


# M29W160FT M29W160FB M29W320FB

16 Mbit or 32 Mbit (x 8 or x 16, boot block) 3 V supply Flash memory

#### **Features**

- Supply voltage
  - V<sub>CC</sub> = 2.5 V to 3.6 V (access time: 80 ns) or 2.7 to 3.6 V (access time: 70 ns) for Program, Erase and Read
  - V<sub>PP</sub> = 12 V for Fast Program (optional, available in the M29W320FT/B only)
- Access time: 70, 80 ns
- Programming time
  - 10 μs per byte/word typical
- Memory organization:
  - M29W160FT/B: 35 blocks including 1 boot block (top or bottom location), 2 parameter blocks and 32 main blocks
  - M29W320FT: 67 blocks including 1 boot block (top or bottom location), 2 parameter blocks and 64 main blocks
- Program/Erase controller
  - Embedded byte/word program algorithms
- Erase Suspend and Resume modes
  - Read and Program another block during Erase Suspend
- Unlock Bypass Program command
  - Faster production/batch programming
- V<sub>PP</sub>/WP pin for Fast program and Write Protect (available in the M29W320FT/B only)
- Temporary block unprotection mode
- Common Flash interface
  - 64 bit security code
- Low power consumption
  - Standby and Automatic Standby
- 100,000 Program/Erase cycles per block



■ Electronic signature

Manufacturer code: 0020h

Top device codes
 M29W160FT: 22C4h
 M29W320FT: 22CAh

 Bottom device codes M29W160FB: 2249h M29W320FB: 22CBh

■ Automotive device grade 3:

- Temperature: -40 to 125 °C

- Automotive grade certified

■ TSOP48 package is RoHS compliant

November 2008 208011-04 1/57

## **Contents**

| 1    | Desc | cription                                             | 6         |
|------|------|------------------------------------------------------|-----------|
| 2    | Sign | al descriptions                                      | 12        |
|      | 2.1  | Address inputs (A0-Amax)                             | 12        |
|      | 2.2  | Data inputs/outputs (DQ0-DQ7)                        | 12        |
|      | 2.3  | Data inputs/outputs (DQ8-DQ14)                       | 12        |
|      | 2.4  | Data input/output or Address input (DQ15A-1)         | 12        |
|      | 2.5  | Chip Enable (E)                                      | 12        |
|      | 2.6  | Output Enable (G)                                    | 12        |
|      | 2.7  | Write Enable ( $\overline{\mathbb{W}}$ )             | 13        |
|      | 2.8  | V <sub>PP</sub> /Write Protect (V <sub>PP/</sub> WP) | 13        |
|      | 2.9  | Reset/Block Temporary Unprotect (RP)                 | 13        |
|      | 2.10 | Ready/Busy Output (RB)                               | 14        |
|      | 2.11 | Byte/Word Organization Select (BYTE)                 | 14        |
|      | 2.12 | V <sub>CC</sub> supply voltage                       | 14        |
|      | 2.13 | V <sub>SS</sub> ground                               | 14        |
| 3    | Bus  | operations                                           | 15        |
|      | 3.1  | Bus Read                                             | 15        |
|      | 3.2  | Bus Write                                            | 15        |
|      | 3.3  | Output Disable                                       | 15        |
|      | 3.4  | Standby                                              | 15        |
|      | 3.5  | Automatic Standby                                    | 15        |
|      | 3.6  | Special bus operations                               | 16        |
|      | 3.7  | Electronic signature                                 | 16        |
|      | 3.8  | Block protection and Blocks unprotection             | 16        |
| 4    | Com  | mand interface                                       | 18        |
|      | 4.1  | Read/Reset command                                   | 18        |
|      | 4.2  | Auto Select command                                  | 18        |
|      | 4.3  | Program command                                      | 19        |
|      | 4.4  | Unlock Bypass command                                | 19        |
| 2/57 |      |                                                      | M numonyx |

|          | 4.5    | Unlock Bypass Program command |
|----------|--------|-------------------------------|
|          | 4.6    | Unlock Bypass Reset command   |
|          | 4.7    | Chip Erase command            |
|          | 4.8    | Block Erase command           |
|          | 4.9    | Erase Suspend command         |
|          | 4.10   | Erase Resume command          |
|          | 4.11   | Read CFI Query command        |
| 5        | Status | s Register                    |
|          | 5.1    | Data Polling bit (DQ7)        |
|          | 5.2    | Toggle bit (DQ6)              |
|          | 5.3    | Error bit (DQ5)               |
|          | 5.4    | Erase Timer bit (DQ3)         |
|          | 5.5    | Alternative Toggle bit (DQ2)  |
| 6        | Maxin  | num rating                    |
| 7        | DC ar  | nd AC parameters              |
| 8        | Packa  | age mechanical                |
| 9        | Part n | numbering                     |
| Appendix | A BI   | lock address table            |
| Appendix | ВС     | ommon Flash interface (CFI)   |
| Appendix | C BI   | lock protection50             |
|          | 9.1    | Programmer technique          |
|          | 9.2    | In-system technique           |
| 10       | Revis  | ion history 56                |

## List of tables

| Table 1.  | Signal names                                                                                            |     |
|-----------|---------------------------------------------------------------------------------------------------------|-----|
| Table 2.  | Bus operations, BYTE = V <sub>IL</sub>                                                                  | 16  |
| Table 3.  | Bus operations, BYTE = V <sub>IH</sub>                                                                  | 17  |
| Table 4.  | Commands, 16-bit mode, <u>BYTE</u> = V <sub>IH</sub>                                                    | .22 |
| Table 5.  | Commands, 8-bit mode, $\overline{\text{BYTE}} = V_{\text{IL}}$                                          | .23 |
| Table 6.  | Program, Erase times and Program, Erase endurance cycles                                                | 24  |
| Table 7.  | Status Register bits                                                                                    | 27  |
| Table 8.  | Absolute maximum ratings                                                                                | 29  |
| Table 9.  | Operating and AC measurement conditions                                                                 | 30  |
| Table 10. | Device capacitance                                                                                      | 31  |
| Table 11. | DC characteristics                                                                                      | 31  |
| Table 12. | Read AC characteristics                                                                                 | 32  |
| Table 13. | Write AC characteristics, Write Enable controlled                                                       | 33  |
| Table 14. | Write AC characteristics, Chip Enable controlled                                                        | 34  |
| Table 15. | Reset/Block Temporary Unprotect AC characteristics                                                      | 35  |
| Table 16. | TSOP48 – 48 lead Plastic Thin Small Outline, 12 × 20 mm, package mechanical data                        |     |
| Table 17. | TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package mechanical data                             | 37  |
| Table 18. | Ordering information scheme                                                                             |     |
| Table 19. | Top boot block addresses, M29W160FT                                                                     |     |
| Table 20. | Bottom boot block addresses, M29W160FB                                                                  |     |
| Table 21. | Top boot block addresses, M29W320FT                                                                     | 41  |
| Table 22. | Bottom boot block addresses, M29W320FB                                                                  | 43  |
| Table 23. | Query structure overview                                                                                |     |
| Table 24. | CFI query identification string                                                                         |     |
| Table 25. | CFI query system interface information                                                                  | 47  |
| Table 26. | Device geometry definition                                                                              |     |
| Table 27. | Primary algorithm-specific extended query table                                                         |     |
| Table 28. | Security code area                                                                                      | 49  |
| Table 29. | Programmer technique bus operations, $\overline{\text{BYTE}} = V_{\text{IH}} \text{ or } V_{\text{IL}}$ | .51 |
| Table 30. | Document revision history                                                                               | 56  |

# **List of figures**

| Figure 1.  | Logic diagram                                                            | 7  |
|------------|--------------------------------------------------------------------------|----|
| Figure 2.  | TSOP connections                                                         |    |
| Figure 3.  | TFBGA connections (top view through package)                             | 9  |
| Figure 4.  | M29W160FT/B block addresses (x 8)                                        |    |
| Figure 5.  | M29W320FT/B block addresses (x 8)                                        | 10 |
| Figure 6.  | M29W160FT/B block addresses (x 16)                                       | 11 |
| Figure 7.  | M29W320FT/B block addresses (x 16)                                       | 11 |
| Figure 8.  | Data polling flowchart                                                   | 27 |
| Figure 9.  | Data toggle flowchart                                                    | 28 |
| Figure 10. | AC measurement I/O waveform                                              |    |
| Figure 11. | AC measurement load circuit                                              | 30 |
| Figure 12. | Read mode AC waveforms                                                   | 32 |
| Figure 13. | Write AC waveforms, Write Enable controlled                              | 33 |
| Figure 14. | Write AC waveforms, Chip Enable controlled                               | 34 |
| Figure 15. | Reset/Block Temporary Unprotect AC waveforms                             | 35 |
| Figure 16. | Accelerated Program timing waveforms                                     | 35 |
| Figure 17. | TSOP48 – 48 lead Plastic Thin Small Outline, 12 × 20 mm, package outline | 36 |
| Figure 18. | TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package outline      | 37 |
| Figure 19. | Programmer equipment block protect flowchart                             | 52 |
| Figure 20. | Programmer equipment chip unprotect flowchart                            | 53 |
| Figure 21. | In-system equipment block protect flowchart                              | 54 |
| Figure 22  | In-system equipment chip upprotect flowchart                             | 55 |

## 1 Description

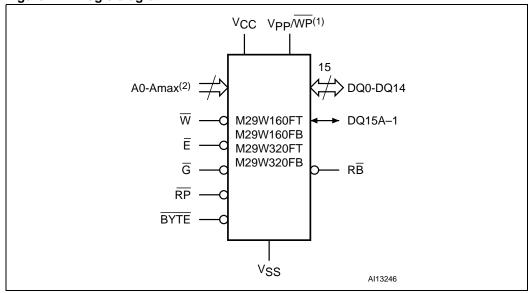
The M29W160FT/B and M29W320FT/B are 16 Mbit (2 Mb x 8 or 1 Mb x 16) and 32 Mbit (4 Mb x 8 or 2 Mb x 16) non-volatile memories, respectively. They can be read, erased and reprogrammed. These operations can be performed using a single low voltage supply (2.5 to 3.6 V or 2.7 to 3.6 V for access time of 80 ns and 70 ns, respectively). On power-up the memory defaults to its Read mode where it can be read in the same way as a ROM or EPROM.

The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased. Each block can be protected independently to prevent accidental Program or Erase commands from modifying the memory. Program and Erase commands are written to the command interface of the memory. An on-chip Program/Erase controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents.

The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.

The blocks in the memory are asymmetrically arranged, see Figures 4, 5, 6 and 7, Block addresses. The first or last 64 Kbytes have been divided into four additional blocks. The 16 Kbyte Boot Block can be used for small initialization code to start the microprocessor, the two 8 Kbyte Parameter Blocks can be used for parameter storage and the remaining 32 Kbyte block is a small Main Block where the application may be stored.

Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory. They allow simple connection to most microprocessors, often without additional logic.


The memory is offered in TSOP48 (12 x 20 mm) and TFBGA48 (0.8 mm pitch) packages. The memory is supplied with all the bits erased (set to '1').

In order to meet environmental requirements, Numonyx offers these devices in RoHS compliant packages. These packages have a Lead-free second-level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97.

The maximum ratings related to soldering conditions are also marked on the inner box label.

6/57 Mumonyx

Figure 1. Logic diagram



- 1. The  $V_{PP}/\overline{WP}$  pin is available in the M29W320FT and M29W320FB only.
- 2. Amax is equal to A19 in the M29W160FT/B, and to A20 in the M29W320FT/B.

Table 1. Signal names

| Signal name                        | Function                           | Direction |
|------------------------------------|------------------------------------|-----------|
| A0-Amax <sup>(1)</sup>             | Address inputs                     | Inputs    |
| DQ0-DQ7                            | Data inputs/outputs                | I/O       |
| DQ8-DQ14                           | Data inputs/outputs                | I/O       |
| DQ15A-1                            | Data input/output or Address input | I/O       |
| Ē                                  | Chip Enable                        | Input     |
| G                                  | Output Enable                      | Input     |
| W                                  | Write Enable                       | Input     |
| RP                                 | Reset/Block Temporary Unprotect    | Input     |
| RB                                 | Ready/Busy output                  | Output    |
| BYTE                               | Byte/word Organization Select      | Input     |
| V <sub>PP</sub> /WP <sup>(2)</sup> | V <sub>PP</sub> /Write Protect     |           |
| V <sub>CC</sub>                    | Supply voltage                     |           |
| V <sub>SS</sub>                    | Ground                             |           |
| NC                                 | Not connected internally           |           |

- 1. Amax is equal to A19 in the M29W160FT/B, and to A20 in the M29W320FT/B.
- 2. The  $V_{\mbox{\footnotesize{PP}}}/\overline{\mbox{\footnotesize{WP}}}$  pin is available in the M29W320FT and M29W320FB only.

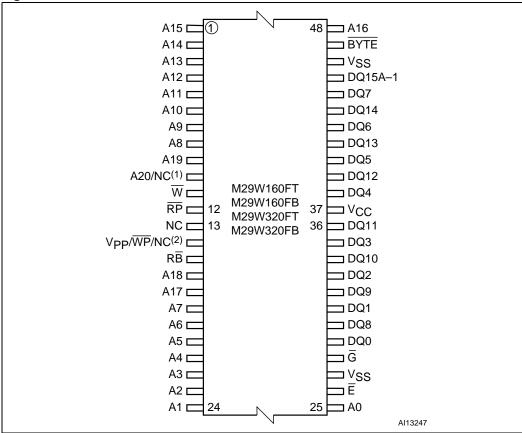



Figure 2. TSOP connections

- 1. Pin 10 is NC (not connected) in the M29W160FT/B, and it is connected to A20 in the M29W320FT/B.
- Pin 14 is NC (not connected) in the M29W160FT/B, and it is connected to the V<sub>PP</sub>/WP pin in the M29W320FT/B.

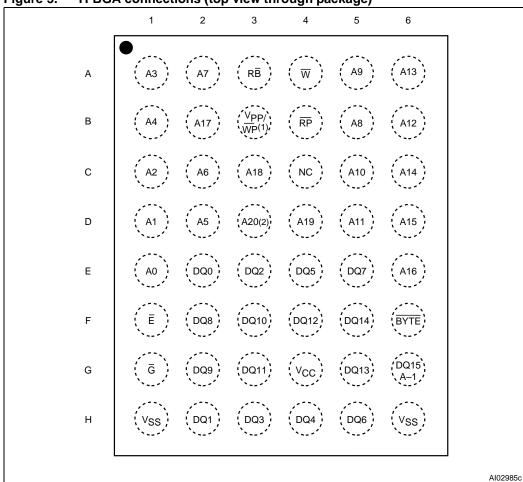



Figure 3. TFBGA connections (top view through package)

<sup>1.</sup> The <u>abo</u>ve <u>fig</u>ure gives the TFBGA connections for the M29W320FT/B. On the M29W160FT/B, the  $V_{PP}/WP$  pin is NC (not connected).

The above figure gives the TFBGA connections for the M29W320FT/B. On the M29W160FT/B, A20 is NC (not connected).

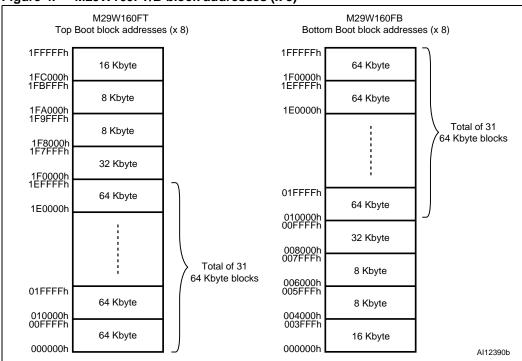



Figure 4. M29W160FT/B block addresses (x 8)

1. Also see Appendix A, Tables 19 and 20 for a full listing of the block addresses.

M29W320FT M29W320FB Top Boot block addresses (x 8) Bottom Boot block addresses (x 8) 3FFFFFh 3FFFFFh 16 Kbyte 64 Kbyte 8 Kbyte 64 Kbyte 3E0000h Total of 63 8 Kbyte 64 Kbyte blocks 32 Kbyte 01FFFFh 64 Kbyte 64 Kbyte 3E0000h 010000h 00FFFh 32 Kbyte 008000h 007FFFh Total of 63 8 Kbyte 64 Kbyte blocks 006000h 005FFFh 01FFFFh 64 Kbyte 8 Kbyte 004000h 003FFFh 64 Kbyte 16 Kbyte 000000h 000000h AI13248b

Figure 5. M29W320FT/B block addresses (x 8)

1. Also see Appendix A, Tables 21 and 22 for a full listing of the block addresses.

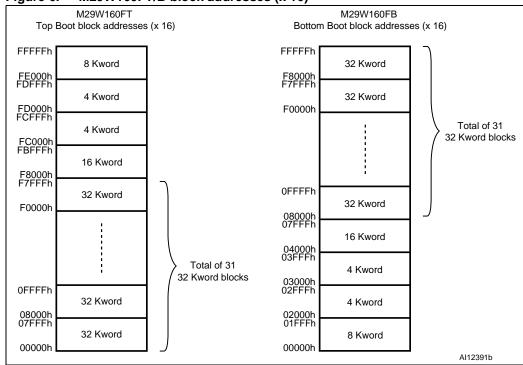



Figure 6. M29W160FT/B block addresses (x 16)

1. Also see Appendix A, Tables 19 and 20 for a full listing of the block addresses.

Figure 7. M29W320FT/B block addresses (x 16) M29W320FT M29W320FB Top Boot block addresses (x 16) Bottom Boot block addresses (x 16) 1FFFFFh 1FFFFFh 8 Kword 32 Kword 1FE000h 1FDFFFh 1F8000h 1F7FFFh 32 Kword 4 Kword 1FD000h 1FCFFFh 1F0000h Total of 63 4 Kword 32 Kword blocks 16 Kword 00FFFFh 32 Kword 32 Kword 1F0000h 16 Kword Total of 63 4 Kword 32 Kword blocks 00FFFFh 32 Kword 4 Kword 008000h 007FFFh 32 Kword 8 Kword 000000h 000000h AI13250b

🚺 numonyx

<sup>1.</sup> Also see Appendix A, Tables 21 and 22 for a full listing of the block addresses.

