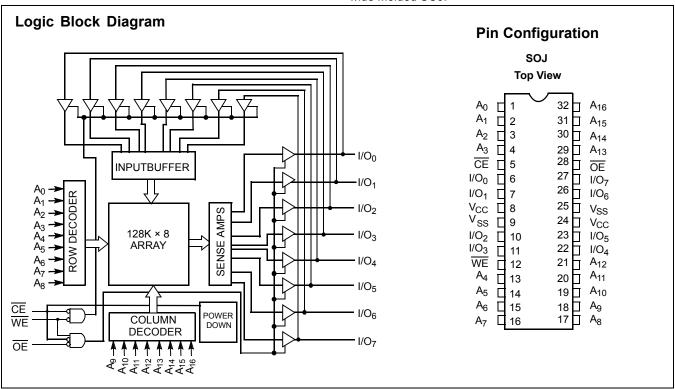


1-Mbit (128K x 8) Static RAM

Features

- Pin- and function-compatible with CY7C1018CV33
- · High speed
- $t_{AA} = 10 \text{ ns}$
- · Low Active Power
 - $I_{CC} = 60 \text{ mA} @ 10 \text{ ns}$
- · Low CMOS Standby Power
 - $I_{SB2} = 3 \text{ mA}$
- · 2.0V Data retention
- · Automatic power-down when deselected
- · CMOS for optimum speed/power
- · Center power/ground pinout
- Easy memory expansion with CE and OE options
- · Available in Pb-free 32-pin 300-Mil wide Molded SOJ

Functional Description[1]


The CY7C1018DV33 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and tri-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₆).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1018DV33 is available in Pb-free 32-pin 300-Mil wide Molded SOJ.

Note

1. For guidelines on SRAM system designs, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Cypress Semiconductor Corporation
Document #: 38-05465 Rev. *E

198 Champion Court •

San Jose, CA 95134-1709

408-943-2600

Selection Guide

	–10 (Industrial)	Unit
Maximum Access Time	10	ns
Maximum Operating Current	60	mA
Maximum Standby Current	3	mA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65 C to +150 C Ambient Temperature with Supply Voltage on V_{CC} to Relative $GND^{[2]}$... -0.3V to +4.6VDC Voltage Applied to Outputs^[2] in High-Z State–0.3V to V_{CC} + 0.3V

DC Input Voltage ^[2]	-0.3 V to $V_{CC} + 0.3$ V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}	Speed
Industrial	–40 C to +85 C	$3.3V \pm 0.3V$	10 ns

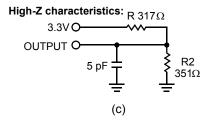
DC Electrical Characteristics Over the Operating Range

D	D	To ad O and diding a		–10 (In	dustrial)	1114
Parameter	Description	Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[2]			-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		– 1	+1	μΑ
l _{OZ}	Output Leakage Current	GND \leq V _I \leq V _{CC} , Output Disal	oled	– 1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max.,	100MHz		60	mA
		$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	83MHz		55	mA
		· WAX ···RC	66MHz		45	mA
			40MHz		30	mA
I _{SB1}	Automatic CE Power-down Current—TTL Inputs	Max. V_{CC} , $\overline{CE} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MA}$	(10	mA
I _{SB2}	Automatic CE Power-down Current—CMOS Inputs	$\begin{array}{l} \text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \text{ or V}_{\text{IN}} \leq 0.3 \end{array}$	V, f = 0		3	mA

Document #: 38-05465 Rev. *E

Note 2. V_{IL} (min.) = -2.0V and V_{IH} (max) = V_{CC} + 1V for pulse durations of less than 5 ns.

Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ C, f = 1 MHz, $V_{CC} = 3.3V$	8	pF
C _{OUT}	Output Capacitance		8	pF

Thermal Resistance^[3]

Parameter	Description	Test Conditions	400-Mil Wide SOJ	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	57.61	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)		40.53	°C/W

AC Test Loads and Waveforms^[4]

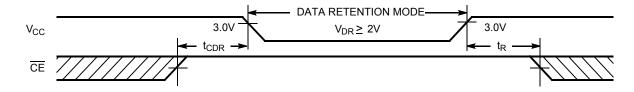
Notes

- 3. Tested initially and after any design or process changes that may affect these parameters.
- 4. AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).

