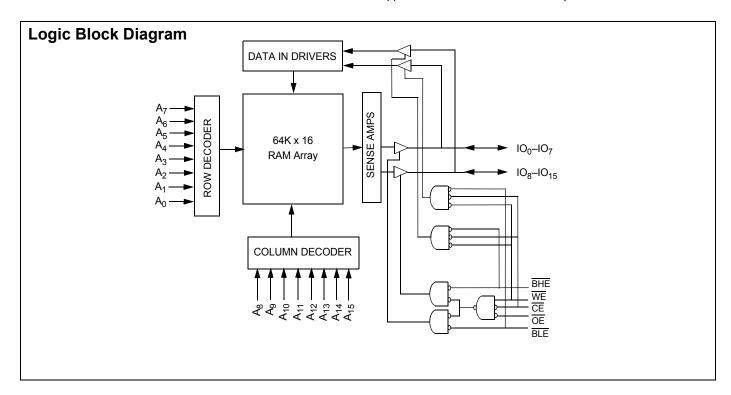


1-Mbit (64 K × 16) Static RAM

Features

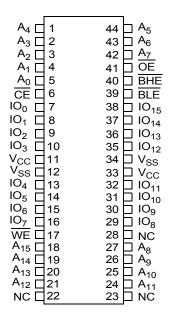
- Temperature Ranges:
 - □ Industrial: -40°C to 85°C
 □ Automotive-A: -40°C to 85°C
 □ Automotive-E: -40°C to 125°C
- Pin and Function Compatible with CY7C1021B
- High Speed
 □ t_{AA} = 10 ns (Industrial)
- Low Active Power
 □ I_{CC} = 80 mA at 10 ns
- Low CMOS Standby Power
 □ I_{SB2} = 3 mA
- 2.0V Data Retention
- Automatic Power Down when Deselected
- CMOS for Optimum Speed and Power
- Independent Control of Upper and Lower Bits
- Available in Pb-free 44-Pin 400-Mil Wide Molded SOJ and 44-Pin TSOP II Packages


Functional Description

The CY7C1021D is a high performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power down feature that significantly reduces power consumption when deselected. The input and output pins (IO00 through IO15) are placed in a high impedance state when the device is deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW and WE LOW).

Write to the device by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(IO_0$ through $IO_7)$, is written into the location specified on the address pins $(A_0$ through A_{15}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(IO_8$ through IO_{15} is written into the location specified on the address pins $(A_0$ through $A_{15})$.

Read from the device by taking Chip Enable $(\overline{\text{CE}})$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing the Write Enable $(\overline{\text{WE}})$ HIGH. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from the memory location specified by the address pins appears on IO $_0$ to IO $_7$. If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from memory appears on IO $_8$ to IO $_{15}$. See the Truth Table on page 8 for a complete description of read and write modes.


For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.

Pin Configuration

Figure 1. SOJ/TSOP II (Top View) [1]

Selection Guide

Description	-10 (Industrial)	-12 (Automotive) [2]	Unit
Maximum Access Time	10	12	ns
Maximum Operating Current	80	90	mA
Maximum CMOS Standby Current	3	10	mA

Notes

- NC pins are not connected on the die.
- 2. Automotive Product Information is Preliminary.

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied –55°C to +125°C

Supply Voltage on V_{CC} to Relative GND $^{[3]}....-0.5V$ to +6.0V

DC Voltage Applied to Outputs in High-Z State $^{[3]}$-0.5V to V_{CC} +0.5V

DC Input Voltage [3]–0.5V to V_{CC}+0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch Up Current	> 200 mA

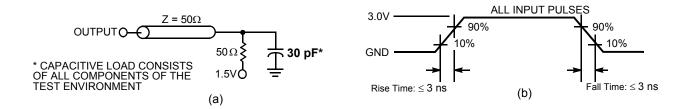
Operating Range

Range	Ambient Temperature	V _{CC}	Speed	
Industrial	–40°C to +85°C	5V ± 10%	10 ns	
Automotive	–40°C to +125°C	5V ± 10%	12 ns	

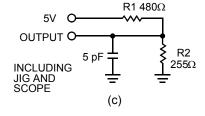
Electrical Characteristics (Over the Operating Range)