## 2 Signal descriptions

See Figure 1: Logic diagram, and Table 1: Signal names, for a brief overview of the signals connected to this device.

#### 2.1 Address inputs (A0-Amax)

Amax is equal to A19 in the M29W160FT/B, and to A20 in the M29W320FT/B.

The Address inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the command interface of the Program/Erase controller.

#### 2.2 Data inputs/outputs (DQ0-DQ7)

The Data inputs/outputs output the data stored at the selected address during a Bus Read operation. During Bus Write operations they represent the commands sent to the command interface of the Program/Erase controller.

#### 2.3 Data inputs/outputs (DQ8-DQ14)

The Data inputs/outputs output the data stored at the selected address during a Bus Read operation when BYTE is High,  $V_{IH}$ . When BYTE is Low,  $V_{IL}$ , these pins are not used and are high impedance. During Bus Write operations the Command Register does not use these bits. When reading the Status Register these bits should be ignored.

## 2.4 Data input/output or Address input (DQ15A-1)

When  $\overline{\text{BYTE}}$  is High,  $V_{\text{IH}}$ , this pin behaves as a Data input/output pin (as DQ8-DQ14). When  $\overline{\text{BYTE}}$  is Low,  $V_{\text{IL}}$ , this pin behaves as an address pin; DQ15A–1 Low will select the LSB of the word on the other addresses, DQ15A–1 High will select the MSB. Throughout the text consider references to the Data input/output to include this pin when  $\overline{\text{BYTE}}$  is High and references to the Address inputs to include this pin when  $\overline{\text{BYTE}}$  is Low except when stated explicitly otherwise.

## 2.5 Chip Enable (E)

The Chip Enable,  $\overline{E}$ , activates the memory, allowing Bus Read and Bus Write operations to be performed. When Chip Enable is High,  $V_{IH}$ , all other pins are ignored.

## 2.6 Output Enable (G)

The Output Enable,  $\overline{G}$ , controls the Bus Read operation of the memory.

## 2.7 Write Enable $(\overline{W})$

The Write Enable,  $\overline{W}$ , controls the Bus Write operation of the memory's command interface.

## 2.8 V<sub>PP</sub>/Write Protect (V<sub>PP</sub>/WP)

The  $V_{PP}$ /Write Protect pin is only available in the M29W320FT/B devices. It provides two functions. The  $V_{PP}$  function allows the memory to use an external high voltage power supply to reduce the time required for Unlock Bypass Program operations. The Write Protect function provides a hardware method of protecting the 16 Kbyte Boot Block. The  $V_{PP}$ /Write Protect pin must not be left floating or unconnected.

When  $V_{PP}$ /Write Protect is Low,  $V_{IL}$ , the memory protects the 16 Kbyte Boot Block; Program and Erase operations in this block are ignored while  $V_{PP}$ /Write Protect is Low.

When  $V_{PP}$ /Write Protect is High,  $V_{IH}$ , the memory reverts to the previous protection status of the 16 Kbyte boot block. Program and Erase operations can now modify the data in the 16 Kbyte Boot Block unless the block is protected using Block Protection.

When  $V_{PP}$ /Write Protect is raised to  $V_{PP}$  the memory automatically enters the Unlock Bypass mode. When  $V_{PP}$ /Write Protect returns to  $V_{IH}$  or  $V_{IL}$  normal operation resumes. During Unlock Bypass Program operations the memory draws  $I_{PP}$  from the pin to supply the programming circuits. See the description of the Unlock Bypass command in the command interface section. The transitions from  $V_{IH}$  to  $V_{PP}$  and from  $V_{PP}$  to  $V_{IH}$  must be slower than  $t_{VHVPP}$ , see *Figure 16*.

Never raise  $V_{PP}$ /Write Protect to  $V_{PP}$  from any mode except Read mode, otherwise the memory may be left in an indeterminate state.

A 0.1  $\mu$ F capacitor should be connected between the V<sub>PP</sub>/Write Protect pin and the V<sub>SS</sub> ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Unlock Bypass Program, I<sub>PP</sub>.

## 2.9 Reset/Block Temporary Unprotect (RP)

The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all blocks that have been protected.

A Hardware Reset is achieved by holding Reset/Block Temporary Unprotect Low,  $V_{IL}$ , for at least  $t_{PLPX}$ . After Reset/Block Temporary Unprotect goes High,  $V_{IH}$ , the memory will be ready for Bus Read and Bus Write operations after  $t_{PHEL}$  or  $t_{RHEL}$ , whichever occurs last. See Section 2.10: Ready/Busy Output (RB), Table 15 and Figure 15., Reset/Temporary Unprotect AC characteristics for more details.

Holding  $\overline{RP}$  at  $V_{ID}$  will temporarily unprotect the protected blocks in the memory. Program and Erase operations on all blocks will be possible. The transition from  $V_{IH}$  to  $V_{ID}$  must be slower than  $t_{PHPHH}$ .

## 2.10 Ready/Busy Output (RB)

The Ready/Busy pin is an open-drain output that can be used to identify when the device is performing a Program or Erase operation. During Program or Erase operations Ready/Busy is Low, V<sub>OL</sub>. Ready/Busy is high-impedance during Read mode, Auto Select mode and Erase Suspend mode.

After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy becomes high-impedance. See *Table 15* and *Figure 15: Reset/Block Temporary Unprotect AC waveforms*.

The use of an open-drain output allows the Ready/Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.

## 2.11 Byte/Word Organization Select (BYTE)

The Byte/Word Organization Select pin is used to switch between the 8-bit and 16-bit Bus modes of the memory. When Byte/Word Organization Select is Low,  $V_{IL}$ , the memory is in 8-bit mode, when it is High,  $V_{IH}$ , the memory is in 16-bit mode.

## 2.12 V<sub>CC</sub> supply voltage

The V<sub>CC</sub> supply voltage supplies the power for all operations (Read, Program, Erase etc.).

The command interface is disabled when the  $V_{CC}$  supply voltage is less than the Lockout voltage,  $V_{LKO}$ . This prevents Bus Write operations from accidentally damaging the data during power up, power down and power surges. If the Program/Erase controller is programming or erasing during this time then the operation aborts and the memory contents being altered will be invalid.

A 0.1  $\mu$ F capacitor should be connected between the V<sub>CC</sub> supply voltage pin and the V<sub>SS</sub> ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations, I<sub>CC3</sub>.

## 2.13 V<sub>SS</sub> ground

The  $V_{SS}$  ground is the reference for all voltage measurements. The two  $V_{SS}$  pins of the device must be connected to the system ground.

### 3 Bus operations

There are five standard bus operations that control the device. These are Bus Read, Bus Write, Output Disable, Standby and Automatic Standby. See *Table 2.* and *Table 3.*, Bus operations, for a summary. Typically glitches of less than 5 ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

#### 3.1 Bus Read

Bus Read operations read from the memory cells, or specific registers in the command interface. A valid Bus Read operation involves setting the desired address on the Address inputs, applying a Low signal, V<sub>IL</sub>, to Chip Enable and Output Enable and keeping Write Enable High, V<sub>IH</sub>. The Data inputs/outputs will output the value, see *Figure 12: Read mode AC waveforms*, and *Table 12: Read AC characteristics*, for details of when the output becomes valid.

#### 3.2 Bus Write

Bus Write operations write to the command interface. A valid Bus Write operation begins by setting the desired address on the Address inputs. The Address inputs are latched by the command interface on the falling edge of Chip Enable or Write Enable, whichever occurs last. The Data inputs/outputs are latched by the command interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High,  $V_{IH}$ , during the whole Bus Write operation. See *Figure 13*. and *Figure 14*., Write AC waveforms, and Tables *13* and *14*, Write AC characteristics, for details of the timing requirements.

## 3.3 Output Disable

The Data inputs/outputs are in the high impedance state when Output Enable is High, V<sub>IH</sub>.

## 3.4 Standby

When Chip Enable is High,  $V_{IH}$ , the memory enters Standby mode and the Data inputs/outputs pins are placed in the high-impedance state. To reduce the supply current to the Standby supply current,  $I_{CC2}$ , Chip Enable should be held within  $V_{CC} \pm 0.2$  V. For the Standby current level see *Table 11: DC characteristics*.

During program or erase operations the memory will continue to use the Program/Erase supply current, I<sub>CC3</sub>, for Program or Erase operations until the operation completes.

## 3.5 Automatic Standby

If CMOS levels ( $V_{CC} \pm 0.2 \text{ V}$ ) are used to drive the bus and the bus is inactive for 150 ns or more the memory enters Automatic Standby where the internal supply current is reduced to the Standby supply current,  $I_{CC2}$ . The Data inputs/outputs will still output data if a Bus Read operation is in progress.

#### 3.6 Special bus operations

Additional bus operations can be performed to read the Electronic Signature and also to apply and remove Block Protection. These bus operations are intended for use by programming equipment and are not usually used in applications. They require  $V_{\text{ID}}$  to be applied to some pins.

#### 3.7 Electronic signature

The memory has two codes, the manufacturer code and the device code, that can be read to identify the memory. These codes can be read by applying the signals listed in *Table 2*. and *Table 3*, Bus operations.

## 3.8 Block protection and Blocks unprotection

Each block can be separately protected against accidental Program or Erase. Protected blocks can be unprotected to allow data to be changed.

There are two methods available for protecting and unprotecting the blocks, one for use on programming equipment and the other for in-system use. Block Protect and Blocks Unprotect operations are described in *Appendix C*.

Table 2. Bus operations,  $\overline{\text{BYTE}} = V_{IL}^{(1)}$ 

| Operation              | Ē                                         | <u>_</u>        | w                                              | Address inputs                                                                                                                                                    | Data inputs/outputs                                                      |             |  |
|------------------------|-------------------------------------------|-----------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------|--|
| Operation              |                                           | G               | VV                                             | DQ15A-1, A0-Amax                                                                                                                                                  | DQ14-DQ8                                                                 | DQ7-DQ0     |  |
| Bus Read               | $V_{IL}$                                  | $V_{IL}$        | $V_{IH}$                                       | Cell address                                                                                                                                                      | Hi-Z                                                                     | Data output |  |
| Bus Write              | $V_{IL}$                                  | $V_{IH}$        | V <sub>IL</sub>                                | Command address                                                                                                                                                   | Hi-Z                                                                     | Data input  |  |
| Output Disable         | Х                                         | V <sub>IH</sub> | $V_{IH}$                                       | Х                                                                                                                                                                 | Hi-Z                                                                     | Hi-Z        |  |
| Standby                | V <sub>IH</sub>                           | Х               | Х                                              | Х                                                                                                                                                                 | Hi-Z                                                                     | Hi-Z        |  |
| Read manufacturer code | V <sub>IL</sub>                           | V <sub>IL</sub> | V <sub>IH</sub>                                | $\begin{array}{c} \text{A0=V}_{\text{IL}}, \text{A1=V}_{\text{IL}}, \text{A9=V}_{\text{ID}}, \\ \text{others V}_{\text{IL}} \text{ or V}_{\text{IH}} \end{array}$ | Hi-Z                                                                     | 20h         |  |
| Read device code       | A0=V <sub>IH</sub> , A1=V <sub>IL</sub> , |                 | A9=V <sub>ID</sub> , others V <sub>IL</sub> or | Hi-Z                                                                                                                                                              | C4h (M29W160FT)<br>CAh (M29W320FT)<br>49h (M29W160FB)<br>CBh (M29W320FB) |             |  |

<sup>1.</sup>  $X = V_{IL}$  or  $V_{IH}$ .

Table 3. Bus operations,  $\overline{\text{BYTE}} = V_{\text{IH}}^{(1)}$ 

|                        |                 |                 |                 | !                                                                                                                                                                           |                                                                                  |  |  |
|------------------------|-----------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Operation              | Ē               | G               | w               | Address inputs<br>A0-Amax                                                                                                                                                   | Data inputs/outputs<br>DQ15A-1, DQ14-DQ0                                         |  |  |
| Bus Read               | $V_{IL}$        | $V_{IL}$        | $V_{IH}$        | Cell address                                                                                                                                                                | Data output                                                                      |  |  |
| Bus Write              | V <sub>IL</sub> | V <sub>IH</sub> | V <sub>IL</sub> | Command address                                                                                                                                                             | Data input                                                                       |  |  |
| Output Disable         | Х               | V <sub>IH</sub> | V <sub>IH</sub> | Х                                                                                                                                                                           | Hi-Z                                                                             |  |  |
| Standby                | V <sub>IH</sub> | Х               | Х               | Х                                                                                                                                                                           | Hi-Z                                                                             |  |  |
| Read manufacturer code | V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IH</sub> | $\begin{array}{c} \text{A0=V}_{\text{IL}},\text{A1=V}_{\text{IL}},\\ \text{A9=V}_{\text{ID}},\text{others}\text{V}_{\text{IL}}\text{or}\\ \text{V}_{\text{IH}} \end{array}$ | 0020h                                                                            |  |  |
| Read device code       | V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IH</sub> | A0=V <sub>IH</sub> , A1=V <sub>IL</sub> ,<br>A9=V <sub>ID</sub> , others V <sub>IL</sub> or<br>V <sub>IH</sub>                                                              | 22C4h (M29W160FT)<br>22CAh (M29W320FT)<br>2249h (M29W160FB)<br>22CBh (M29W320FB) |  |  |

<sup>1.</sup>  $X = V_{IL}$  or  $V_{IH}$ .

#### 4 Command interface

All Bus Write operations to the memory are interpreted by the command interface. Commands consist of one or more sequential Bus Write operations. Failure to observe a valid sequence of Bus Write operations will result in the memory returning to Read mode. The long command sequences are imposed to maximize data security.

The address used for the commands changes depending on whether the memory is in 16-bit or 8-bit mode. See either *Table 4*, or *Table 5*, depending on the configuration that is being used, for a summary of the commands.

#### 4.1 Read/Reset command

The Read/Reset command returns the memory to its Read mode where it behaves like a ROM or EPROM, unless otherwise stated. It also resets the errors in the Status Register. Either one or three Bus Write operations can be used to issue the Read/Reset command.

The Read/Reset command can be issued, between Bus Write cycles before the start of a program or erase operation, to return the device to Read mode. Once the program or erase operation has started the Read/Reset command is no longer accepted. The Read/Reset command will not abort an Erase operation when issued while in Erase Suspend.

#### 4.2 Auto Select command

The Auto Select command is used to read the manufacturer code, the device code and the Block Protection status. Three consecutive Bus Write operations are required to issue the Auto Select command. Once the Auto Select command is issued the memory remains in Auto Select mode until a Read/Reset command is issued. Read CFI Query and Read/Reset commands are accepted in Auto Select mode, all other commands are ignored.

From the Auto Select mode the manufacturer code can be read using a Bus Read operation with A0 =  $V_{IL}$  and A1 =  $V_{IL}$ . The other address bits may be set to either  $V_{IL}$  or  $V_{IH}$ . The manufacturer code for Numonyx is 0020h.

The device code can be read using a Bus Read operation with A0 =  $V_{IH}$  and A1 =  $V_{IL}$ . The other address bits may be set to either  $V_{II}$  or  $V_{IH}$ .

The Block Protection status of each block can be read using a Bus Read operation with  $A0 = V_{IL}$ ,  $A1 = V_{IH}$ , and A12-Amax specifying the address of the block. The other address bits may be set to either  $V_{IL}$  or  $V_{IH}$ . If the addressed block is protected then 01h is output on Data inputs/outputs DQ0-DQ7, otherwise 00h is output.

#### 4.3 Program command

The Program command can be used to program a value to one address in the memory array at a time. The command requires four Bus Write operations, the final write operation latches the address and data, and starts the Program/Erase controller.

If the address falls in a protected block then the Program command is ignored, the data remains unchanged. The Status Register is never read and no error condition is given.

During the program operation the memory will ignore all commands. It is not possible to issue any command to abort or pause the operation. Typical program times are given in *Table 6*. Bus Read operations during the program operation will output the Status Register on the Data inputs/outputs. See the section on the Status Register for more details.

After the program operation has completed the memory returns to the Read mode, unless an error has occurred. When an error occurs the memory continues to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.

Note that the Program command cannot change a bit set at '0' back to '1'. One of the Erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'.

## 4.4 Unlock Bypass command

The Unlock Bypass command is used in conjunction with the Unlock Bypass Program command to program the memory. When the access time to the device is long (as with some EPROM programmers) considerable time saving can be made by using these commands. Three Bus Write operations are required to issue the Unlock Bypass command.

Once the Unlock Bypass command has been issued the memory will only accept the Unlock Bypass Program command and the Unlock Bypass Reset command. The memory can be read as if in Read mode.

## 4.5 Unlock Bypass Program command

The Unlock Bypass Program command can be used to program one address in memory at a time. The command requires two Bus Write operations, the final write operation latches the address and data, and starts the Program/Erase controller.

The Program operation using the Unlock Bypass Program command behaves identically to the Program operation using the Program command. A protected block cannot be programmed; the operation cannot be aborted and the Status Register is read. Errors must be reset using the Read/Reset command, which leaves the device in Unlock Bypass mode. See the Program command for details on the behavior.

