Input Leakage Current ${ }^{(1)}$	Vdd = Max., V IN $=0 \mathrm{~V}$ to VdD	-	30	$\mu \mathrm{A}$
IILOI	Output Leakage Current	Vout $=0 \mathrm{~V}$ to VDDQ, Device Deselected	-	5	$\mu \mathrm{A}$			
Vol	Output Low Voltage	$\mathrm{lOL}=+8 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	-	0.4	V			
VOH	Output High Voltage	$\mathrm{IOH}=-8 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.4	-	V			

NOTE:

1. The $\overline{\mathrm{LBO}}, \mathrm{TMS}, \mathrm{TDI}, \mathrm{TCK}$ and $\overline{\mathrm{TRST}}$ pins will be internally pulled to VDD and the $Z Z$ in will be internally pulled to Vss if they are not actively driven in the application.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ${ }^{(1)}$

Symbol	Parameter	Test Conditions	7.5ns	8ns		8.5ns		Unit
			Com'I Only	Com'l	Ind	Com'l	Ind	
IDD	Operating Power Supply Current	Device Selected, Outputs Open, VdD = Max., VDDQ $=$ Max., $V I N \geq$ VIH or $\leq V I L, f=f m a x^{(2)}$	255	200	210	180	190	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, Vdd = Max., VDDQ $=$ Max., $\mathrm{VIN}^{2} \geq$ VHD or $\leq \operatorname{VLD}, \mathrm{f}=0^{(2,3)}$	30	30	35	30	35	mA
IsB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, VDD = Max., $V_{D D Q}=\text { Max., VIN } \geq \text { VHD or } \leq \operatorname{VLD}, f=f m a x ~(2,3)$	90	85	95	80	90	mA
Izz	Full Sleep Mode Supply Current	$Z \mathrm{Z} \geq \mathrm{VHD}, \mathrm{V} D \mathrm{D}=$ Max.	30	30	35	30	35	mA

NOTES:

1. All values are maximum guaranteed values.
2. At $f=f m A X$, inputs are cycling at the maximum frequency of read cycles of $1 /$ tcyc while $\overline{A D S C}=L O W ; f=0$ means no input lines are changing.

AC Test Conditions

 (VdDQ = 3.3V)| Input Pulse Levels | 0 to 3 V |
| :--- | :---: |
| Input Rise/Fall Times | 2 ns |
| Input Timing Reference Levels | 1.5 V |
| Output Timing Reference Levels | 1.5 V |
| AC Test Load | See Figure 1 |