Davamatar	Description	Toot Conditio		–10 (In	dustrial)	-12 (Au	Unit	
Parameter	Description	Test Conditions —		Min	Max	Min	Max	Offic
V _{OH}	Output HIGH Voltage	I _{OH} = -4.0 mA		2.4		2.4		V
V _{OL}	Output LOW Voltage	I _{OL} = 8.0 mA			0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.5V	2.0	V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage [3]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1	+1	- 5	+5	μА
I _{OZ}	Output Leakage Current	$GND \le V_1 \le V_{CC}$, Output Disabled		-1	+1	- 5	+5	μА
I _{CC}	V _{CC} Operating	V _{CC} = Max,	100 MHz		80		-	mA
	Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{max} = 1/t_{RC}$	83 MHz		72		90	mA
		axc	66 MHz		58		75	mA
			40 MHz		37		48	mA
I _{SB1}	Automatic CE Power Down Current —TTL Inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f = f}_{\text{max}} \end{aligned}$			10		10	mA
I _{SB2}	Automatic CE Power Down Current —CMOS Inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ &\text{or V}_{\text{IN}} \leq 0.3\text{V}, \text{f = 0} \end{aligned}$	- 0.3V,		3		10	mA

^{3.} V_{IL} (min) = -2.0V and V_{IH} (max) = V_{CC} + 1V for pulse durations of less than 5 ns.


Capacitance [4]

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 5.0 \text{V}$	8	pF
C _{OUT}	Output Capacitance		8	pF


Thermal Resistance [4]

Parameter	Description	Test Conditions	SOJ	TSOP II	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	59.52	53.91	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)		36.75	21.24	°C/W

Figure 2. AC Test Loads and Waveforms $^{[5]}$

High-Z characteristics:

Notes

- Tested initially and after any design or process changes that may affect these parameters.
 AC characteristics (except High-Z) are tested using the load conditions shown in Figure 2 (a). High-Z characteristics are tested for all speeds using the test load shown in Figure 2 (c).

Switching Characteristics (Over the Operating Range) [6]

5	5	–10 (In	dustrial)	-12 (Aut	11::4	
Parameter	Description	Min	Max	Min	Max	Unit
Read Cycle		<u>'</u>		•	•	1
t _{power} [7]	V _{CC} (typical) to the first access	100		100		μS
t _{RC}	Read Cycle Time	10		12		ns
t _{AA}	Address to Data Valid		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low Z [8]	0		0		ns
t _{HZOE}	OE HIGH to High Z [8, 9]		5		6	ns
t _{LZCE}	CE LOW to Low Z [8]	3		3		ns
t _{HZCE}	CE HIGH to High Z [8, 9]		5		6	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12	ns
t _{DBE}	Byte Enable to Data Valid		5		6	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		5		6	ns
Write Cycle [11	1				•	
t _{WC}	Write Cycle Time	10		12		ns
t _{SCE}	CE LOW to Write End	7		10		ns
t _{AW}	Address Setup to Write End	7		10		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Setup to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	7		10		ns
t _{SD}	Data Setup to Write End	6		7		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z [8]	3		3		ns
t _{HZWE}	WE LOW to High Z [8, 9]		5		6	ns
t _{BW}	Byte Enable to End of Write	7		10		ns

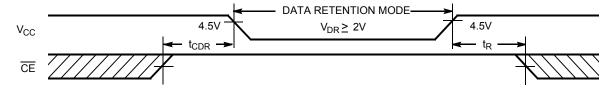
Notes

10. This parameter is guaranteed by design and is not tested.

^{6.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

topic of the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.

At any given temperature and voltage condition, the set is less than the contract of the set is less than the set is less than the contract of the set is less than the contract of the set is less than t


^{11.} The internal write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE/BLE LOW. CE, WE and BHE/BLE must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data setup and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min	Max	Unit
V_{DR}	V _{CC} for Data Retention			2.0		٧
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0 \text{ V}, \overline{CE} \ge V_{CC} - 0.3 \text{ V}, V_{IN} \ge V_{CC} - 0.3 \text{ V} \text{ or } V_{IN} \le 0.3 \text{ V}$	Industrial		3	mA
		$V_{\text{IN}} \ge V_{\text{CC}} - 0.3 \text{ V or } V_{\text{IN}} \le 0.3 \text{ V}$	Automotive		10	mA
t _{CDR} [3]	Chip Deselect to Data Retention Time			0		ns
t _R ^[12]	Operation Recovery Time			t _{RC}		ns

Data Retention Waveform

Switching Waveforms

Figure 3. Read Cycle No. 1 (Address Transition Controlled) [13, 14]