## 4.6 Unlock Bypass Reset command

The Unlock Bypass Reset command can be used to return to Read/Reset mode from Unlock Bypass mode. Two Bus Write operations are required to issue the Unlock Bypass Reset command. Read/Reset command does not exit from Unlock Bypass mode.

#### 4.7 Chip Erase command

The Chip Erase command can be used to erase the entire chip. Six Bus Write operations are required to issue the Chip Erase command and start the Program/Erase controller.

If any blocks are protected then these are ignored and all the other blocks are erased. If all of the blocks are protected the Chip Erase operation appears to start but will terminate within about 100  $\mu$ s, leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the erase operation the memory will ignore all commands. It is not possible to issue any command to abort the operation. Typical chip erase times are given in *Table 6*. All Bus Read operations during the Chip Erase operation will output the Status Register on the Data inputs/outputs. See the section on the Status Register for more details.

After the Chip Erase operation has completed the memory will return to the Read mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.

The Chip Erase command sets all of the bits in unprotected blocks of the memory to '1'. All previous data is lost.

#### 4.8 Block Erase command

The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write operations are required to select the first block in the list. Each additional block in the list can be selected by repeating the sixth Bus Write operation using the address of the additional block. The Block Erase operation starts the Program/Erase controller about 50 µs after the last Bus Write operation. Once the Program/Erase controller starts it is not possible to select any more blocks. Each additional block must therefore be selected within 50 µs of the last block. The 50 µs timer restarts when an additional block is selected. The Status Register can be read after the sixth Bus Write operation. See the Status Register section for details on how to identify if the Program/Erase controller has started the Block Erase operation.

If any selected blocks are protected then these are ignored and all the other selected blocks are erased. If all of the selected blocks are protected the Block Erase operation appears to start but will terminate within about  $100 \mu s$ , leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the Block Erase operation the memory will ignore all commands except the Erase Suspend command. Typical block erase times are given in *Table 6*. All Bus Read operations during the Block Erase operation will output the Status Register on the Data inputs/outputs. See the section on the Status Register for more details.

After the Block Erase operation has completed the memory will return to the Read mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.

The Block Erase command sets all of the bits in the unprotected selected blocks to '1'. All previous data in the selected blocks is lost.

20/57 ► Numonyx

#### 4.9 Erase Suspend command

The Erase Suspend command may be used to temporarily suspend a Block Erase operation and return the memory to Read mode. The command requires one Bus Write operation.

The Program/Erase controller will suspend within the Erase Suspend Latency time (refer to *Table 6* for value) of the Erase Suspend command being issued. Once the Program/Erase controller has stopped the memory will be set to Read mode and the Erase will be suspended. If the Erase Suspend command is issued during the period when the memory is waiting for an additional block (before the Program/Erase controller starts) then the Erase is suspended immediately and will start immediately when the Erase Resume command is issued. It is not possible to select any further blocks to erase after the Erase Resume.

During Erase Suspend it is possible to Read and Program cells in blocks that are not being erased; both Read and Program operations behave as normal on these blocks. If any attempt is made to program in a protected block or in the suspended block then the Program command is ignored and the data remains unchanged. The Status Register is not read and no error condition is given. Reading from blocks that are being erased will output the Status Register.

It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands during an Erase Suspend. The Read/Reset command must be issued to return the device to Read Array mode before the Resume command will be accepted.

#### 4.10 Erase Resume command

The Erase Resume command must be used to restart the Program/Erase controller from Erase Suspend. An erase can be suspended and resumed more than once.

## 4.11 Read CFI Query command

The Read CFI Query command is used to read data from the Common Flash interface (CFI) memory area. This command is valid when the device is in the Read Array mode, or when the device is in Auto Select mode.

One Bus Write cycle is required to issue the Read CFI Query command. Once the command is issued subsequent Bus Read operations read from the Common Flash interface memory area.

The Read/Reset command must be issued to return the device to the previous mode (the Read Array mode or Auto Select mode). A second Read/Reset command would be needed if the device is to be put in the Read Array mode from Auto Select mode.

See *Appendix B*, Tables 23, 24, 25, 26, 27 and 28 for details on the information contained in the common flash interface (CFI) memory area.

|                                         | ١      | Bus Write operations <sup>(1)</sup> (2) (3) |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------------------|--------|---------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Command                                 | Length | 1st                                         |      | 2nd  |      | 3rd  |      | 4th  |      | 5th  |      | 6th  |      |
|                                         | ت      | Addr                                        | Data | Addr | Data | Addr | Data | Addr | Data | Addr | Data | Addr | Data |
| Read/Reset <sup>(4)</sup>               | 1      | Х                                           | F0   |      |      |      |      |      |      |      |      |      |      |
| Reau/Reset                              | 3      | 555                                         | AA   | 2AA  | 55   | Х    | F0   |      |      |      |      |      |      |
| Auto Select <sup>(5)</sup>              | 3      | 555                                         | AA   | 2AA  | 55   | 555  | 90   |      |      |      |      |      |      |
| Program <sup>(6)</sup>                  | 4      | 555                                         | AA   | 2AA  | 55   | 555  | A0   | PA   | PD   |      |      |      |      |
| Unlock<br>Bypass <sup>(7)</sup>         | 3      | 555                                         | AA   | 2AA  | 55   | 555  | 20   |      |      |      |      |      |      |
| Unlock Bypass<br>Program <sup>(6)</sup> | 2      | Х                                           | A0   | PA   | PD   |      |      |      |      |      |      |      |      |
| Unlock Bypass<br>Reset <sup>(8)</sup>   | 2      | Х                                           | 90   | Х    | 00   |      |      |      |      |      |      |      |      |
| Chip Erase <sup>(6)</sup>               | 6      | 555                                         | AA   | 2AA  | 55   | 555  | 80   | 555  | AA   | 2AA  | 55   | 555  | 10   |
| Block Erase <sup>(6)</sup>              | 6+     | 555                                         | AA   | 2AA  | 55   | 555  | 80   | 555  | AA   | 2AA  | 55   | ВА   | 30   |
| Erase<br>Suspend <sup>(9)</sup>         | 1      | Х                                           | В0   |      |      |      |      |      |      |      |      |      |      |
| Erase<br>Resume <sup>(10)</sup>         | 1      | Х                                           | 30   |      |      |      |      |      |      |      |      |      |      |
| Read CFI<br>Query <sup>(11)</sup>       | 1      | 55                                          | 98   |      |      |      |      |      |      |      |      |      |      |

Table 4. Commands, 16-bit mode,  $\overline{\text{BYTE}} = V_{\text{IH}}$ 

- 1. X don't care, PA Program Address, PD Program Data, BA any address in the block.
- 2. All values in the table are in hexadecimal.
- 3. The command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands: A11-A19, DQ8-DQ14 and DQ15 are Don't Care. DQ15A–1 is A–1 when BYTE is  $V_{IL}$  or DQ15 when BYTE is  $V_{IH}$ .
- 4. After a Read/Reset command, read the memory as normal until another command is issued.
- 5. After an Auto Select command, read manufacturer ID, device ID or Block Protection status.
- After this command read the Status Register until the Program/Erase controller completes and the memory returns to Read mode. Add additional blocks during Block Erase command with additional Bus Write operations until Timeout bit is set.
- 7. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.
- 8. After the Unlock Bypass Reset command read the memory as normal until another command is issued.
- After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program commands on non-erasing blocks as normal.
- 10. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Program/Erase controller completes and the memory returns to Read mode.
- 11. Command is valid when device is ready to read array data or when device is in Auto Select mode.

Bus Write operations<sup>(1) (2) (3)</sup> ength. Command 3rd 4th 5th 6th 1st 2nd Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data Х F0 Read/Reset(4) 3 555 55 F0 AAA AA Χ Auto Select<sup>(5)</sup> 3 AAA AA 555 55 AAA 90 Program<sup>(6)</sup> AAAAA 555 55 AAA A0 PA PD Unlock Bypass<sup>(7)</sup> 3 20 AAA AA 555 55 AAA Unlock Bypass PD Χ A0 PA Program<sup>(6)</sup> Unlock Bypass 2 90 00 Χ Х Reset<sup>(8)</sup> Chip Erase<sup>(6)</sup> 6 AAA AA 555 55 80 555 55 AAA 10 AAA AAA AA Block Erase<sup>(6)</sup> AAA AA 555 55 AAA 80 AAA AA 555 55 BA 30 Erase Suspend<sup>(9)</sup> Х B0 Erase Resume<sup>(10)</sup> Х 30 Read CFI Query(11) AA 98

Table 5. Commands, 8-bit mode,  $\overline{\text{BYTE}} = V_{IL}$ 

- 1. X don't care, PA Program Address, PD Program Data, BA any address in the block.
- 2. All values in the table are in hexadecimal.
- 3. The command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A19, DQ8-DQ14 and DQ15 are don't care. DQ15A–1 is A–1 when BYTE is  $V_{\rm IL}$  or DQ15 when BYTE is  $V_{\rm IH}$ .
- 4. After a Read/Reset command, read the memory as normal until another command is issued.
- 5. After an Auto Select command, read manufacturer ID, device ID or Block Protection status.
- After this command read the Status Register until the Program/Erase controller completes and the memory returns to Read mode. Add additional blocks during Block Erase command with additional Bus Write operations until Timeout bit is set.
- 7. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.
- 8. After the Unlock Bypass Reset command read the memory as normal until another command is issued.
- After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program commands on non-erasing blocks as normal.
- 10. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Program/Erase controller completes and the memory returns to Read mode.
- 11. Command is valid when device is ready to read array data or when device is in Auto Select mode.

Table 6. Program, Erase times and Program, Erase endurance cycles

| Parameter                        | Min     | Typ <sup>(1) (2)</sup> | Max <sup>(2)</sup> | Unit   |
|----------------------------------|---------|------------------------|--------------------|--------|
| Chip Erase                       |         | 29                     | 120 <sup>(3)</sup> | S      |
| Block Erase (64 Kbytes)          |         | 0.8                    | 6 <sup>(4)</sup>   | s      |
| Erase Suspend Latency time       |         | 20                     | 25 <sup>(4)</sup>  | μs     |
| Program (byte or word)           |         | 13                     | 200 <sup>(3)</sup> | μs     |
| Chip Program (byte by byte)      |         | 26                     | 120 <sup>(3)</sup> | s      |
| Chip Program (word by word)      |         | 13                     | 60 <sup>(3)</sup>  | s      |
| Program/Erase cycles (per block) | 100,000 |                        |                    | cycles |
| Data retention                   | 20      |                        |                    | years  |

<sup>1.</sup> Typical values measured at room temperature and nominal voltages.

4. Maximum value measured at worst case conditions for both temperature and  $V_{\text{CC}}$ .

<sup>2.</sup> Sampled, but not 100% tested.

<sup>3.</sup> Maximum value measured at worst case conditions for both temperature and  $V_{CC}$  after 100,000 program/erase cycles.

## 5 Status Register

Bus Read operations from any address always read the Status Register during Program and Erase operations. It is also read during Erase Suspend when an address within a block being erased is accessed.

The bits in the Status Register are summarized in *Table 7: Status Register bits*.

#### 5.1 Data Polling bit (DQ7)

The Data Polling bit can be used to identify whether the Program/Erase controller has successfully completed its operation or if it has responded to an Erase Suspend. The Data Polling bit is output on DQ7 when the Status Register is read.

During Program operations the Data Polling bit outputs the complement of the bit being programmed to DQ7. After successful completion of the Program operation the memory returns to Read mode and Bus Read operations from the address just programmed output DQ7, not its complement.

During Erase operations the Data Polling bit outputs '0', the complement of the erased state of DQ7. After successful completion of the Erase operation the memory returns to Read Mode.

In Erase Suspend mode the Data Polling bit will output a '1' during a Bus Read operation within a block being erased. The Data Polling bit will change from a '0' to a '1' when the Program/Erase controller has suspended the Erase operation.

*Figure 8: Data polling flowchart*, gives an example of how to use the Data Polling bit. A Valid address is the address being programmed or an address within the block being erased.

## 5.2 Toggle bit (DQ6)

The Toggle bit can be used to identify whether the Program/Erase controller has successfully completed its operation or if it has responded to an Erase Suspend. The Toggle bit is output on DQ6 when the Status Register is read.

During Program and Erase operations the Toggle bit changes from '0' to '1' to '0', etc., with successive Bus Read operations at any address. After successful completion of the operation the memory returns to Read mode.

During Erase Suspend mode the Toggle bit will output when addressing a cell within a block being erased. The Toggle bit will stop toggling when the Program/Erase controller has suspended the Erase operation.

If any attempt is made to erase a protected block, the operation is aborted, no error is signalled and DQ6 toggles for approximately 100µs. If any attempt is made to program a protected block or a suspended block, the operation is aborted, no error is signalled and DQ6 toggles for approximately 1µs.

Figure 9: Data toggle flowchart, gives an example of how to use the Data Toggle bit.

#### 5.3 Error bit (DQ5)

The Error bit can be used to identify errors detected by the Program/Erase controller. The Error bit is set to '1' when a Program, Block Erase or Chip Erase operation fails to write the correct data to the memory. If the Error bit is set a Read/Reset command must be issued before other commands are issued. The Error bit is output on DQ5 when the Status Register is read.

Note that the Program command cannot change a bit set to '0' back to '1' and attempting to do so will set DQ5 to '1'. A Bus Read operation to that address will show the bit is still '0'. One of the Erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'

#### 5.4 Erase Timer bit (DQ3)

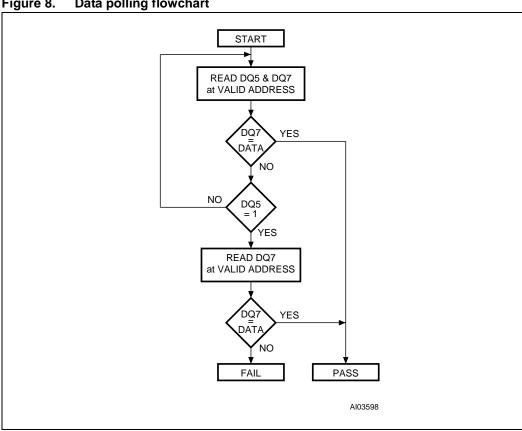
The Erase Timer bit can be used to identify the start of Program/Erase controller operation during a Block Erase command. Once the Program/Erase controller starts erasing the Erase Timer bit is set to '1'. Before the Program/Erase controller starts the Erase Timer bit is set to '0' and additional blocks to be erased may be written to the command interface. The Erase Timer bit is output on DQ3 when the Status Register is read.

#### 5.5 Alternative Toggle bit (DQ2)

The Alternative Toggle bit can be used to monitor the Program/Erase controller during Erase operations. The Alternative Toggle bit is output on DQ2 when the Status Register is read.

During Chip Erase and Block Erase operations the Toggle bit changes from '0' to '1' to '0', etc., with successive Bus Read operations from addresses within the blocks being erased. A protected block is treated the same as a block not being erased. Once the operation completes the memory returns to Read mode.

During Erase Suspend the Alternative Toggle bit changes from '0' to '1' to '0', etc. with successive Bus Read operations from addresses within the blocks being erased. Bus Read operations to addresses within blocks not being erased will output the memory cell data as if in Read mode.


After an Erase operation that causes the Error bit to be set the Alternative Toggle bit can be used to identify which block or blocks have caused the error. The Alternative Toggle bit changes from '0' to '1' to '0', etc. with successive Bus Read Operations from addresses within blocks that have not erased correctly. The Alternative Toggle bit does not change if the addressed block has erased correctly.

Status Register bits<sup>(1)</sup> Table 7.

| Operation                       | Address              | DQ7                 | DQ6       | DQ5 | DQ3 | DQ2       | RB |
|---------------------------------|----------------------|---------------------|-----------|-----|-----|-----------|----|
| Program                         | Any address          | DQ7                 | Toggle    | 0   | _   | -         | 0  |
| Program During<br>Erase Suspend | Any address          | DQ7                 | Toggle    | 0   | _   | -         | 0  |
| Program Error                   | Any address          | DQ7                 | Toggle    | 1   | _   | _         | 0  |
| Chip Erase                      | Any address          | 0                   | Toggle    | 0   | 1   | Toggle    | 0  |
| Block Erase                     | Erasing block        | 0                   | Toggle    | 0   | 0   | Toggle    | 0  |
| before timeout                  | Non-erasing block    | 0                   | Toggle    | 0   | 0   | No Toggle | 0  |
| Block Erase                     | Erasing block        | 0                   | Toggle    | 0   | 1   | Toggle    | 0  |
| Block Elase                     | Non-erasing block    | 0                   | Toggle    | 0   | 1   | No Toggle | 0  |
| Erosa Suapand                   | Erasing block        | 1                   | No Toggle | 0   | -   | Toggle    | 1  |
| Erase Suspend                   | Non-erasing block    | Data read as normal |           |     |     |           | 1  |
| Erase Error                     | Good block address   | 0                   | Toggle    | 1   | 1   | No Toggle | 0  |
| EIASE EIIOI                     | Faulty block address | 0                   | Toggle    | 1   | 1   | Toggle    | 0  |

<sup>1.</sup> Unspecified data bits should be ignored.

Figure 8. **Data polling flowchart** 



START READ DQ6 READ DQ5 & DQ6 DQ6 TOGGLE NO YES NO DQ5 YES READ DQ6 TWICE DQ6 TOGGLE NO YES PASS FAIL AI01370C

Figure 9. Data toggle flowchart

## 6 Maximum rating

Stressing the device above the rating listed in *Table 8: Absolute maximum ratings* may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Refer also to the Numonyx SURE Program and other relevant quality documents.