AC Test Load

5280 drw 03

Figure 2. Lumped Capacitive Load, Typical Derating

Synchronous Truth Table ${ }^{(1,3)}$

Operation	Address Used	$\overline{\mathrm{C}} \mathrm{E}$	CSO_{0}	$\overline{\mathrm{C}} \bar{S}_{1}$	$\overline{\text { ADSP }}$	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	$\overline{\mathrm{GW}}$	BWE	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}{ }^{(2)}$	CLK	I/O
Deselected Cycle, Power Down	None	H	X	X	X	L	X	X	X	X	X	\uparrow	HI-Z
Deselected Cycle, Power Down	None	L	X	H	L	X	X	X	X	X	X	\uparrow	HI-Z
Deselected Cycle, Power Down	None	L	L	X	L	X	X	X	X	X	X	\uparrow	HI-Z
Deselected Cycle, Power Down	None	L	X	H	X	L	X	X	X	X	X	\uparrow	HI-Z
Deselected Cycle, Power Down	None	L	L	X	X	L	X	X	X	X	X	\uparrow	H-Z
Read Cycle, Begin Burst	External	L	H	L	L	X	X	X	X	X	L	\uparrow	Dout
Read Cycle, Begin Burst	External	L	H	L	L	X	X	X	X	X	H	\uparrow	H-Z
Read Cycle, Begin Burst	External	L	H	L	H	L	X	H	H	X	L	\uparrow	Dout
Read Cycle, Begin Burst	External	L	H	L	H	L	X	H	L	H	L	\uparrow	Dout
Read Cycle, Begin Burst	External	L	H	L	H	L	X	H	L	H	H	\uparrow	HI-Z
Write Cycle, Begin Burst	External	L	H	L	H	L	X	H	L	L	X	\uparrow	Din
Write Cycle, Begin Burst	External	L	H	L	H	L	X	L	X	X	X	\uparrow	Din
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	H	X	L	\uparrow	Dout
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	H	X	H	\uparrow	H-Z
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	X	H	L	\uparrow	Dout
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	X	H	H	\uparrow	HI-Z
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	H	X	L	\uparrow	Dout
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	H	X	H	\uparrow	HI-Z
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	X	H	L	\uparrow	Dout
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	X	H	H	\uparrow	HI-Z
Write Cycle, Continue Burst	Next	X	X	X	H	H	L	H	L	L	X	\uparrow	Din
Write Cycle, Continue Burst	Next	X	X	X	H	H	L	L	X	X	X	\uparrow	Din
Write Cycle, Continue Burst	Next	H	X	X	X	H	L	H	L	L	X	\uparrow	Din
Write Cycle, Continue Burst	Next	H	X	X	X	H	L	L	X	X	X	\uparrow	Din
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	H	X	L	\uparrow	Dout
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	H	X	H	\uparrow	HI-Z
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	X	H	L	\uparrow	Dout
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	X	H	H	\uparrow	HI-Z
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	H	X	L	\uparrow	Dout
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	H	X	H	\uparrow	HI-Z
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	X	H	L	\uparrow	Dout
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	X	H	H	\uparrow	H-Z
Write Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	L	L	X	\uparrow	Din
Write Cycle, Suspend Burst	Current	X	X	X	H	H	H	L	X	X	X	\uparrow	Din
Write Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	L	L	X	\uparrow	Din
Write Cycle, Suspend Burst	Current	H	X	X	X	H	H	L	X	X	X	\uparrow	Din

NOTES:

1. $\mathrm{L}=\mathrm{VIL}, \mathrm{H}=\mathrm{V} I \mathrm{H}, \mathrm{X}=$ Don't Care.
2. $\overline{O E}$ is an asynchronous input.
3. ZZ - low for the table.

Synchronous Write Function Truth Table ${ }^{(1,2)}$

Operation	$\overline{\mathrm{GW}}$	$\overline{\mathrm{BWE}}$	$\overline{\mathrm{BW}}_{1}$	$\overline{\mathrm{BW}}_{2}$	$\overline{\mathrm{BW}}_{3}$	$\overline{\mathrm{BW}}_{4}$
Read	H	H	X	X	X	X
Read	H	L	H	H	H	H
Write all Bytes	L	X	X	X	X	X
Write all Bytes	H	L	L	L	L	L
${\text { Write Byte } 1^{(3)}}^{\text {Write Byte } 2^{(3)}}$	H	L	L	H	H	H
Write Byte $3^{(3)}$	H	L	H	L	H	H
Write Byte $4^{(3)}$	H	L	H	H	L	H

NOTES:

1. $\mathrm{L}=\mathrm{V} \mathrm{VL}, \mathrm{H}=\mathrm{V}$ IH, $\mathrm{X}=$ Don't Care.
2. $\overline{\mathrm{BW}}_{3}$ and $\overline{\mathrm{BW}}_{4}$ are not applicable for the IDT71V3579.
3. Multiple bytes may be selected during the same cycle.