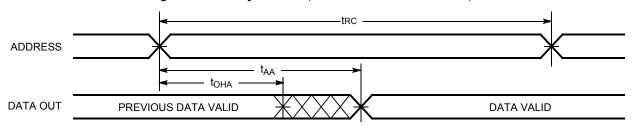
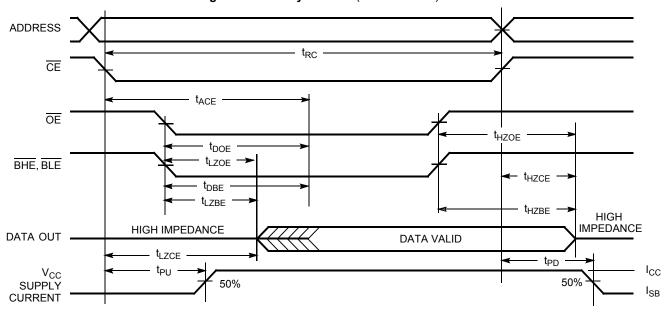



Figure 4. Read Cycle No. 2 (OE Controlled) [14, 15]

- 12. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 50 μs or stable at V_{CC(min)} ≥ 50 μs.
 13. Device is continuously selected. OE, CE, BHE and/or BLE = V_{IL}.
- 14. WE is HIGH for read cycle.
- 15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)

Figure 5. Write Cycle No. 1 (CE Controlled) [16, 17]

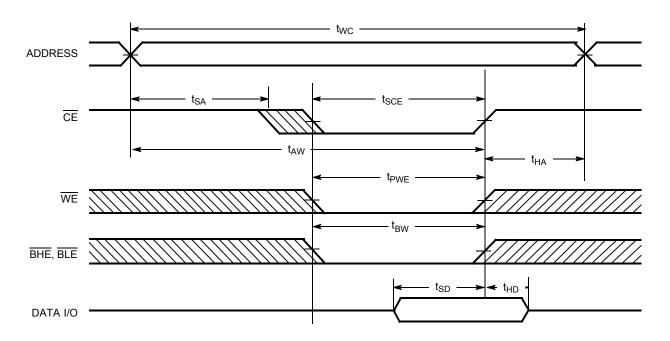
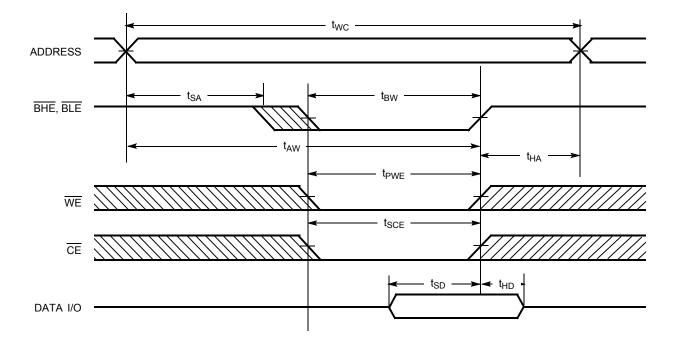
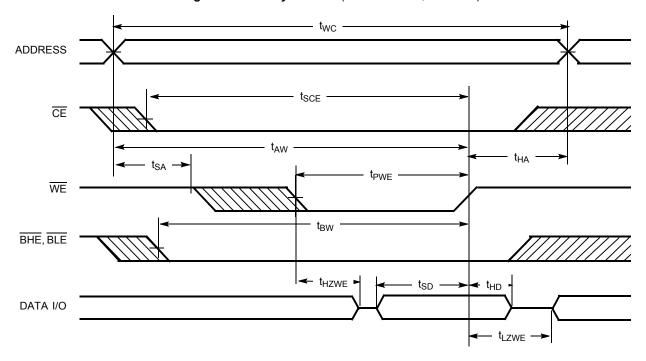



Figure 6. Write Cycle No. 2 (BLE or BHE Controlled)

Notes

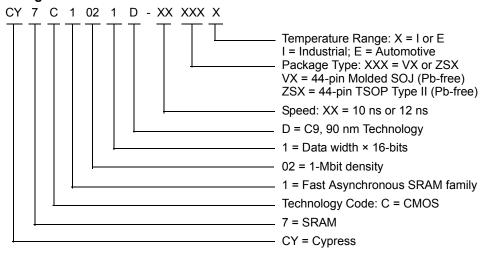

^{16.} Data I/O is high impedance if OE or BHE and/or BLE = V_{IH}.

17. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high impedance state.

Switching Waveforms (continued)

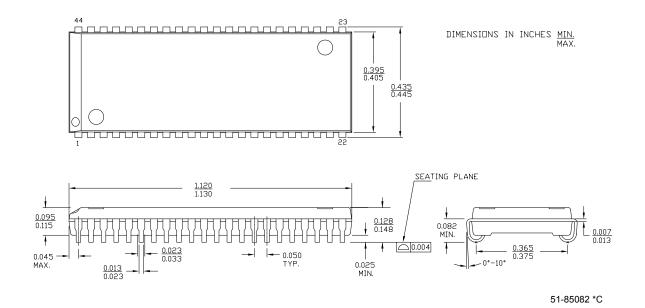
Figure 7. Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)

Truth Table


CE	OE	WE	BLE	BHE	1O ₀ -1O ₇	IO ₈ -IO ₁₅	Mode	Power
Н	Х	Х	X	X	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read – Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write – Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

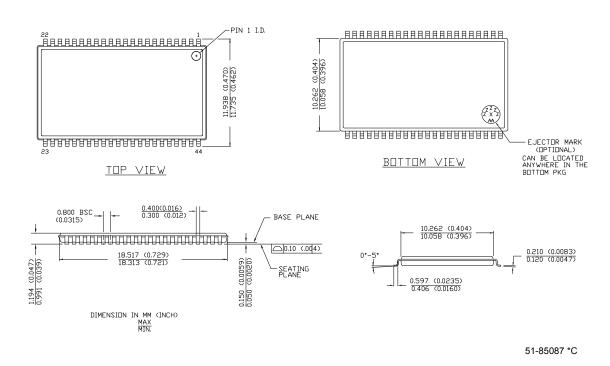
Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1021D-10VXI	51-85082	44-pin (400-Mil) Molded SOJ (Pb-free)	Industrial
	CY7C1021D-10ZSXI	51-85087	44-pin TSOP Type II (Pb-free)	
12	CY7C1021D-12ZSXE	51-85087	44-pin TSOP Type II (Pb-free)	Automotive


Ordering Code Definitions

Shaded areas contain advance information. Contact your local Cypress sales representative for availability of these parts.

Package Diagrams


Figure 8. 44-pin (400-Mil) Molded SOJ, 51-85082

Package Diagrams (continued)

Figure 9. 44-Pin Thin Small Outline Package Type II, 51-85087

[+] Feedback

Document History Page

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	201560	SWI	See ECN	Advance Information data sheet for C9 IPP
*A	233695	RKF	See ECN	DC parameters modified as per EROS (Spec # 01-02165) Pb-free Offering in the Ordering Information
*B	263769	RKF	See ECN	Added Data Retention Characteristics Table Added T _{power} Spec in Switching Characteristics Table Shaded Ordering Information
*C	307601	RKF	See ECN	Reduced Speed bins to -10 and -12 ns
*D	520647	VKN	See ECN	Converted from Preliminary to Final Removed Commercial Operating range Added I _{CC} values for the frequencies 83MHz, 66MHz and 40MHz Updated Thermal Resistance table Added Automotive Product Information Updated Ordering Information Table Changed Overshoot spec from V _{CC} +2V to V _{CC} +1V in footnote #4
*E	802877	VKN	See ECN	Changed Commercial operating range $I_{\rm CC}$ spec from 60 mA to 80 mA for 100MHz, 55 mA to 72 mA for 83MHz, 45 mA to 58 mA for 66MHz, 30 mA to 37 mA for 40MHz Changed Automotive operating range $I_{\rm CC}$ spec from 100 mA to 120 mA for 83MHz, 90 mA to 100 mA for 66MHz, 60 mA to 63 mA for 40MHz
*F	2751755	08/14/09	VKN/PYRS	For 12 ns speed, changed I_{CC} spec from 120 mA to 90 mA For 12 ns speed, changed I_{SB1} spec from 50 mA to 10 mA and I_{SB2} spec from 15 mA to 10 mA
*G	2898399	03/24/2010	AJU	Updated Package Diagrams
*H	3109897	12/14/2010	AJU	Added Ordering Code Definitions.

[+] Feedback

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface Lighting & Power Control cypress.com/go/powerpsoc

cypress.com/go/plc
Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2004-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-05462 Rev. *H

Revised December 14, 2010

Page 12 of 12

All products and company names mentioned in this document are the trademarks of their respective holders.