Table 8. Absolute maximum ratings

| Symbol            | Parameter                      | Min             | Max                  | Unit |
|-------------------|--------------------------------|-----------------|----------------------|------|
| T <sub>A</sub>    | Ambient temperature grade 3    | -40             | 125                  | °C   |
| T <sub>BIAS</sub> | Temperature under bias         | <b>–</b> 50     | 125                  | °C   |
| T <sub>STG</sub>  | Storage temperature            | <del>-</del> 65 | 150                  | °C   |
| V <sub>IO</sub>   | Input or output voltage (1)(2) | -0.6            | V <sub>CC</sub> +0.6 | V    |
| V <sub>CC</sub>   | Supply voltage                 | -0.6            | 4                    | V    |
| V <sub>ID</sub>   | Identification voltage         | -0.6            | 13.5                 | V    |

<sup>1.</sup> Minimum voltage may undershoot to -2 V during transition and for less than 20 ns during transitions.

<sup>2.</sup> Maximum voltage may overshoot to  $V_{CC}$  +2 V during transition and for less than 20 ns during transitions.

## 7 DC and AC parameters

This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics tables that follow, are derived from tests performed under the measurement conditions summarized in *Table 9: Operating and AC measurement conditions*. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.

Table 9. Operating and AC measurement conditions

|                                         | M29                  |                 |                      |      |    |
|-----------------------------------------|----------------------|-----------------|----------------------|------|----|
| Parameter                               | 7                    | 0               | 8                    | Unit |    |
|                                         | Min                  | Max             | Min                  | Max  |    |
| V <sub>CC</sub> supply voltage          | 2.7                  | 3.6             | 2.5                  | 3.6  | V  |
| Ambient operating temperature (grade 3) | -40                  | 125             | -40                  | 125  | °C |
| Load capacitance (C <sub>L</sub> )      | 30                   |                 | 3                    | pF   |    |
| Input rise and fall times               |                      | 10              |                      | 10   | ns |
| Input Pulse voltages                    | 0 to V <sub>CC</sub> |                 | 0 to V <sub>CC</sub> |      | V  |
| Input and output timing ref. voltages   | V <sub>C</sub>       | <sub>C</sub> /2 | V <sub>C</sub>       | V    |    |

Figure 10. AC measurement I/O waveform

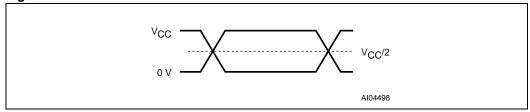



Figure 11. AC measurement load circuit

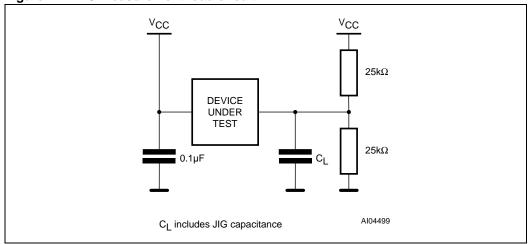



Table 10. Device capacitance<sup>(1)</sup>

| Symbol           | Parameter Test Condition Min |                        | Min | Max | Unit |
|------------------|------------------------------|------------------------|-----|-----|------|
| C <sub>IN</sub>  | Input capacitance            | V <sub>IN</sub> = 0 V  |     | 6   | pF   |
| C <sub>OUT</sub> | Output capacitance           | V <sub>OUT</sub> = 0 V |     | 12  | pF   |

<sup>1.</sup> Sampled only, not 100% tested.

Table 11. DC characteristics

| Symbol                          | Parameter                            | Test condition                                                                        | Min                  | Тур | Max                  | Unit |
|---------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|----------------------|-----|----------------------|------|
| I <sub>LI</sub>                 | Input Leakage current                | $0 \text{ V} \leq V_{IN} \leq V_{CC}$                                                 |                      |     | ±1                   | μA   |
| I <sub>LO</sub>                 | Output Leakage current               | $0 \text{ V} \leq V_{OUT} \leq V_{CC}$                                                |                      |     | ±1                   | μA   |
| I <sub>CC1</sub>                | Supply current (Read)                | $\overline{E} = V_{IL}, \overline{G} = V_{IH},$ $f = 6 \text{ MHz}$                   |                      | 4.5 | 10                   | mA   |
| I <sub>CC2</sub>                | Supply current (Standby)             | $\overline{E} = V_{CC} \pm 0.2 \text{ V},$ $\overline{RP} = V_{CC} \pm 0.2 \text{ V}$ |                      | 35  | 100                  | μΑ   |
| I <sub>CC3</sub> <sup>(1)</sup> | Supply current<br>(Program/Erase)    | Program/Erase controller active                                                       |                      |     | 20                   | mA   |
| $V_{IL}$                        | Input Low voltage                    |                                                                                       | -0.5                 |     | 0.8                  | V    |
| V <sub>IH</sub>                 | Input High voltage                   |                                                                                       | 0.7V <sub>CC</sub>   |     | V <sub>CC</sub> +0.3 | V    |
| V <sub>OL</sub>                 | Output Low voltage                   | I <sub>OL</sub> = 1.8 mA                                                              |                      |     | 0.45                 | V    |
| V <sub>OH</sub>                 | Output High voltage                  | I <sub>OH</sub> = -100 μA                                                             | V <sub>CC</sub> -0.4 |     |                      | V    |
| V <sub>ID</sub>                 | Identification voltage               |                                                                                       | 11.5                 |     | 12.5                 | V    |
| I <sub>ID</sub>                 | Identification current               | A9 = V <sub>ID</sub>                                                                  |                      |     | 100                  | μA   |
| V <sub>LKO</sub>                | Program/Erase Lockout supply voltage |                                                                                       | 1.8                  |     | 2.3                  | V    |

<sup>1.</sup> Sampled only, not 100% tested.

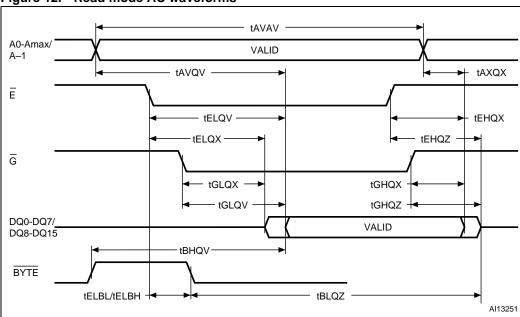



Figure 12. Read mode AC waveforms

Table 12. Read AC characteristics

| Symbol                                                      | Alt                                | Parameter                                                                   | Test condition                                      |      | M29Wxx0FT/B |    | Unit |
|-------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|------|-------------|----|------|
| Symbol                                                      | yilliboi Ait i arameter rest conta |                                                                             | rest condi                                          | tion | 70          | 80 | Unit |
| t <sub>AVAV</sub>                                           | t <sub>RC</sub>                    | Address Valid to Next Address Valid                                         | $\overline{E} = V_{IL},$<br>$\overline{G} = V_{IL}$ | Min  | 70          | 80 | ns   |
| t <sub>AVQV</sub>                                           | t <sub>ACC</sub>                   | Address Valid to Output Valid                                               | $\overline{E} = V_{IL},$<br>$\overline{G} = V_{IL}$ | Max  | 70          | 80 | ns   |
| t <sub>ELQX</sub> <sup>(1)</sup>                            | $t_{LZ}$                           | Chip Enable Low to Output Transition                                        | G = V <sub>IL</sub>                                 | Min  | 0           | 0  | ns   |
| t <sub>ELQV</sub>                                           | t <sub>CE</sub>                    | Chip Enable Low to Output Valid                                             | G = V <sub>IL</sub>                                 | Max  | 70          | 80 | ns   |
| t <sub>GLQX</sub> <sup>(1)</sup>                            | t <sub>OLZ</sub>                   | Output Enable Low to Output $\overline{E} = V_{IL}$                         |                                                     | Min  | 0           | 0  | ns   |
| t <sub>GLQV</sub>                                           | t <sub>OE</sub>                    | Output Enable Low to Output Valid                                           | E = V <sub>IL</sub>                                 | Max  | 30          | 35 | ns   |
| t <sub>EHQZ</sub> <sup>(1)</sup>                            | t <sub>HZ</sub>                    | Chip Enable High to Output Hi-Z                                             | G = V <sub>IL</sub>                                 | Max  | 25          | 25 | ns   |
| t <sub>GHQZ</sub> <sup>(1)</sup>                            | t <sub>DF</sub>                    | Output Enable High to Output Hi-Z                                           | E = V <sub>IL</sub>                                 | Max  | 25          | 25 | ns   |
| t <sub>EHQX</sub><br>t <sub>GHQX</sub><br>t <sub>AXQX</sub> | t <sub>OH</sub>                    | Chip Enable, Output Enable or<br>Address Transition to Output<br>Transition |                                                     | Min  | 0           | 0  | ns   |
| t <sub>ELBL</sub>                                           | t <sub>ELFL</sub>                  | Chip Enable to BYTE Low or High                                             |                                                     | Max  | 5           | 5  | ns   |
| t <sub>BLQZ</sub>                                           | t <sub>FLQZ</sub>                  | BYTE Low to Output Hi-Z                                                     |                                                     | Max  | 25          | 25 | ns   |
| t <sub>BHQV</sub>                                           | t <sub>FHQV</sub>                  | BYTE High to Output Valid                                                   |                                                     | Max  | 30          | 30 | ns   |

<sup>1.</sup> Sampled only, not 100% tested.

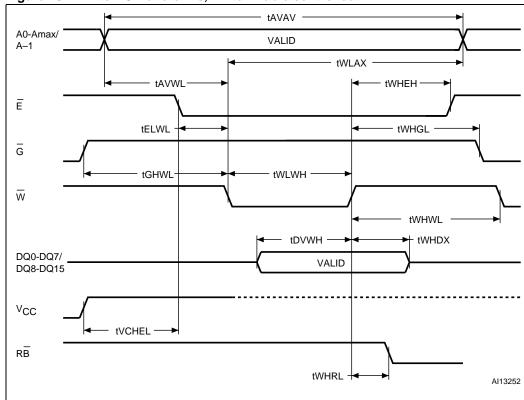



Figure 13. Write AC waveforms, Write Enable controlled

Table 13. Write AC characteristics, Write Enable controlled

| Cumbal                           | Alt               | Parameter                                  |                                            | M29Wxx0FT/B |    | - Unit |
|----------------------------------|-------------------|--------------------------------------------|--------------------------------------------|-------------|----|--------|
| Symbol                           | Alt               |                                            |                                            | 70          | 80 | Jill   |
| t <sub>AVAV</sub>                | $t_{WC}$          | Address Valid to Next Address Valid        | Address Valid to Next Address Valid Min    |             | 80 | ns     |
| t <sub>ELWL</sub>                | t <sub>CS</sub>   | Chip Enable Low to Write Enable Low        | Min                                        | 0           | 0  | ns     |
| t <sub>WLWH</sub>                | t <sub>WP</sub>   | Write Enable Low to Write Enable High      | Min                                        | 45          | 45 | ns     |
| t <sub>DVWH</sub>                | t <sub>DS</sub>   | Input Valid to Write Enable High           | Min                                        | 45          | 45 | ns     |
| t <sub>WHDX</sub>                | t <sub>DH</sub>   | Write Enable High to Input Transition      | Write Enable High to Input Transition Min  |             | 0  | ns     |
| t <sub>WHEH</sub>                | t <sub>CH</sub>   | Write Enable High to Chip Enable High Min  |                                            | 0           | 0  | ns     |
| t <sub>WHWL</sub>                | t <sub>WPH</sub>  | Write Enable High to Write Enable Low Min  |                                            | 30          | 30 | ns     |
| t <sub>AVWL</sub>                | t <sub>AS</sub>   | Address Valid to Write Enable Low          | Address Valid to Write Enable Low Min      |             | 0  | ns     |
| t <sub>WLAX</sub>                | t <sub>AH</sub>   | Write Enable Low to Address Transition     | Min                                        | 45          | 45 | ns     |
| t <sub>GHWL</sub>                |                   | Output Enable High to Write Enable Low     | Output Enable High to Write Enable Low Min |             | 0  | ns     |
| t <sub>WHGL</sub>                | t <sub>OEH</sub>  | Write Enable High to Output Enable Low Min |                                            | 0           | 0  | ns     |
| t <sub>WHRL</sub> <sup>(1)</sup> | t <sub>BUSY</sub> | Program/Erase Valid to RB Low Max          |                                            | 30          | 30 | ns     |
| t <sub>VCHEL</sub>               | t <sub>VCS</sub>  | V <sub>CC</sub> High to Chip Enable Low    | Min                                        | 50          | 50 | μs     |

<sup>1.</sup> Sampled only, not 100% tested.

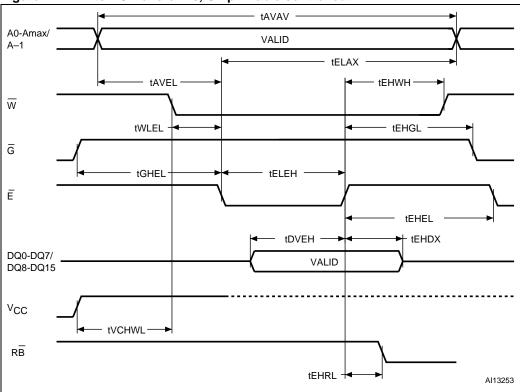
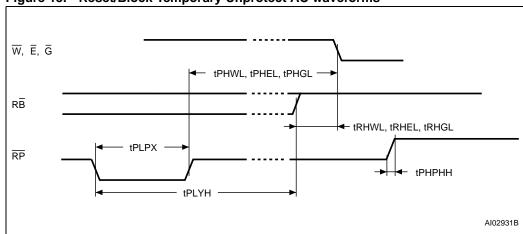



Figure 14. Write AC waveforms, Chip Enable controlled

Table 14. Write AC characteristics, Chip Enable controlled

| Symbol                           | Alt               | Parameter                                 |                                      | M29Wxx0FT/B |       | - Unit |
|----------------------------------|-------------------|-------------------------------------------|--------------------------------------|-------------|-------|--------|
| Symbol                           | All               |                                           |                                      | 70          | 70 80 |        |
| t <sub>AVAV</sub>                | $t_{WC}$          | Address Valid to Next Address Valid       | Min                                  | 70          | 80    | ns     |
| t <sub>WLEL</sub>                | t <sub>WS</sub>   | Write Enable Low to Chip Enable Low       | Min                                  | 0           | 0     | ns     |
| t <sub>ELEH</sub>                | t <sub>CP</sub>   | Chip Enable Low to Chip Enable High       | Min                                  | 45          | 45    | ns     |
| t <sub>DVEH</sub>                | t <sub>DS</sub>   | Input Valid to Chip Enable High Min       |                                      | 45          | 45    | ns     |
| t <sub>EHDX</sub>                | t <sub>DH</sub>   | Chip Enable High to Input Transition Min  |                                      | 0           | 0     | ns     |
| t <sub>EHWH</sub>                | t <sub>WH</sub>   | Chip Enable High to Write Enable High     | Min                                  | 0           | 0     | ns     |
| t <sub>EHEL</sub>                | t <sub>CPH</sub>  | Chip Enable High to Chip Enable Low Min   |                                      | 30          | 30    | ns     |
| t <sub>AVEL</sub>                | t <sub>AS</sub>   | Address Valid to Chip Enable Low          | Address Valid to Chip Enable Low Min |             | 0     | ns     |
| t <sub>ELAX</sub>                | t <sub>AH</sub>   | Chip Enable Low to Address Transition     | Min                                  | 45          | 45    | ns     |
| t <sub>GHEL</sub>                |                   | Output Enable High Chip Enable Low Min    |                                      | 0           | 0     | ns     |
| t <sub>EHGL</sub>                | t <sub>OEH</sub>  | Chip Enable High to Output Enable Low Min |                                      | 0           | 0     | ns     |
| t <sub>EHRL</sub> <sup>(1)</sup> | t <sub>BUSY</sub> | Program/Erase Valid to RB Low Max         |                                      | 30          | 30    | ns     |
| t <sub>VCHWL</sub>               | t <sub>VCS</sub>  | V <sub>CC</sub> High to Write Enable Low  | Min                                  | 50          | 50    | μs     |

<sup>1.</sup> Sampled only, not 100% tested.



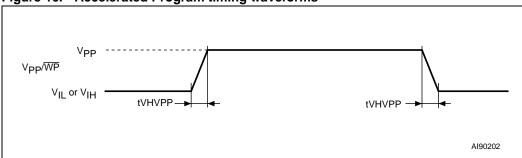


Figure 15. Reset/Block Temporary Unprotect AC waveforms

Table 15. Reset/Block Temporary Unprotect AC characteristics

| Symbol                                                                                                   | Alt                | Alt Parameter                                                      |     | M29Wxx0FT/B |       | Unit |
|----------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------|-----|-------------|-------|------|
| Symbol                                                                                                   | Farameter          | 70                                                                 |     | 80          | Oilit |      |
| t <sub>PHWL</sub> <sup>(1)</sup> t <sub>PHEL</sub> t <sub>PHGL</sub> <sup>(1)</sup>                      | t <sub>RH</sub>    | RP High to Write Enable Low, Chip<br>Enable Low, Output Enable Low | Min | 50          | 50    | ns   |
| t <sub>RHWL</sub> <sup>(1)</sup><br>t <sub>RHEL</sub> <sup>(1)</sup><br>t <sub>RHGL</sub> <sup>(1)</sup> | t <sub>RB</sub>    | RB High to Write Enable Low, Chip Enable Low, Output Enable Low    |     | 0           | 0     | ns   |
| t <sub>PLPX</sub>                                                                                        | t <sub>RP</sub>    | RP Pulse Width                                                     | Min | 500         | 500   | ns   |
| t <sub>PLYH</sub> (1)                                                                                    | t <sub>READY</sub> | RP Low to Read mode Max                                            |     | 10          | 10    | μs   |
| t <sub>PHPHH</sub> <sup>(1)</sup>                                                                        | t <sub>VIDR</sub>  | RP Rise time to V <sub>ID</sub> Min                                |     | 500         | 500   | ns   |
| t <sub>VHVPP</sub> <sup>(1)</sup>                                                                        |                    | V <sub>PP</sub> Rise and Fall time                                 | Min | 250         | 250   | ns   |

<sup>1.</sup> Sampled only, not 100% tested.