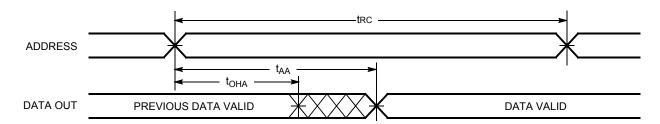
AC Switching Characteristics Over the Operating Range [5]

D	D	–10 (In	dustrial)	11:4
Parameter	Description	Min. Max.		Unit
Read Cycle	•	1		•
t _{power} ^[6]	V _{CC} (typical) to the first access 100			μS
t _{RC}	Read Cycle Time	10		ns
t _{AA}	Address to Data Valid		10	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		10	ns
t _{DOE}	OE LOW to Data Valid		5	ns
t _{LZOE}	OE LOW to Low-Z	0		ns
t _{HZOE}	OE HIGH to High-Z ^[7, 8]		5	ns
t _{LZCE}	CE LOW to Low-Z ^[8]	3		ns
t _{HZCE} CE HIGH to High-Z ^[7, 8]			5	ns
t _{PU} ^[9] CE LOW to Power-up		0		ns
t _{PD} ^[9]			10	ns
Write Cycle ^{[10, 1}	1]			•
Write Cycle Time		10		ns
t _{SCE}	CE LOW to Write End	8		ns
t _{AW}	Address Set-up to Write End	8		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA} Address Set-up to Write Start		0		ns
t _{PWE} WE Pulse Width		7		ns
t _{SD} Data Set-up to Write End		5		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low-Z ^[8]	3		ns
t _{HZWE}	WE LOW to High-Z ^[7, 8]		5	ns

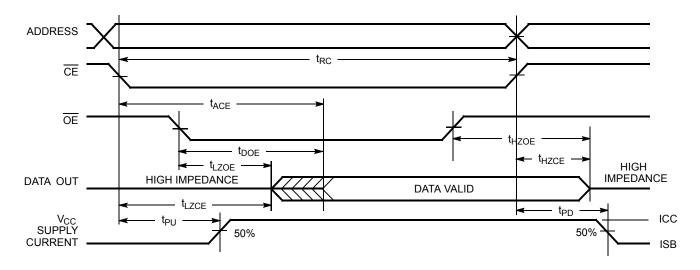
- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
- the conditions assume signal transition time of a first, time of a first of less, timing reference levels of viscosity pulse evels of viscosity of a first of time that the power supply should be at typical V_{CC} values until the first memory access can be performed. The first memory access can be


The internal Write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of any of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
 The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Data Retention Characteristics (Over the Operating Range)


Parameter	Description	Conditions	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention		2		V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$		3	mA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0		ns
t _R ^[12]	Operation Recovery Time		t _{RC}		ns

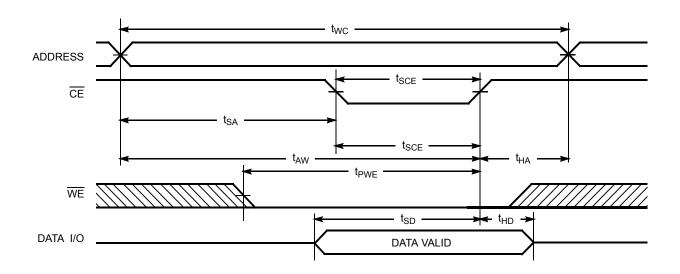
Data Retention Waveform



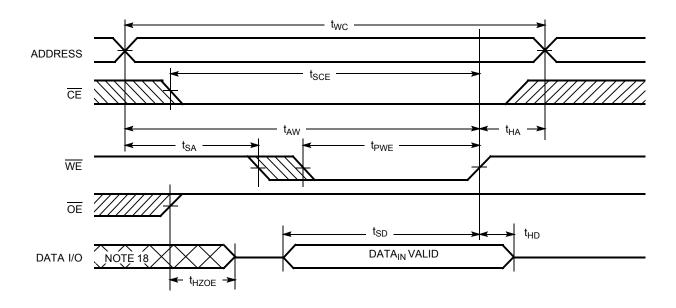
Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[13, 14]