Asynchronous Truth Table ${ }^{(1)}$

Operation $^{(2)}$	$\overline{\mathrm{OE}}$	\mathbf{Z}	Power	
Read	L	L	Data Out	Active
Read	H	L	High-Z	Active
Write	X	L	High-Z - Data In	Active
Deselected	X	L	High-Z	Standby
Sleep Mode	H	High-Z	Sleep	

NOTES:

1. $\mathrm{L}=\mathrm{VIL}, \mathrm{H}=\mathrm{VIH}, \mathrm{X}=$ Don't Care.
2. Synchronous function pins must be biased appropriately to satisfy operation requirements.

Interleaved Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{VdD}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:
5280 tbl 14

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

Linear Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{Vss}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

AC Electrical Characteristics
(VDd $=3.3 \mathrm{~V} \pm 5 \%$, Commercial and Industrial Temperature Ranges)

Symbol	Parameter	$7.5 \mathrm{~s}^{(5)}$		8 ns		8.5 ns		
		Min.	Max.	Min.	Max.	Min.	Max.	Unit

Clock Parameter

tcrc	Clock Cycle Time	8.5	-	10	-	11.5	-	ns
tch ${ }^{(1)}$	Clock High Pulse Width	3	-	4	-	4.5	-	ns
tcc $^{(1)}$	Clock Low Pulse Width	3	-	4	-	4.5	-	ns

Output Parameters

tcD	Clock High to Valid Data	-	7.5	-	8	-	8.5	ns
tcDC	Clock High to Data Change	2	-	2	-	2	-	ns
ta $\mathrm{z}^{(2)}$	Clock High to Ouput Active	0	-	0	-	0	-	ns
tCHz Z^{2})	Clock High to Data High-Z	2	3.5	2	3.5	2	3.5	ns
toe	Output Enable Access Time	-	3.5	-	3.5	-	3.5	ns
to $\mathrm{Z}^{(2)}$	Output Enable Low to Output Active	0	-	0	-	0	-	ns
torz ${ }^{(2)}$	Output Enable High to Output High-Z	-	3.5	-	3.5	-	3.5	ns

Set Up Times

tsA	Address Setup Time	1.5	-	2	-	2	-	ns
tss	Address Status Setup Time	1.5	-	2	-	2	-	ns
tsD	Data In Setup Time	1.5	-	2	-	2	-	ns
tsw	Write Setup Time	1.5	-	2	-	2	-	ns
tsAV	Address Advance Setup Time	1.5	-	2	-	2	-	ns
tsc	Chip Enable/Select Setup Time	1.5	-	2	-	2	-	ns

Hold Times

tha	Address Hold Time	0.5	-	0.5	-	0.5	-	ns
ths	Address Status Hold Time	0.5	-	0.5	-	0.5	-	ns
thD	Data In Hold Time	0.5	-	0.5	-	0.5	-	ns
thw	Write Hold Time	0.5	-	0.5	-	0.5	-	ns
thav	Address Advance Hold Time	0.5	-	0.5	-	0.5	-	ns
thC	Chip Enable/Select Hold Time	0.5	-	0.5	-	0.5	-	ns

Sleep Mode and Configuration Parameters

tZZPW	ZZ Pulse Width	100	-	100	-	100
tZZR $^{(3)}$	ZZ Recovery Time	100	-	100	-	100
tcFG ${ }^{(4)}$	Configuration Set-up Time	34	-	ns		

NOTES:

5280 tbl 16

1. Measured as HIGH above VIH and LOW below VIL.
2. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
3. Device must be deselected when powered-up from sleep mode.
4. tCFG is the minimum time required to configure the device based on the $\overline{\mathrm{LBO}}$ input. $\overline{\mathrm{LBO}}$ is a static input and must not change during normal operation.
5. Commercial temperature range only.