Figure 16. Accelerated Program timing waveforms



# 8 Package mechanical

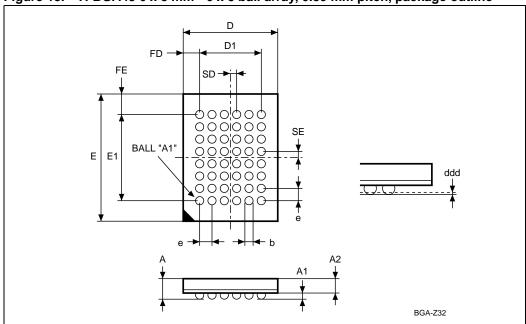
DIE TSOP-G

Figure 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 × 20 mm, package outline

Table 16. TSOP48 – 48 lead Plastic Thin Small Outline, 12 × 20 mm, package mechanical data

| Sumbal | millimeters |        |        | inches |        |        |  |
|--------|-------------|--------|--------|--------|--------|--------|--|
| Symbol | Тур         | Min    | Max    | Тур    | Min    | Max    |  |
| А      |             |        | 1.200  |        |        | 0.0472 |  |
| A1     | 0.100       | 0.050  | 0.150  | 0.0039 | 0.0020 | 0.0059 |  |
| A2     | 1.000       | 0.950  | 1.050  | 0.0394 | 0.0374 | 0.0413 |  |
| В      | 0.220       | 0.170  | 0.270  | 0.0087 | 0.0067 | 0.0106 |  |
| С      |             | 0.100  | 0.210  |        | 0.0039 | 0.0083 |  |
| СР     |             |        | 0.100  |        |        | 0.0039 |  |
| D1     | 12.000      | 11.900 | 12.100 | 0.4724 | 0.4685 | 0.4764 |  |
| Е      | 20.000      | 19.800 | 20.200 | 0.7874 | 0.7795 | 0.7953 |  |
| E1     | 18.400      | 18.300 | 18.500 | 0.7244 | 0.7205 | 0.7283 |  |
| е      | 0.500       | _      | -      | 0.0197 | _      | -      |  |
| L      | 0.600       | 0.500  | 0.700  | 0.0236 | 0.0197 | 0.0276 |  |
| L1     | 0.800       |        |        | 0.0315 |        |        |  |
| α      | 3°          | 0°     | 5°     | 3°     | 0°     | 5°     |  |

<sup>1.</sup> Drawing is not to scale.



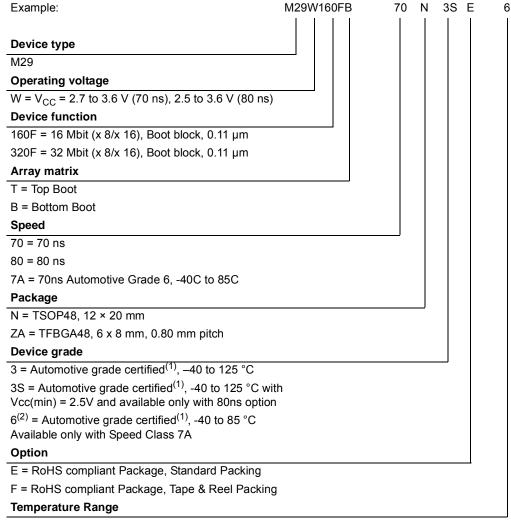


Figure 18. TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package outline

Table 17. TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package mechanical data

| Symbol |       | millimeters |       | inches |        |        |
|--------|-------|-------------|-------|--------|--------|--------|
| Symbol | Тур   | Min         | Max   | Тур    | Min    | Max    |
| А      |       |             | 1.200 |        |        | 0.0472 |
| A1     |       | 0.260       |       |        | 0.0102 |        |
| A2     |       |             | 0.900 |        |        | 0.0354 |
| b      |       | 0.350       | 0.450 |        | 0.0138 | 0.0177 |
| D      | 6.000 | 5.900       | 6.100 | 0.2362 | 0.2323 | 0.2402 |
| D1     | 4.000 | -           | =     | 0.1575 | =      | -      |
| ddd    |       |             | 0.100 |        |        | 0.0039 |
| Е      | 8.000 | 7.900       | 8.100 | 0.3150 | 0.3110 | 0.3189 |
| E1     | 5.600 | -           | -     | 0.2205 | -      | -      |
| е      | 0.800 | -           | _     | 0.0315 | -      | -      |
| FD     | 1.000 | -           | _     | 0.0394 | =      | -      |
| FE     | 1.200 | -           | =     | 0.0472 | =      | =      |
| SD     | 0.400 | -           | -     | 0.0157 | =      | =      |
| SE     | 0.400 | -           | _     | 0.0157 | _      | _      |

### 9 Part numbering

Table 18. Ordering information scheme



- 6 = -40°C to 85°C
- Qualified & characterized according to AEC Q100 & Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.
- 2. Parts in 110 nm coming from Numonyx Fab.2.

Devices are shipped from the factory with the memory content bits erased to '1'.

For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the Numonyx Sales Office nearest to you.

# Appendix A Block address table

Table 19. Top boot block addresses, M29W160FT

| #  | Size (Kbytes) | Address range (x 8) | Address range (x 16) |
|----|---------------|---------------------|----------------------|
| 34 | 16            | 1FC000h-1FFFFh      | FE000h-FFFFFh        |
| 33 | 8             | 1FA000h-1FBFFFh     | FD000h-FDFFFh        |
| 32 | 8             | 1F8000h-1F9FFFh     | FC000h-FCFFFh        |
| 31 | 32            | 1F0000h-1F7FFFh     | F8000h-FBFFFh        |
| 30 | 64            | 1E0000h-1EFFFFh     | F0000h-F7FFFh        |
| 29 | 64            | 1D0000h-1DFFFFh     | E8000h-EFFFFh        |
| 28 | 64            | 1C0000h-1CFFFFh     | E0000h-E7FFh         |
| 27 | 64            | 1B0000h-1BFFFFh     | D8000h-DFFFFh        |
| 26 | 64            | 1A0000h-1AFFFFh     | D0000h-D7FFFh        |
| 25 | 64            | 190000h-19FFFFh     | C8000h-CFFFFh        |
| 24 | 64            | 180000h-18FFFFh     | C0000h-C7FFFh        |
| 23 | 64            | 170000h-17FFFFh     | B8000h-BFFFFh        |
| 22 | 64            | 160000h-16FFFFh     | B0000h-B7FFFh        |
| 21 | 64            | 150000h-15FFFFh     | A8000h-AFFFFh        |
| 20 | 64            | 140000h-14FFFFh     | A0000h-A7FFFh        |
| 19 | 64            | 130000h-13FFFFh     | 98000h-9FFFFh        |
| 18 | 64            | 120000h-12FFFh      | 90000h-97FFh         |
| 17 | 64            | 110000h-11FFFFh     | 88000h-8FFFFh        |
| 16 | 64            | 100000h-10FFFFh     | 80000h-87FFFh        |
| 15 | 64            | 0F0000h-0FFFFh      | 78000h-7FFFFh        |
| 14 | 64            | 0E0000h-0EFFFFh     | 70000h-77FFFh        |
| 13 | 64            | 0D0000h-0DFFFFh     | 68000h-6FFFFh        |
| 12 | 64            | 0C0000h-0CFFFFh     | 60000h-67FFh         |
| 11 | 64            | 0B0000h-0BFFFFh     | 58000h-5FFFFh        |
| 10 | 64            | 0A0000h-0AFFFFh     | 50000h-57FFFh        |
| 9  | 64            | 090000h-09FFFFh     | 48000h-4FFFFh        |
| 8  | 64            | 080000h-08FFFFh     | 40000h-47FFFh        |
| 7  | 64            | 070000h-07FFFh      | 38000h-3FFFFh        |
| 6  | 64            | 060000h-06FFFh      | 30000h-37FFFh        |
| 5  | 64            | 050000h-05FFFh      | 28000h-2FFFFh        |
| 4  | 64            | 040000h-04FFFFh     | 20000h-27FFFh        |
| 3  | 64            | 030000h-03FFFFh     | 18000h-1FFFFh        |
| 2  | 64            | 020000h-02FFFFh     | 10000h-17FFFh        |
| 1  | 64            | 010000h-01FFFFh     | 08000h-0FFFFh        |
| 0  | 64            | 000000h-00FFFFh     | 00000h-07FFFh        |