Read Cycle No. 2 (OE Controlled)[14, 15]



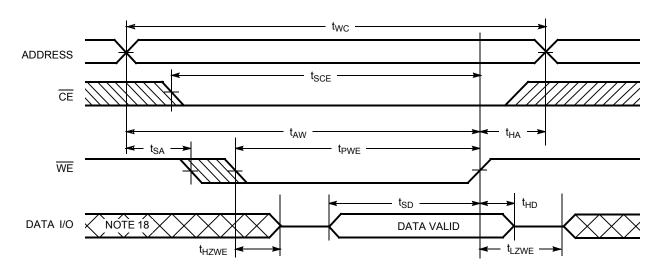
- 12. Full device operation requires lin<u>ear V_{CC} ramp</u> from V_{DR} to V_{CC(min.)} ≥ 50 μs or stable at V_{CC(min.)} ≥ 50 μs. 13. <u>Dev</u>ice is continuously selected. OE, CE = V_{IL}.
- 14. WE is HIGH for Read cycle.
- 15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[16, 17]

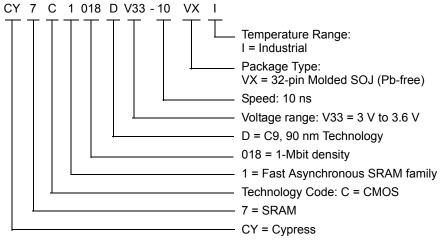
Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[16, 17]


- 16. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

 17. If \overline{OE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.
- 18. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)[11, 17]

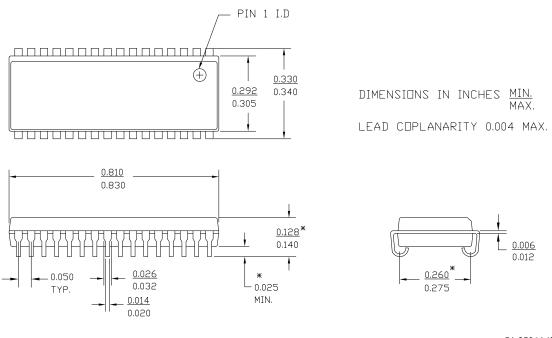

Truth Table

CE	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	X	Χ	High-Z	Power-down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1018DV33-10VXI	51-85041	32-pin (300-Mil) Molded SOJ (Pb-free)	Industrial

Ordering Code Definitions


Please contact your local Cypress sales representative for availability of these parts.

Document #: 38-05465 Rev. *E

Package Diagram

Figure 1. 32-pin (300-Mil) Molded SOJ (51-85041)

51-85041 *B

All product and company names mentioned in this document are the trademarks of their respective holders.

[+] Feedback

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Information data sheet for C9 IPP
*A	238471	See ECN	RKF	DC parameters modified as per EROS (Spec # 01-02165) Pb-free Offering in the Ordering Information
*B	262950	See ECN	RKF	Added Data Retention Characteristics table Added T _{power} Spec in Switching Characteristics table Shaded Ordering Information
*C	307598	See ECN	RKF	Reduced Speed bins to -8 and -10 ns
*D	520647	See ECN	VKN	Converted from Preliminary to Final Removed Commercial Operating range Removed 8 ns speed bin Added I _{CC} values for the frequencies 83MHz, 66MHz and 40MHz Updated Thermal Resistance table Updated Ordering Information Table Changed Overshoot spec from V _{CC} +2V to V _{CC} +1V in footnote #2
*E	3104943	12/08/2010	AJU	Added Ordering Code Definitions. Updated Package Diagram.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc

Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5