Timing Waveform of Flow-Through Read Cycle ${ }^{(1,2)}$

Timing Waveform of Combined Flow-Through Read and Write Cycles ${ }^{(1,2,3)}$

NOTES:
NOIES:

1. Device is selected through entire cycle; $\overline{C E}$ and $\overline{\mathrm{CS}} 1$ are LOW, CSO is HIGH. 2. ZZ input is LOW and $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
2. $O 1$ (Ax) representsthe first outputfrom the external address Ax. I1 (Ay) representsthefirstinputfrom the external address Ay; $O 1$ (Az) representsthefirstoutputfromtheexternal address Az; $\mathrm{O2}$ (Az) represents
the next output data in the burst sequence of the base address Az, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.

Timing Waveform of Write Cycle No. 1 - $\overline{\mathbf{G W}}$ Controlled (1,2,3)

Timing Waveform of Write Cycle No. 2 - Byte Controlled ${ }^{(1,2,3)}$

NOTES:
. ZZ input is $\mathrm{LOW}, \overline{\mathrm{GW}}$ is HIGH and $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address $A y ; I 2(A y)$ represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the $\overline{\mathrm{LBO}}$ input. In the case of input 12 (Ay) this data is valid for two cycles because $\overline{\mathrm{ADV}}$ is high and has suspended the burst.
3. CSO timing transitions are identical but inverted to the $\overline{\mathrm{C}}$ and $\overline{\mathrm{CS}} 1$ signals. For example, when $\overline{\mathrm{CE}}$ and $\overline{\mathrm{C}} 1$ are LOW on this waveform, CS 0 is HIGH .

Timing Waveform of Sleep (ZZ) and Power-Down Modes ${ }^{(1,2,3)}$

[^0]
Non-Burst Read Cycle Timing Waveform

NOTES:

1. ZZ input is LOW, $\overline{\mathrm{ADV}}$ is HIGH and $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
2. (Ax) represents the data for address $A x$, etc.
3. For read cycles, $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ function identically and are therefore interchangable.

Non-Burst Write Cycle Timing Waveform

NOTES:

1. ZZ input is LOW, $\overline{\mathrm{ADV}}$ and $\overline{\mathrm{OE}}$ are HIGH, and $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
2. $(A x)$ represents the data for address $A x$, etc.
3. Although only $\overline{\mathrm{GW}}$ writes are shown, the functionality of $\overline{\mathrm{BWE}}$ and $\overline{\mathrm{BW}} x$ together is the same as $\overline{\mathrm{GW}}$.
4. For write cycles, $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ have different limitations.

JTAG Interface Specification (SA Version only)

NOTES:

1. Device inputs = All device inputs except TDI, TMS and TRST.
2. Device outputs = All device outputs except TDO.
3. During power up, $\overline{\text { TRST }}$ could be driven low or not be used since the JTAG circuit resets automatically. $\overline{\text { TRST }}$ is an optional JTAG reset.

JTAG AC Electrical

Characteristics ${ }^{(1,2,3,4)}$

Symbol				
	Parameter	Min.	Max.	Units
	JTAG Clock Input Period	100	-	ns
tJCH	JTAG Clock HIGH	40	-	ns
tJCL	JTAG Clock Low	40	-	ns
tJR	JTAG Clock Rise Time	-	$5^{(1)}$	ns
tJF	JTAG Clock Fall Time	-	$5^{(1)}$	ns
tJRST	JTAG Reset	50	-	ns
tJRSR	JTAG Reset Recovery	50	-	ns
tJCD	JTAG Data Output	-	20	ns
tJDC	JTAG Data Output Hold	0	-	ns
tJs	JTAG Setup	25	-	ns
tJH	JTAG Hold	25	-	ns

Scan Register Sizes

Register Name	Bit Size
Instruction (IR)	4
Bypass (BYR)	1
JTAG Identification (JIDR)	32
Boundary Scan (BSR)	Note (1)

NOTE:

1. The Boundary Scan Descriptive Language (BSDL) file for this device is available by contacting your local IDT sales representative.

NOTES:

1. Guaranteed by design.
2. AC Test Load (Fig. 1) on external output signals.
3. Refer to AC Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed (10 MHz). The base device may run at any speed specified in this datasheet.