**N** numonyx

Table 20. Bottom boot block addresses, M29W160FB

| 34         64         1F0000h-1FFFFh         F8000h-FFFFh           33         64         1E0000h-1EFFFh         F0000h-F7FFh           32         64         1D0000h-1DFFFh         E8000h-EFFFFh           31         64         1C0000h-1CFFFFh         E0000h-EFFFFh           30         64         1B0000h-1BFFFFh         D8000h-DFFFFh           29         64         1A0000h-1AFFFFh         D0000h-DFFFFh           28         64         190000h-19FFFh         C8000h-CFFFFh           27         64         180000h-18FFFh         C0000h-CFFFFh           26         64         170000h-17FFFh         B8000h-BFFFFh           26         64         170000h-17FFFFh         B8000h-BFFFFh           25         64         160000h-18FFFFh         B0000h-B7FFFh           24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A8000h-B7FFFh           24         64         120000h-12FFFFh         A8000h-B7FFFh           25         64         130000h-13FFFFh         A8000h-B7FFFh           20         64         110000h-11FFFFh         A8000h-B7FFFh           20         64         110000h-17FFFFh                                                                              | #  | Size (Kbytes) | Address range (x 8) | Address range (x 16) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|---------------------|----------------------|
| 32         64         1D0000h-1DFFFFh         E8000h-EFFFFh           31         64         1C0000h-1CFFFFh         E0000h-E7FFFh           30         64         1B0000h-1BFFFFh         D8000h-DFFFFh           29         64         1A0000h-19FFFFh         D0000h-D7FFFh           28         64         190000h-19FFFFh         C8000h-CFFFFh           27         64         180000h-18FFFFh         C0000h-C7FFFh           26         64         170000h-17FFFFh         B8000h-BFFFFh           25         64         160000h-16FFFFh         B0000h-B7FFFh           24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A8000h-AFFFFh           22         64         130000h-12FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         98000h-9FFFFh           20         64         110000h-10FFFFh         88000h-8FFFFh           19         64         100000h-0FFFFFh         78000h-7FFFFh           18         64         0F0000h-0FFFFFh         78000h-7FFFFh           16         64         0D0000h-0FFFFFh         78000h-5FFFFh           15         64         0C0000h-0FFFFFh                                                                      | 34 | 64            | 1F0000h-1FFFFFh     | F8000h-FFFFFh        |
| 31         64         1C0000h-1CFFFFh         E0000h-E7FFFh           30         64         1B0000h-1BFFFFh         D8000h-DFFFFh           29         64         1A0000h-13FFFFh         D0000h-D7FFFh           28         64         190000h-19FFFh         C8000h-CFFFFh           27         64         180000h-18FFFFh         C0000h-C7FFFh           26         64         170000h-17FFFFh         B8000h-BFFFFh           25         64         160000h-16FFFFh         B0000h-B7FFFh           24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A0000h-AFFFFh           22         64         130000h-12FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         98000h-9FFFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         100000h-10FFFFh         8000h-7FFFFh           18         64         0F0000h-0FFFFFh         78000h-7FFFFh           16         64         0F0000h-0FFFFFh         78000h-7FFFFh           16         64         0D000h-0FFFFFh         68000h-6FFFFh           16         64         0D000h-0FFFFFh <td>33</td> <td>64</td> <td>1E0000h-1EFFFFh</td> <td>F0000h-F7FFFh</td>  | 33 | 64            | 1E0000h-1EFFFFh     | F0000h-F7FFFh        |
| 30         64         1B0000h-1BFFFFh         D8000h-DFFFFh           29         64         1A0000h-1AFFFFh         D0000h-D7FFFh           28         64         190000h-19FFFFh         C8000h-CFFFFh           27         64         180000h-18FFFFh         C0000h-C7FFFh           26         64         170000h-17FFFFh         B8000h-BFFFFh           25         64         160000h-15FFFFh         B0000h-B7FFFh           24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A8000h-AFFFFh           22         64         130000h-13FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         98000h-9FFFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         100000h-10FFFFh         8000h-8FFFFh           19         64         100000h-0FFFFFh         78000h-7FFFFh           16         64         0F0000h-0FFFFFh         78000h-7FFFFh           17         64         0E0000h-0FFFFFh         78000h-0FFFFh           16         64         0D0000h-0FFFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFFh<                                                                      | 32 | 64            | 1D0000h-1DFFFFh     | E8000h-EFFFFh        |
| 29         64         1A0000h-1AFFFFh         D0000h-D7FFFh           28         64         19000h-19FFFh         C8000h-CFFFFh           27         64         18000h-18FFFFh         C0000h-C7FFFh           26         64         170000h-17FFFh         B8000h-BFFFFh           25         64         160000h-16FFFFh         B0000h-BFFFFh           24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A0000h-AFFFFh           22         64         130000h-13FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         9000h-9FFFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         10000h-10FFFFh         8000h-8FFFFh           18         64         0F0000h-0FFFFFh         78000h-7FFFFh           17         64         0E0000h-0FFFFFh         78000h-7FFFFh           16         64         0D0000h-0FFFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFFh         58000h-5FFFFh           14         64         0B0000h-0FFFFFh         58000h-5FFFFh           13         64         0A0000h-0FFFFFh                                                                             | 31 | 64            | 1C0000h-1CFFFFh     | E0000h-E7FFFh        |
| 28         64         190000h-19FFFFh         C8000h-CFFFFh           27         64         180000h-18FFFFh         C0000h-C7FFFh           26         64         170000h-17FFFFh         B8000h-BFFFFh           25         64         160000h-16FFFFh         B0000h-BFFFFh           24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A0000h-AFFFFh           22         64         130000h-13FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         9000h-9FFFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         100000h-10FFFFh         88000h-8FFFFh           18         64         0F0000h-0FFFFFh         78000h-7FFFFh           17         64         0E0000h-0FFFFFh         78000h-7FFFFh           16         64         0D0000h-0FFFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFFh         58000h-5FFFFh           14         64         0B0000h-0FFFFh         58000h-5FFFFh           13         64         0A0000h-0FFFFh         58000h-5FFFFh           14         64         090000h-0FFFFh <td>30</td> <td>64</td> <td>1B0000h-1BFFFFh</td> <td>D8000h-DFFFFh</td>  | 30 | 64            | 1B0000h-1BFFFFh     | D8000h-DFFFFh        |
| 27         64         180000h-18FFFh         C0000h-C7FFFh           26         64         170000h-17FFFh         B8000h-BFFFFh           25         64         160000h-16FFFFh         B8000h-BFFFFh           24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A8000h-AFFFFh           22         64         130000h-12FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         90000h-9FFFFh           20         64         110000h-12FFFFh         88000h-8FFFFh           19         64         100000h-10FFFFh         80000h-8FFFFh           18         64         0F0000h-0FFFFh         78000h-7FFFh           17         64         0E0000h-0FFFFh         70000h-7FFFh           16         64         0D0000h-0FFFFh         68000h-6FFFh           15         64         0C0000h-0FFFFh         58000h-5FFFh           13         64         0A0000h-0FFFFh         58000h-5FFFh           14         64         0B0000h-0FFFFh         50000h-3FFFFh           15         64         0B0000h-0FFFFh                                                                                    | 29 | 64            | 1A0000h-1AFFFFh     | D0000h-D7FFFh        |
| 26         64         170000h-17FFFFh         B8000h-BFFFFh           25         64         160000h-16FFFFh         B0000h-BFFFFh           24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A0000h-AFFFFh           22         64         130000h-13FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         90000h-9FFFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         100000h-10FFFFh         88000h-8FFFFh           18         64         0F0000h-0FFFFh         78000h-7FFFFh           18         64         0F0000h-0FFFFh         78000h-7FFFFh           16         64         0D0000h-0FFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFh         58000h-5FFFFh           14         64         0B0000h-0FFFFh         58000h-5FFFFh           13         64         0A0000h-0FFFFh         58000h-3FFFFh           14         64         0B0000h-0FFFFh         48000h-4FFFFh           16         4         070000h-0FFFFh                                                                                | 28 | 64            | 190000h-19FFFFh     | C8000h-CFFFFh        |
| 25         64         160000h-16FFFFh         B0000h-B7FFFh           24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A0000h-A7FFFh           22         64         130000h-13FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         90000h-9FFFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         100000h-10FFFFh         80000h-87FFFh           18         64         0F0000h-0FFFFh         78000h-7FFFFh           17         64         0E0000h-0FFFFh         78000h-7FFFFh           16         64         0D0000h-0FFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFh         68000h-6FFFFh           14         64         0B0000h-0FFFFh         58000h-5FFFFh           13         64         0A0000h-0FFFFh         58000h-5FFFFh           14         64         0B0000h-0FFFFh         58000h-3FFFFh           15         64         090000h-0FFFFFh         48000h-3FFFFh           16         64         070000h-0FFFFh         38000h-3FFFFh           10         64         070000h-0FFFFh                                                                               | 27 | 64            | 180000h-18FFFFh     | C0000h-C7FFFh        |
| 24         64         150000h-15FFFFh         A8000h-AFFFFh           23         64         140000h-14FFFFh         A0000h-A7FFFh           22         64         130000h-13FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         90000h-9FFFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         100000h-10FFFFh         80000h-8FFFFh           18         64         0F0000h-0FFFFFh         78000h-7FFFFh           17         64         0E0000h-0FFFFFh         78000h-7FFFFh           16         64         0D0000h-0FFFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFh         68000h-6FFFFh           14         64         0B0000h-0FFFFh         58000h-5FFFFh           13         64         0A0000h-0AFFFFh         58000h-5FFFFh           12         64         090000h-09FFFFh         48000h-4FFFFh           11         64         080000h-08FFFFh         38000h-3FFFFh           10         64         070000h-07FFFFh         38000h-3FFFFh           10         64         070000h-07FFFFh         38000h-3FFFFh           10         64         05000h-05FFFFh <td>26</td> <td>64</td> <td>170000h-17FFFFh</td> <td>B8000h-BFFFFh</td> | 26 | 64            | 170000h-17FFFFh     | B8000h-BFFFFh        |
| 23         64         140000h-14FFFFh         A0000h-A7FFFh           22         64         130000h-13FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         90000h-97FFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         100000h-10FFFFh         8000h-8FFFFh           18         64         0F0000h-0FFFFh         78000h-7FFFFh           17         64         0E0000h-0FFFFh         7000h-7FFFFh           16         64         0D0000h-0FFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFh         68000h-6FFFFh           14         64         0B0000h-0FFFFh         58000h-5FFFFh           13         64         0A0000h-0AFFFFh         58000h-5FFFFh           12         64         090000h-09FFFFh         48000h-4FFFFh           11         64         08000h-08FFFFh         38000h-3FFFFh           10         64         070000h-07FFFFh         38000h-3FFFFh           9         64         060000h-05FFFFh         28000h-2FFFFh           7         64         040000h-05FFFFh         28000h-2FFFFh           6         64         03000h-03FFFFh                                                                                  | 25 | 64            | 160000h-16FFFFh     | B0000h-B7FFFh        |
| 22         64         130000h-13FFFFh         98000h-9FFFFh           21         64         120000h-12FFFFh         90000h-97FFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         100000h-10FFFFh         80000h-8FFFFh           18         64         0F0000h-0FFFFh         78000h-7FFFFh           17         64         0E0000h-0FFFFh         70000h-7FFFFh           16         64         0D0000h-0FFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFh         68000h-6FFFFh           14         64         0B0000h-0FFFFh         58000h-5FFFFh           13         64         0A0000h-0FFFFh         58000h-5FFFFh           12         64         090000h-0FFFFh         48000h-4FFFFh           11         64         080000h-0FFFFh         48000h-4FFFFh           10         64         070000h-0FFFFh         38000h-3FFFFh           10         64         070000h-0FFFFh         38000h-3FFFFh           8         64         050000h-0FFFFh         28000h-2FFFFh           7         64         040000h-0FFFFh         20000h-2FFFFh           8         64         030000h-0FFFFh <t< td=""><td>24</td><td>64</td><td>150000h-15FFFFh</td><td>A8000h-AFFFFh</td></t<>  | 24 | 64            | 150000h-15FFFFh     | A8000h-AFFFFh        |
| 21         64         120000h-12FFFh         90000h-97FFFh           20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         100000h-0FFFFh         80000h-87FFFh           18         64         0F0000h-0FFFFh         78000h-7FFFh           17         64         0E0000h-0FFFFh         7000h-7FFFh           16         64         0D0000h-0FFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFh         60000h-6FFFFh           14         64         0B0000h-0BFFFFh         58000h-5FFFFh           13         64         0A0000h-0FFFFh         50000h-5FFFFh           12         64         090000h-0FFFFh         48000h-4FFFFh           11         64         080000h-0FFFFh         38000h-3FFFFh           10         64         070000h-0FFFFh         38000h-3FFFFh           9         64         060000h-0FFFFh         30000h-3FFFFh           9         64         050000h-0FFFFh         28000h-2FFFFh           7         64         040000h-0FFFFh         20000h-2FFFFh           8         64         030000h-0FFFFh         18000h-1FFFFh           5         64         030000h-0FFFFh         08000                                                                               | 23 | 64            | 140000h-14FFFFh     | A0000h-A7FFFh        |
| 20         64         110000h-11FFFFh         88000h-8FFFFh           19         64         10000h-10FFFFh         80000h-87FFFh           18         64         0F0000h-0FFFFFh         78000h-7FFFFh           17         64         0E0000h-0EFFFFh         70000h-7FFFh           16         64         0D0000h-0FFFFh         68000h-6FFFFh           15         64         0C0000h-0FFFFh         60000h-6FFFFh           14         64         0B0000h-0BFFFFh         58000h-5FFFFh           13         64         0A0000h-0AFFFFh         50000h-5FFFFh           12         64         090000h-09FFFFh         48000h-4FFFFh           11         64         080000h-08FFFFh         40000h-4FFFFh           10         64         070000h-0FFFFh         38000h-3FFFFh           10         64         070000h-0FFFFh         38000h-3FFFFh           9         64         060000h-0FFFFh         28000h-2FFFFh           7         64         040000h-0FFFFh         28000h-2FFFFh           6         64         030000h-03FFFFh         18000h-1FFFFh           5         64         020000h-02FFFFh         08000h-0FFFFh           6         64         010000h-01FFFFh                                                                                   | 22 | 64            | 130000h-13FFFFh     | 98000h-9FFFFh        |
| 19         64         100000h-10FFFFh         80000h-87FFFh           18         64         0F0000h-0FFFFh         78000h-7FFFFh           17         64         0E0000h-0EFFFh         70000h-7FFFh           16         64         0D0000h-0DFFFFh         68000h-6FFFFh           15         64         0C0000h-0CFFFFh         60000h-67FFFh           14         64         0B0000h-0BFFFFh         58000h-5FFFFh           13         64         0A0000h-0AFFFFh         50000h-5FFFFh           12         64         090000h-09FFFFh         48000h-4FFFFh           11         64         080000h-08FFFFh         38000h-3FFFFh           10         64         070000h-07FFFFh         38000h-3FFFFh           9         64         060000h-0FFFFh         28000h-2FFFFh           8         64         050000h-0FFFFh         28000h-2FFFFh           7         64         040000h-03FFFFh         18000h-1FFFFh           5         64         020000h-02FFFFh         08000h-0FFFFh           4         64         010000h-01FFFFh         08000h-0FFFFh           3         32         008000h-00FFFFh         04000h-03FFFh           4         64         010000h-00FFFFh                                                                                  | 21 | 64            | 120000h-12FFFFh     | 90000h-97FFFh        |
| 18         64         0F0000h-0FFFFh         78000h-7FFFFh           17         64         0E0000h-0EFFFh         70000h-77FFFh           16         64         0D0000h-0DFFFFh         68000h-6FFFFh           15         64         0C0000h-0EFFFh         60000h-6FFFFh           14         64         0B0000h-0BFFFFh         58000h-5FFFFh           13         64         0A0000h-0AFFFFh         50000h-5FFFFh           12         64         090000h-09FFFFh         48000h-4FFFFh           11         64         080000h-08FFFFh         40000h-4FFFFh           10         64         070000h-07FFFFh         38000h-3FFFFh           9         64         060000h-06FFFFh         30000h-3FFFFh           8         64         050000h-05FFFFh         28000h-2FFFFh           7         64         040000h-04FFFFh         20000h-2FFFFh           6         64         030000h-03FFFFh         18000h-1FFFFh           5         64         020000h-02FFFFh         08000h-0FFFFh           4         64         010000h-01FFFFh         08000h-0FFFFh           3         32         008000h-00FFFFh         04000h-03FFFh           4         040000h-00FFFFh         03000h-03FFFh                                                                      | 20 | 64            | 110000h-11FFFFh     | 88000h-8FFFFh        |
| 17         64         0E0000h-0EFFFh         70000h-77FFFh           16         64         0D0000h-0DFFFFh         68000h-6FFFFh           15         64         0C0000h-0CFFFFh         60000h-67FFFh           14         64         0B0000h-0BFFFFh         58000h-5FFFFh           13         64         0A0000h-0AFFFFh         50000h-57FFFh           12         64         090000h-09FFFFh         48000h-4FFFFh           11         64         080000h-08FFFFh         40000h-47FFFh           10         64         070000h-07FFFFh         38000h-3FFFFh           9         64         060000h-06FFFFh         30000h-3FFFFh           8         64         050000h-05FFFFh         28000h-2FFFFh           7         64         040000h-04FFFFh         20000h-27FFFh           6         64         030000h-03FFFFh         18000h-1FFFFh           5         64         020000h-02FFFFh         08000h-0FFFFh           4         64         010000h-01FFFFh         04000h-07FFFh           3         32         008000h-00FFFFh         04000h-03FFFh           4         64         010000h-007FFFh         04000h-03FFFh           2         8         006000h-007FFFh                                                                                 | 19 | 64            | 100000h-10FFFFh     | 80000h-87FFFh        |
| 16         64         0D0000h-0DFFFFh         68000h-6FFFFh           15         64         0C0000h-0CFFFFh         60000h-67FFFh           14         64         0B0000h-0BFFFFh         58000h-5FFFFh           13         64         0A0000h-0AFFFFh         50000h-57FFFh           12         64         090000h-09FFFFh         48000h-4FFFFh           11         64         080000h-08FFFFh         40000h-4FFFFh           10         64         070000h-07FFFFh         38000h-3FFFFh           9         64         060000h-06FFFFh         30000h-3FFFFh           8         64         050000h-05FFFFh         28000h-2FFFFh           7         64         040000h-04FFFFh         20000h-27FFFh           6         64         030000h-03FFFFh         18000h-1FFFFh           5         64         020000h-02FFFFh         08000h-0FFFFh           4         64         010000h-01FFFFh         08000h-0FFFFh           3         32         008000h-00FFFFh         04000h-03FFFh           4         64         010000h-00FFFFh         03000h-03FFFh           1         8         006000h-00FFFFh         03000h-02FFFh                                                                                                                                | 18 | 64            | 0F0000h-0FFFFFh     | 78000h-7FFFFh        |
| 15       64       0C0000h-0CFFFFh       60000h-67FFFh         14       64       0B0000h-0BFFFFh       58000h-5FFFFh         13       64       0A0000h-0AFFFFh       50000h-57FFFh         12       64       090000h-09FFFFh       48000h-4FFFFh         11       64       080000h-08FFFFh       40000h-47FFFh         10       64       070000h-07FFFFh       38000h-3FFFFh         9       64       060000h-06FFFFh       30000h-37FFFh         8       64       050000h-05FFFFh       28000h-2FFFFh         7       64       040000h-04FFFFh       20000h-27FFFh         6       64       030000h-03FFFFh       18000h-1FFFFh         5       64       020000h-02FFFFh       08000h-0FFFFh         4       64       010000h-01FFFFh       08000h-0FFFFh         3       32       008000h-00FFFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                             | 17 | 64            | 0E0000h-0EFFFFh     | 70000h-77FFFh        |
| 14       64       0B0000h-0BFFFh       58000h-5FFFh         13       64       0A0000h-0AFFFh       50000h-57FFFh         12       64       090000h-09FFFh       48000h-4FFFh         11       64       080000h-08FFFh       40000h-47FFFh         10       64       070000h-07FFFFh       38000h-3FFFFh         9       64       060000h-06FFFFh       30000h-37FFFh         8       64       050000h-05FFFFh       28000h-2FFFFh         7       64       040000h-04FFFFh       20000h-27FFFh         6       64       030000h-03FFFFh       18000h-1FFFFh         5       64       020000h-02FFFFh       10000h-17FFFh         4       64       010000h-01FFFFh       08000h-0FFFFh         3       32       008000h-00FFFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                 | 16 | 64            | 0D0000h-0DFFFFh     | 68000h-6FFFFh        |
| 13       64       0A0000h-0AFFFFh       50000h-57FFFh         12       64       090000h-09FFFFh       48000h-4FFFFh         11       64       080000h-08FFFFh       40000h-47FFFh         10       64       070000h-07FFFFh       38000h-3FFFFh         9       64       060000h-06FFFFh       30000h-37FFFh         8       64       050000h-05FFFFh       28000h-2FFFFh         7       64       040000h-04FFFFh       20000h-27FFFh         6       64       030000h-03FFFFh       18000h-1FFFFh         5       64       020000h-02FFFFh       10000h-17FFFh         4       64       010000h-01FFFFh       08000h-0FFFFh         3       32       008000h-00FFFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | 64            | 0C0000h-0CFFFFh     | 60000h-67FFFh        |
| 12       64       090000h-09FFFh       48000h-4FFFh         11       64       080000h-08FFFh       40000h-47FFFh         10       64       070000h-07FFFh       38000h-3FFFFh         9       64       060000h-06FFFh       30000h-37FFFh         8       64       050000h-05FFFh       28000h-2FFFFh         7       64       040000h-04FFFh       20000h-27FFFh         6       64       030000h-03FFFh       18000h-1FFFFh         5       64       020000h-02FFFFh       08000h-0FFFFh         4       64       010000h-01FFFFh       08000h-0FFFFh         3       32       008000h-00FFFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 | 64            | 0B0000h-0BFFFFh     | 58000h-5FFFFh        |
| 11       64       080000h-08FFFh       40000h-47FFh         10       64       070000h-07FFFh       38000h-3FFFh         9       64       060000h-06FFFh       30000h-37FFFh         8       64       050000h-05FFFh       28000h-2FFFh         7       64       040000h-04FFFh       20000h-27FFFh         6       64       030000h-03FFFh       18000h-1FFFh         5       64       020000h-02FFFh       10000h-17FFFh         4       64       010000h-01FFFh       08000h-0FFFFh         3       32       008000h-00FFFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 | 64            | 0A0000h-0AFFFFh     | 50000h-57FFFh        |
| 10       64       070000h-07FFFh       38000h-3FFFh         9       64       060000h-06FFFFh       30000h-37FFFh         8       64       050000h-05FFFFh       28000h-2FFFFh         7       64       040000h-04FFFFh       20000h-27FFFh         6       64       030000h-03FFFFh       18000h-1FFFFh         5       64       020000h-02FFFFh       10000h-17FFFh         4       64       010000h-01FFFFh       08000h-0FFFFh         3       32       008000h-00FFFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 | 64            | 090000h-09FFFFh     | 48000h-4FFFFh        |
| 9       64       060000h-06FFFh       30000h-37FFFh         8       64       050000h-05FFFFh       28000h-2FFFFh         7       64       040000h-04FFFFh       20000h-27FFFh         6       64       030000h-03FFFFh       18000h-1FFFFh         5       64       020000h-02FFFFh       10000h-17FFFh         4       64       010000h-01FFFFh       08000h-0FFFFh         3       32       008000h-00FFFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11 | 64            | 080000h-08FFFFh     | 40000h-47FFFh        |
| 8       64       050000h-05FFFh       28000h-2FFFh         7       64       040000h-04FFFh       20000h-27FFFh         6       64       030000h-03FFFh       18000h-1FFFFh         5       64       020000h-02FFFh       10000h-17FFFh         4       64       010000h-01FFFh       08000h-0FFFh         3       32       008000h-00FFFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 64            | 070000h-07FFFFh     | 38000h-3FFFFh        |
| 7       64       040000h-04FFFh       20000h-27FFFh         6       64       030000h-03FFFFh       18000h-1FFFFh         5       64       020000h-02FFFFh       10000h-17FFFh         4       64       010000h-01FFFFh       08000h-0FFFFh         3       32       008000h-00FFFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9  | 64            | 060000h-06FFFh      | 30000h-37FFFh        |
| 6       64       030000h-03FFFh       18000h-1FFFh         5       64       020000h-02FFFh       10000h-17FFFh         4       64       010000h-01FFFh       08000h-0FFFh         3       32       008000h-00FFFh       04000h-07FFFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8  | 64            | 050000h-05FFFFh     | 28000h-2FFFFh        |
| 5     64     020000h-02FFFh     10000h-17FFh       4     64     010000h-01FFFh     08000h-0FFFh       3     32     008000h-00FFFh     04000h-07FFFh       2     8     006000h-007FFFh     03000h-03FFFh       1     8     004000h-005FFFh     02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7  | 64            | 040000h-04FFFFh     | 20000h-27FFFh        |
| 4       64       010000h-01FFFh       08000h-0FFFh         3       32       008000h-00FFFh       04000h-07FFh         2       8       006000h-007FFFh       03000h-03FFFh         1       8       004000h-005FFFh       02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6  | 64            | 030000h-03FFFFh     | 18000h-1FFFFh        |
| 3     32     008000h-00FFFFh     04000h-07FFFh       2     8     006000h-007FFFh     03000h-03FFFh       1     8     004000h-005FFFh     02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  | 64            | 020000h-02FFFFh     | 10000h-17FFFh        |
| 2 8 006000h-007FFFh 03000h-03FFFh 1 8 004000h-005FFFh 02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4  | 64            | 010000h-01FFFh      | 08000h-0FFFFh        |
| 1 8 004000h-005FFFh 02000h-02FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3  | 32            | 008000h-00FFFh      | 04000h-07FFFh        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2  | 8             | 006000h-007FFFh     | 03000h-03FFFh        |
| 0 16 000000h-003FFFh 00000h-01FFFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  | 8             | 004000h-005FFFh     | 02000h-02FFFh        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | 16            | 000000h-003FFFh     | 00000h-01FFFh        |

Table 21. Top boot block addresses, M29W320FT

| #  | Size (Kbyte/Kword) | Address range (x 8) | Address range (x 16) |
|----|--------------------|---------------------|----------------------|
| 66 | 16/8               | 3FC000h-3FFFFFh     | 1FE000h-1FFFFFh      |
| 65 | 8/4                | 3FA000h-3FBFFFh     | 1FD000h-1FDFFFh      |
| 64 | 8/4                | 3F8000h-3F9FFFh     | 1FC000h-1FCFFFh      |
| 63 | 32/16              | 3F0000h-3F7FFFh     | 1F8000h-1FBFFFh      |
| 62 | 64/32              | 3E0000h-3EFFFFh     | 1F0000h-1F7FFFh      |
| 61 | 64/32              | 3D0000h-3DFFFFh     | 1E8000h-1EFFFFh      |
| 60 | 64/32              | 3C0000h-3CFFFFh     | 1E0000h-1E7FFFh      |
| 59 | 64/32              | 3B0000h-3BFFFFh     | 1D8000h-1DFFFFh      |
| 58 | 64/32              | 3A0000h-3AFFFFh     | 1D0000h-1D7FFFh      |
| 57 | 64/32              | 390000h-39FFFFh     | 1C8000h-1CFFFFh      |
| 56 | 64/32              | 380000h-18FFFFh     | 1C0000h-1C7FFFh      |
| 55 | 64/32              | 370000h-37FFFFh     | 1B8000h-1BFFFFh      |
| 54 | 64/32              | 360000h-36FFFFh     | 1B0000h-1B7FFFh      |
| 53 | 64/32              | 350000h-35FFFFh     | 1A8000h-1AFFFFh      |
| 52 | 64/32              | 340000h-34FFFFh     | 1A0000h-1A7FFFh      |
| 51 | 64/32              | 330000h-33FFFFh     | 198000h-19FFFFh      |
| 50 | 64/32              | 320000h-32FFFFh     | 190000h-197FFFh      |
| 49 | 64/32              | 310000h-31FFFFh     | 188000h-18FFFFh      |
| 48 | 64/32              | 300000h-30FFFFh     | 180000h-187FFFh      |
| 47 | 64/32              | 2F0000h-2FFFFFh     | 178000h-17FFFFh      |
| 46 | 64/32              | 2E0000h-2EFFFFh     | 170000h-177FFFh      |
| 45 | 64/32              | 2D0000h-2DFFFFh     | 168000h-16FFFFh      |
| 44 | 64/32              | 2C0000h-2CFFFFh     | 160000h-167FFFh      |
| 43 | 64/32              | 2B0000h-2BFFFFh     | 158000h-15FFFFh      |
| 42 | 64/32              | 2A0000h-2AFFFFh     | 150000h-157FFFh      |
| 41 | 64/32              | 290000h-29FFFFh     | 148000h-14FFFFh      |
| 40 | 64/32              | 280000h-28FFFFh     | 140000h-147FFFh      |
| 39 | 64/32              | 270000h-27FFFFh     | 138000h-13FFFFh      |
| 38 | 64/32              | 260000h-26FFFFh     | 130000h-137FFFh      |
| 37 | 64/32              | 250000h-25FFFFh     | 128000h-12FFFFh      |
| 36 | 64/32              | 240000h-24FFFFh     | 120000h-127FFFh      |
| 35 | 64/32              | 230000h-23FFFFh     | 118000h-11FFFFh      |
| 34 | 64/32              | 220000h-22FFFFh     | 110000h-117FFFh      |
| 33 | 64/32              | 210000h-21FFFFh     | 108000h-10FFFFh      |
| 32 | 64/32              | 200000h-20FFFFh     | 100000h-107FFFh      |

Numonyx

Table 21. Top boot block addresses, M29W320FT (continued)

| #  | Size (Kbyte/Kword) | Address range (x 8) | Address range (x 16) |
|----|--------------------|---------------------|----------------------|
| 31 | 64/32              | 1F0000h-1FFFFFh     | 0F8000h-0FBFFFh      |
| 30 | 64/32              | 1E0000h-1EFFFFh     | 0F0000h-0F7FFFh      |
| 29 | 64/32              | 1D0000h-1DFFFFh     | 0E8000h-0EFFFFh      |
| 28 | 64/32              | 1C0000h-1CFFFFh     | 0E0000h-0E7FFh       |
| 27 | 64/32              | 1B0000h-1BFFFFh     | 0D8000h-0DFFFFh      |
| 26 | 64/32              | 1A0000h-1AFFFFh     | 0D0000h-0D7FFFh      |
| 25 | 64/32              | 190000h-19FFFFh     | 0C8000h-0CFFFFh      |
| 24 | 64/32              | 180000h-18FFFFh     | 0C0000h-0C7FFFh      |
| 23 | 64/32              | 170000h-17FFFFh     | 0B8000h-0BFFFFh      |
| 22 | 64/32              | 160000h-16FFFFh     | 0B0000h-0B7FFFh      |
| 21 | 64/32              | 150000h-15FFFFh     | 0A8000h-0AFFFFh      |
| 20 | 64/32              | 140000h-14FFFFh     | 0A0000h-0A7FFFh      |
| 19 | 64/32              | 130000h-13FFFFh     | 098000h-09FFFFh      |
| 18 | 64/32              | 120000h-12FFFFh     | 090000h-097FFFh      |
| 17 | 64/32              | 110000h-11FFFFh     | 088000h-08FFFFh      |
| 16 | 64/32              | 100000h-10FFFFh     | 080000h-087FFFh      |
| 15 | 64/32              | 0F0000h-0FFFFFh     | 078000h-07FFFFh      |
| 14 | 64/32              | 0E0000h-0EFFFFh     | 070000h-077FFFh      |
| 13 | 64/32              | 0D0000h-0DFFFFh     | 068000h-06FFFFh      |
| 12 | 64/32              | 0C0000h-0CFFFFh     | 060000h-067FFFh      |
| 11 | 64/32              | 0B0000h-0BFFFFh     | 058000h-05FFFFh      |
| 10 | 64/32              | 0A0000h-0AFFFFh     | 050000h-057FFFh      |
| 9  | 64/32              | 090000h-09FFFFh     | 048000h-04FFFFh      |
| 8  | 64/32              | 080000h-08FFFFh     | 040000h-047FFFh      |
| 7  | 64/32              | 070000h-07FFFFh     | 038000h-03FFFFh      |
| 6  | 64/32              | 060000h-06FFFFh     | 030000h-037FFFh      |
| 5  | 64/32              | 050000h-05FFFFh     | 028000h-02FFFFh      |
| 4  | 64/32              | 040000h-04FFFFh     | 020000h-027FFFh      |
| 3  | 64/32              | 030000h-03FFFFh     | 018000h-01FFFFh      |
| 2  | 64/32              | 020000h-02FFFFh     | 010000h-017FFFh      |
| 1  | 64/32              | 010000h-01FFFFh     | 008000h-00FFFFh      |
| 0  | 64/32              | 000000h-00FFFFh     | 000000h-007FFFh      |

Table 22. Bottom boot block addresses, M29W320FB

| #  | Size (Kbyte/Kword) | Address range (x 8) | Address range (x 16) |
|----|--------------------|---------------------|----------------------|
| 66 | 64/32              | 3F0000h-3FFFFFh     | 1F8000h-1FFFFFh      |
| 65 | 64/32              | 3E0000h-3EFFFFh     | 1F0000h-1F7FFFh      |
| 64 | 64/32              | 3D0000h-3DFFFFh     | 1E8000h-1EFFFFh      |
| 63 | 64/32              | 3C0000h-3CFFFFh     | 1E0000h-1E7FFh       |
| 62 | 64/32              | 3B0000h-3BFFFFh     | 1D8000h-1DFFFFh      |
| 61 | 64/32              | 3A0000h-3AFFFFh     | 1D0000h-1D7FFFh      |
| 60 | 64/32              | 390000h-39FFFFh     | 1C8000h-1CFFFFh      |
| 59 | 64/32              | 380000h-18FFFFh     | 1C0000h-1C7FFFh      |
| 58 | 64/32              | 370000h-37FFFFh     | 1B8000h-1BFFFFh      |
| 57 | 64/32              | 360000h-36FFFFh     | 1B0000h-1B7FFFh      |
| 56 | 64/32              | 350000h-35FFFFh     | 1A8000h-1AFFFFh      |
| 55 | 64/32              | 340000h-34FFFFh     | 1A0000h-1A7FFFh      |
| 54 | 64/32              | 330000h-33FFFFh     | 198000h-19FFFFh      |
| 53 | 64/32              | 320000h-32FFFFh     | 190000h-197FFFh      |
| 52 | 64/32              | 310000h-31FFFFh     | 188000h-18FFFFh      |
| 51 | 64/32              | 300000h-30FFFFh     | 180000h-187FFFh      |
| 50 | 64/32              | 2F0000h-2FFFFFh     | 178000h-17FFFFh      |
| 49 | 64/32              | 2E0000h-2EFFFFh     | 170000h-177FFFh      |
| 48 | 64/32              | 2D0000h-2DFFFFh     | 168000h-16FFFFh      |
| 47 | 64/32              | 2C0000h-2CFFFFh     | 160000h-167FFFh      |
| 46 | 64/32              | 2B0000h-2BFFFFh     | 158000h-15FFFFh      |
| 45 | 64/32              | 2A0000h-2AFFFFh     | 150000h-157FFFh      |
| 44 | 64/32              | 290000h-29FFFFh     | 148000h-14FFFFh      |
| 43 | 64/32              | 280000h-28FFFFh     | 140000h-147FFFh      |
| 42 | 64/32              | 270000h-27FFFFh     | 138000h-13FFFFh      |
| 41 | 64/32              | 260000h-26FFFFh     | 130000h-137FFFh      |
| 40 | 64/32              | 250000h-25FFFFh     | 128000h-12FFFFh      |
| 39 | 64/32              | 240000h-24FFFFh     | 120000h-127FFFh      |
| 38 | 64/32              | 230000h-23FFFFh     | 118000h-11FFFFh      |
| 37 | 64/32              | 220000h-22FFFFh     | 110000h-117FFFh      |
| 36 | 64/32              | 210000h-21FFFFh     | 108000h-10FFFFh      |
| 35 | 64/32              | 200000h-20FFFFh     | 100000h-107FFFh      |
| 34 | 64/32              | 1F0000h-1FFFFFh     | 0F8000h-0FBFFFh      |
| 33 | 64/32              | 1E0000h-1EFFFFh     | 0F0000h-0F7FFh       |
| 32 | 64/32              | 1D0000h-1DFFFFh     | 0E8000h-0EFFFFh      |

Numonyx

Table 22. Bottom boot block addresses, M29W320FB (continued)

| #  | Size (Kbyte/Kword) | Address range (x 8) | Address range (x 16) |
|----|--------------------|---------------------|----------------------|
| 31 | 64/32              | 1C0000h-1CFFFFh     | 0E0000h-0E7FFh       |
| 30 | 64/32              | 1B0000h-1BFFFFh     | 0D8000h-0DFFFFh      |
| 29 | 64/32              | 1A0000h-1AFFFFh     | 0D0000h-0D7FFFh      |
| 28 | 64/32              | 190000h-19FFFFh     | 0C8000h-0CFFFFh      |
| 27 | 64/32              | 180000h-18FFFFh     | 0C0000h-0C7FFFh      |
| 26 | 64/32              | 170000h-17FFFFh     | 0B8000h-0BFFFFh      |
| 25 | 64/32              | 160000h-16FFFFh     | 0B0000h-0B7FFFh      |
| 24 | 64/32              | 150000h-15FFFFh     | 0A8000h-0AFFFFh      |
| 23 | 64/32              | 140000h-14FFFFh     | 0A0000h-0A7FFFh      |
| 22 | 64/32              | 130000h-13FFFFh     | 098000h-09FFFFh      |
| 21 | 64/32              | 120000h-12FFFFh     | 090000h-097FFFh      |
| 20 | 64/32              | 110000h-11FFFFh     | 088000h-08FFFFh      |
| 19 | 64/32              | 100000h-10FFFFh     | 080000h-087FFFh      |
| 18 | 64/32              | 0F0000h-0FFFFh      | 078000h-07FFFFh      |
| 17 | 64/32              | 0E0000h-0EFFFFh     | 070000h-077FFFh      |
| 16 | 64/32              | 0D0000h-0DFFFFh     | 068000h-06FFFFh      |
| 15 | 64/32              | 0C0000h-0CFFFFh     | 060000h-067FFFh      |
| 14 | 64/32              | 0B0000h-0BFFFFh     | 058000h-05FFFFh      |
| 13 | 64/32              | 0A0000h-0AFFFFh     | 050000h-057FFFh      |
| 12 | 64/32              | 090000h-09FFFFh     | 048000h-04FFFFh      |
| 11 | 64/32              | 080000h-08FFFFh     | 040000h-047FFFh      |
| 10 | 64/32              | 070000h-07FFFFh     | 038000h-03FFFFh      |
| 9  | 64/32              | 060000h-06FFFFh     | 030000h-037FFFh      |
| 8  | 64/32              | 050000h-05FFFFh     | 028000h-02FFFFh      |
| 7  | 64/32              | 040000h-04FFFFh     | 020000h-027FFFh      |
| 6  | 64/32              | 030000h-03FFFFh     | 018000h-01FFFFh      |
| 5  | 64/32              | 020000h-02FFFFh     | 010000h-017FFFh      |
| 4  | 64/32              | 010000h-01FFFFh     | 008000h-00FFFFh      |
| 3  | 32/16              | 008000h-00FFFFh     | 004000h-007FFFh      |
| 2  | 8/4                | 006000h-007FFFh     | 003000h-003FFFh      |
| 1  | 8/4                | 004000h-005FFFh     | 002000h-002FFFh      |
| 0  | 16/8               | 000000h-003FFFh     | 000000h-001FFFh      |

# Appendix B Common Flash interface (CFI)

The common flash interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary.

When the CFI Query command is issued the device enters CFI Query mode and the data structure is read from the memory. Tables 23, 24, 25, 26, 27 and 28 show the addresses used to retrieve the data.

The CFI data structure also contains a security area where a 64 bit unique security number is written (see *Table 28*: Security code area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by Numonyx. Issue a Read command to return to Read mode.

Table 23. Query structure overview<sup>(1)</sup>

| Address |     | Sub-section name                                | Description                                                         |  |
|---------|-----|-------------------------------------------------|---------------------------------------------------------------------|--|
| x 16    | x 8 | Sub-section name                                | Description                                                         |  |
| 10h     | 20h | CFI query identification string                 | Command set ID and algorithm data offset                            |  |
| 1Bh     | 36h | System interface information                    | Device timing & voltage information                                 |  |
| 27h     | 4Eh | Device geometry definition                      | Flash device layout                                                 |  |
| 40h     | 80h | Primary algorithm-specific extended query table | Additional information specific to the primary algorithm (optional) |  |
| 61h     | C2h | Security code area                              | 64 bit unique device number                                         |  |

<sup>1.</sup> Query data are always presented on the lowest order data outputs.

Table 24. CFI query identification string<sup>(1)</sup>

| Add  | ress | Doto  | Description                                             | Value      |
|------|------|-------|---------------------------------------------------------|------------|
| x 16 | x 8  | Data  | Description                                             | value      |
| 10h  | 20h  | 0051h |                                                         | "Q"        |
| 11h  | 22h  | 0052h | Query Unique ASCII String "QRY"                         | "R"        |
| 12h  | 24h  | 0059h |                                                         | "Y"        |
| 13h  | 26h  | 0002h | Primary algorithm command set and control interface ID  | AMD        |
| 14h  | 28h  | 0000h | code 16 bit ID code defining a specific algorithm       | Compatible |
| 15h  | 2Ah  | 0040h | Address for primary algorithm extended query table (see | P = 40h    |
| 16h  | 2Ch  | 0000h | Table 27)                                               | F = 4011   |
| 17h  | 2Eh  | 0000h | Alternate vendor command set and control interface id   | NA         |
| 18h  | 30h  | 0000h | code second vendor - specified algorithm supported      | INA        |
| 19h  | 32h  | 0000h | Address for alternate algorithm extended query table    | NA         |
| 1Ah  | 34h  | 0000h |                                                         | INA        |

<sup>1.</sup> Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are '0'.