JTAG Identification Register Definitions (SA Version only)

Instruction Field	Value	Description
Revision Number (31:28)	0×2	Reserved for version number.
IDT Device ID (27:12)	$0 \times 22 C, 0 \times 22 E$	Defines IDT part number 71V3577SA and 71V3579SA, respectively.
IDT JEDEC ID (11:1)	0×33	Allows unique identification of device vendor as IDT.
ID Register Indicator Bit (Bit 0)	1	Indicates the presence of an ID register.

15280 tbl 02

Available JTAG Instructions

Instruction	Description	OPCODE
EXTEST	Forces contents of the boundary scan cells onto the device outputs ${ }^{(1)}$. Places the boundary scan register (BSR) between TDI and TDO.	0000
SAMPLE/PRELOAD	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs ${ }^{(2)}$ and outputs ${ }^{(1)}$ to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.	0001
DEVICE_ID	Loads the JTAG ID register (JIDR) with the vendor ID code and places the register between TDI and TDO.	0010
HIGHZ	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.	0011
RESERVED	Several combinations are reserved. Do not use codes other than those identified for EXTEST, SAMPLE/PRELOAD, DEVICE_ID, HIGHZ, CLAMP, VALIDATE and BYPASS instructions.	0100
RESERVED		0101
RESERVED		0110
RESERVED		0111
CLAMP	Uses BYR. Forces contents of the boundary scan cells onto the device outputs. Places the bypass register (BYR) between TDI and TDO.	1000
RESERVED	Same as above.	1001
RESERVED		1010
RESERVED		1011
RESERVED		1100
VALIDATE	Automatically loaded into the instruction register whenever the TAP controller passes through the CAPTURE-IR state. The lower two bits '01' are mandated by the IEEE std. 1149.1 specification.	1101
RESERVED	Same as above.	1110
BYPASS	The BYPASS instruction is used to truncate the boundary scan register as a single bit in length.	1111

15280 tbl 04

NOTES:

1. Device outputs = All device outputs except TDO.
2. Device inputs = All device inputs except TDI, TMS, and TRST.

Ordering Information

[^1]
Package Information

100-Pin Thin Quad Plastic Flatpack (TQFP)
119 Ball Grid Array (BGA)
165 Fine Pitch Ball Grid Array (fBGA)
Information available on the IDT website

Datasheet Document History

7/23/99		Updatedtonewformat
$9 / 17 / 99$	Pg. 2	Revised I/Opindescription
	Pg. 3.	Revisedblock diagramforflow-throughfunctionality
	Pg. 8	Revised ISB1 and Izz for speeds 7.5 to 8.5ns

[^2]
[^0]: NOTES:

 1. Device must power up in deselected Mode.
 2. $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
 3. It is not necessary to retain the state of the input registers throughout the Power-down cycle.
 4. CS0 timing transitions are identical but inverted to the $\overline{\bar{C}} \overline{\mathrm{E}}$ and $\overline{\mathrm{CS}} 1$ signaals. For example, when CE and CS1 are LOW on this waveform, CSO 0 is HIGH .
[^1]: Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

 Restricted hazardous substance device

 100-pin Plastic Thin Quad Flatpack (TQFP)
 119 Ball Grid Array (BGA)
 165 Fine Pitch Ball Grid Array (fBGA)

 Access Time in Tenths of Nanoseconds

 Standard Power
 Standard Power with JTAG Interface
 First Generation or current stepping Second Generation die step
 $128 \mathrm{~K} \times 36$ Flow-Through Burst Synchronous SRAM with 3.3V I/O 256K x 18 Flow-Through Burst Synchronous SRAM with 3.3V I/O

[^2]: (I)IDT
 CORPORATE HEADQUARTERS

 6024 Silver Creek Valley Road
 San Jose, CA 95138
 for SALES:
 $800-345-7015$ or
 $408-284-8200$