Table 25. CFI query system interface information

| Add  | ress   | Data  | Description                                                                      |                                                                                                                                     |        |
|------|--------|-------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|
| x 16 | x 8    | Data  |                                                                                  | Description                                                                                                                         | Value  |
| 1Bh  | 36h    | 0027h | bit 7 to 4 BCD                                                                   | minimum Program/Erase voltage<br>value in volts<br>value in 100 mV                                                                  | 2.7 V  |
| 1Ch  | 38h    | 0036h | bit 7 to 4 BCD                                                                   | maximum Program/Erase voltage<br>/alue in volts<br>/alue in 100 mV                                                                  | 3.6 V  |
|      |        | 0000h | M29W160FT/B                                                                      | V <sub>PP</sub> [programming] supply minimum Program/Erase voltage                                                                  | NA     |
| 1Dh  | 3Ah    | 00B5h | M29W320FT/B                                                                      | V <sub>PP</sub> [programming] supply minimum Program/Erase voltage<br>bit 7 to 4HEX value in volts<br>bit 3 to 0BCD value in 100 mV | 11.5 V |
|      |        | 0000h | M29W160FT/B                                                                      | V <sub>PP</sub> [programming] supply maximum Program/Erase voltage                                                                  | NA     |
| 1Eh  | 3Ch    | 00C5h | M29W320FT/B                                                                      | V <sub>PP</sub> [programming] supply maximum Program/Erase voltage<br>bit 7 to 4HEX value in volts<br>bit 3 to 0BCD value in 100 mV | 12.5 V |
| 1Fh  | 3Eh    | 0004h | Typical timeout po                                                               | er single byte/word program = 2 <sup>n</sup> μs                                                                                     | 16 µs  |
| 20h  | 40h    | 0000h | Typical timeout fo                                                               | r minimum size write buffer program = 2 <sup>n</sup> µs                                                                             | NA     |
| 21h  | 42h    | 000Ah | Typical timeout po                                                               | er individual block erase = 2 <sup>n</sup> ms                                                                                       | 1 s    |
| 22h  | 44h    | 0000h | Typical timeout fo                                                               | r full chip erase = 2 <sup>n</sup> ms                                                                                               | NA     |
| 23h  | 46h    | 0004h | M29W160FT/B                                                                      | Maximum timeout for byte/word program = 2 <sup>n</sup> times typical                                                                | 256 µs |
| 2311 | 4011   | 0005h | M29W320FT/B Maximum timeout for byte/word program = 2 <sup>n</sup> times typical |                                                                                                                                     | 512 µs |
| 24h  | 48h    | 0000h | Maximum timeout for write buffer program = 2 <sup>n</sup> times typical          |                                                                                                                                     | NA     |
| 25h  | 4Ah    | 0003h | M29W160FT/B                                                                      | M29W160FT/B Maximum timeout per individual block erase = 2 <sup>n</sup> times typical                                               |        |
| 2011 | +/\(\) | 0004h | M29W320FT/B                                                                      | 29W320FT/B Maximum timeout per individual block erase = 2 <sup>n</sup> times typical                                                |        |
| 26h  | 4Ch    | 0000h | Maximum timeou                                                                   | t for chip erase = 2 <sup>n</sup> times typical                                                                                     | NA     |

Table 26. Device geometry definition

| Address    |            | Dete           | Description                                                                                                                                                | Value               |
|------------|------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| x 16       | x 8        | Data           | Description                                                                                                                                                | Value               |
| 07h        | 4 <b>.</b> | 0015h          | M29W160FT/B device size = 2 <sup>n</sup> in number of bytes                                                                                                | 2 Mbyte             |
| 27h        | 4Eh        | 0016h          | M29W320FT/B device size = 2 <sup>n</sup> in number of bytes                                                                                                | 4 Mbyte             |
| 28h<br>29h | 50h<br>52h | 0002h<br>0000h | Flash device interface code description                                                                                                                    | x 8, x 16<br>Async. |
| 2Ah<br>2Bh | 54h<br>56h | 0000h<br>0000h | Maximum number of bytes in multi-byte program or page = 2 <sup>n</sup>                                                                                     | NA                  |
| 2Ch        | 58h        | 0004h          | Number of Erase Block Regions within the device. It specifies the number of regions within the device containing contiguous Erase Blocks of the same size. | 4                   |
| 2Dh<br>2Eh | 5Ah<br>5Ch | 0000h<br>0000h | Region 1 information  Number of identical size erase block = 0000h+1                                                                                       | 1                   |
| 2Fh<br>30h | 5Eh<br>60h | 0040h<br>0000h | Region 1 information Block size in Region 1 = 0040h * 256 byte                                                                                             | 16 Kbyte            |
| 31h<br>32h | 62h<br>64h | 0001h<br>0000h | Region 2 information  Number of identical size erase block = 0001h+1                                                                                       | 2                   |
| 33h<br>34h | 66h<br>68h | 0020h<br>0000h | Region 2 information Block size in Region 2 = 0020h * 256 byte                                                                                             | 8 Kbyte             |
| 35h<br>36h | 6Ah<br>6Ch | 0000h<br>0000h | Region 3 information  Number of identical size erase block = 0000h+1                                                                                       | 1                   |
| 37h<br>38h | 6Eh<br>70h | 0080h<br>0000h | Region 3 Information Block size in Region 3 = 0080h * 256 byte                                                                                             | 32 Kbyte            |
| 39h        | 72h        | 001Eh<br>0000h | M29W160FT/B Region 4 information  Number of identical-size erase block = 001Eh+1                                                                           | 31                  |
| 3Ah        | 74h        | 003Eh<br>0000h | M29W320FT/B Region 4 information  Number of identical-size erase block = 003Eh+1                                                                           | 63                  |
| 3Bh<br>3Ch | 76h<br>78h | 0000h<br>0001h | Region 4 information Block size in Region 4 = 0100h * 256 byte                                                                                             | 64 Kbyte            |

Table 27. Primary algorithm-specific extended query table

| Add                | Address |        | B                                                                                                                       |        |  |
|--------------------|---------|--------|-------------------------------------------------------------------------------------------------------------------------|--------|--|
| x 16               | x 8     | - Data | Description                                                                                                             | Value  |  |
| 40h                | 80h     | 0050h  |                                                                                                                         | "P"    |  |
| 41h                | 82h     | 0052h  | Primary algorithm extended query table unique ASCII string "PRI"                                                        | "R"    |  |
| 42h                | 84h     | 0049h  |                                                                                                                         | " "    |  |
| 43h                | 86h     | 0031h  | Major version number, ASCII                                                                                             | "1"    |  |
| 44h                | 88h     | 0030h  | Minor version number, ASCII                                                                                             | "0"    |  |
| 45h                | 8Ah     | 0000h  | Address Sensitive Unlock (bits 1 to 0) 00 = required, 01= not required Silicon Revision Number (bits 7 to 2)            | Yes    |  |
| 46h                | 8Ch     | 0002h  | Erase Suspend 00 = not supported, 01 = Read only, 02 = Read and Write                                                   | 2      |  |
| 47h                | 8Eh     | 0001h  | Block Protection 00 = not supported, x = number of blocks in per group                                                  | 1      |  |
| 48h                | 90h     | 0001h  | Temporary Block Unprotect 00 = not supported, 01 = supported                                                            | Yes    |  |
| 49h                | 92h     | 0004h  | Block Protect /Unprotect<br>04 = M29W400B                                                                               | 4      |  |
| 4Ah                | 94h     | 0000h  | Simultaneous operations, 00 = not supported                                                                             | No     |  |
| 4Bh                | 96h     | 0000h  | Burst mode, 00 = not supported, 01 = supported                                                                          | No     |  |
| 4Ch                | 98h     | 0000h  | Page mode, 00 = not supported, 01 = 4 page word, 02 = 8 page word                                                       | No     |  |
| 4Dh <sup>(1)</sup> | 9Ah     | 00B5h  | V <sub>PP</sub> supply minimum Program/Erase voltage<br>bit 7 to 4 HEX value in volts<br>bit 3 to 0 BCD value in 100 mV | 11.5 V |  |
| 4Eh <sup>(1)</sup> | 9Ch     | 00C5h  | V <sub>PP</sub> supply minimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV       | 12.5 V |  |
| 4Fh <sup>(1)</sup> | 9Eh     | 000xh  | Top/Bottom Boot Block Flag 02h = Bottom Boot device, 03h = Top Boot device                                              | _      |  |

<sup>1.</sup> Only for the M29W320FT/B devices.

Table 28. Security code area

| ······································ |          |      |                              |  |  |  |
|----------------------------------------|----------|------|------------------------------|--|--|--|
| Address                                |          | Data | Description                  |  |  |  |
| x16                                    | x8       | Data | Description                  |  |  |  |
| 61h                                    | C3h, C2h | XXXX | 64 bit: unique device number |  |  |  |
| 62h                                    | C5h, C4h | XXXX |                              |  |  |  |
| 63h                                    | C7h, C6h | XXXX |                              |  |  |  |
| 64h                                    | C9h, C8h | xxxx |                              |  |  |  |

# Appendix C Block protection

Block protection can be used to prevent any operation from modifying the data stored in the Flash memory. Each Block can be protected individually. Once protected, Program and Erase operations on the block fail to change the data.

There are three techniques that can be used to control Block Protection, these are the Programmer technique, the In-System technique and Temporary Unprotection. Temporary Unprotection is controlled by the Reset/Block Temporary Unprotection pin,  $\overline{RP}$ ; this is described in the signal descriptions section.

Unlike the command interface of the Program/Erase controller, the techniques for protecting and unprotecting blocks could change between different Flash memory suppliers.

### 9.1 Programmer technique

The Programmer technique uses high  $(V_{ID})$  voltage levels on some of the bus pins. These cannot be achieved using a standard microprocessor bus, therefore the technique is recommended only for use in Programming Equipment.

To protect a block follow the flowchart in *Figure 19: Programmer equipment block protect flowchart*. During the Block Protect algorithm, the Amax-A12 address inputs indicate the address of the block to be protected. The block will be correctly protected only if Amax-A12 remain valid and stable, and if Chip Enable is kept Low, V<sub>IL</sub>, all along the Protect and Verify phases.

The Chip Unprotect algorithm is used to unprotect all the memory blocks at the same time. This algorithm can only be used if all of the blocks are protected first. To unprotect the chip follow Figure 20: Programmer equipment chip unprotect flowchart. Table 29: Programmer technique bus operations,  $BYTE = V_{IH}$  or  $V_{IL}$ , gives a summary of each operation.

The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not abort the procedure before reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing.

## 9.2 In-system technique

The in-system <u>tec</u>hnique requires a high voltage level on the Reset/Blocks Temporary Unprotect pin, RP. This can be achieved without violating the maximum ratings of the components on the microprocessor bus, therefore this technique is suitable for use after the Flash memory has been fitted to the system.

To protect a block follow the flowchart in *Figure 21: In-system equipment block protect flowchart*. To unprotect the whole chip it is necessary to protect all of the blocks first, then all the blocks can be unprotected at the same time. To unprotect the chip follow *Figure 22: In-system equipment chip unprotect flowchart*.

The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not allow the microprocessor to service interrupts that will upset the timing and do not abort the procedure before reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing.

50/57 ► Marian Marian

Table 29. Programmer technique bus operations,  $\overline{\text{BYTE}} = V_{\text{IH}}$  or  $V_{\text{IL}}$ 

| Operation                       | Ē               | G               | w                     | Address inputs<br>A0-Amax                                                                             | Data inputs/outputs<br>DQ15A-1, DQ14-DQ0 |
|---------------------------------|-----------------|-----------------|-----------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------|
| Block Protect                   | V <sub>IL</sub> | V <sub>ID</sub> | V <sub>IL</sub> Pulse | A9 = V <sub>ID</sub> ,<br>A12-Amax Block Address<br>Others = X                                        | X                                        |
| Chip Unprotect                  | $V_{\text{ID}}$ | $V_{\text{ID}}$ | V <sub>IL</sub> Pulse | $A9 = V_{ID}, A12 = V_{IH}, A15 = V_{IH}$ Others = X                                                  | Х                                        |
| Block<br>Protection<br>Verify   | V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IH</sub>       | $A0 = V_{IL}, A1 = V_{IH}, A6 = V_{IL},$ $A9 = V_{ID},$ $A12\text{-}Amax Block Address}$ $Others = X$ | Pass = XX01h<br>Retry = XX00h            |
| Block<br>Unprotection<br>Verify | V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IH</sub>       | $A0 = V_{IL}, A1 = V_{IH}, A6 = V_{IH},$ $A9 = V_{ID},$ $A12-Amax Block Address$ $Others = X$         | Retry = XX01h<br>Pass = XX00h            |

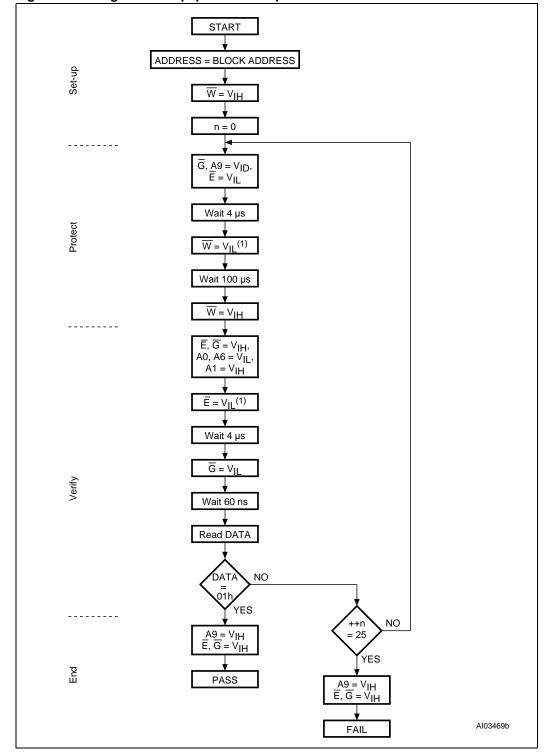



Figure 19. Programmer equipment block protect flowchart

- Address inputs Amax-A12 give the address of the block that is to be protected. It is imperative that they
  remain stable during the operation.
- 2. During the Protect and Verify phases of the algorithm, Chip Enable  $\overline{\overline{E}}$  must be kept Low,  $V_{IL}$ .

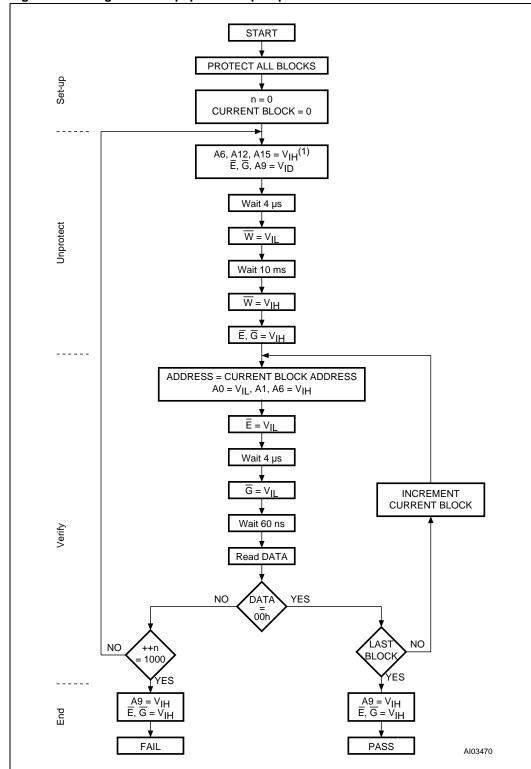



Figure 20. Programmer equipment chip unprotect flowchart

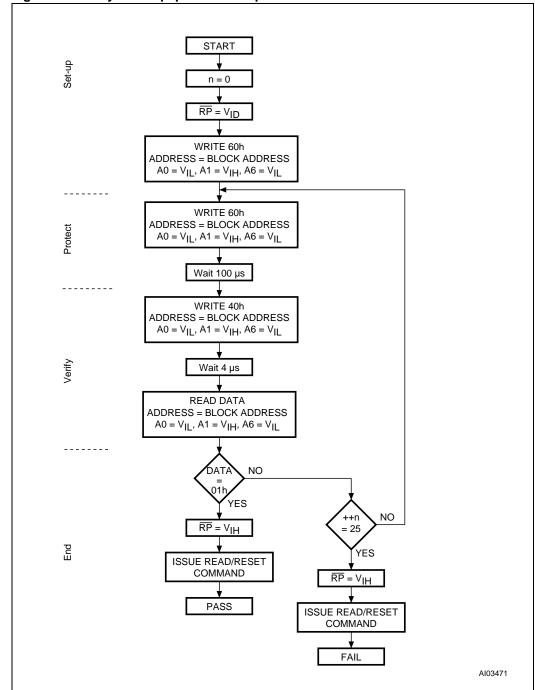



Figure 21. In-system equipment block protect flowchart

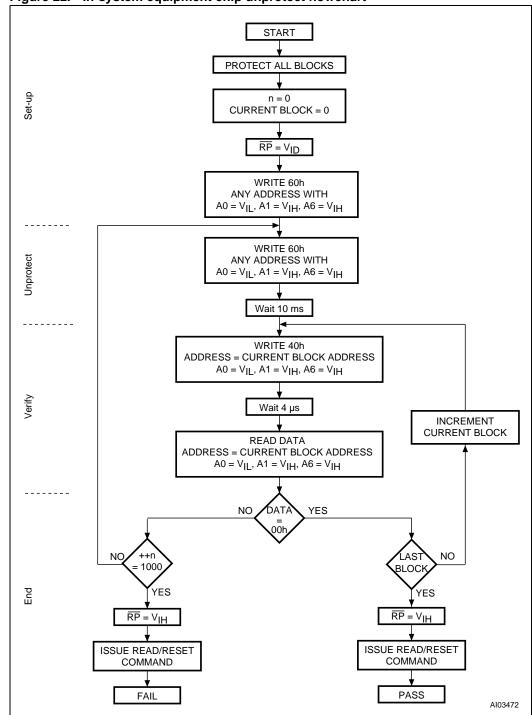



Figure 22. In-system equipment chip unprotect flowchart

# 10 Revision history

Table 30. Document revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26-Jun-2006 | 1        | Initial release.                                                                                                                                                                                                                                                                                                                                                                      |
| 20-Jul-2007 | 2        | Document status promoted from Preliminary Data to full Datasheet. TFBGA48 6 x 8 mm package added. 80 ns speed class added. Voltage range extended when access time is 80 ns. Small text changes.                                                                                                                                                                                      |
| 26-Mar-2008 | 3        | Applied Numonyx branding.                                                                                                                                                                                                                                                                                                                                                             |
| 18-Nov-2008 | 4        | Modified part numbering information in <i>Table 18</i> :  - Added Speed: 7A = 70ns Automotive Grade 6, -40C to 85C  - Added Temperature Range  - Changed Device Grade  Changed footnote 2 "This feature could not be available" on page 38 to "Parts in 110 nm coming from Numonyx Fab.2".  Replaced references to ECOPACK with RoHS compliant.  Added document number to coversheet. |

#### Please Read Carefully:

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Numonyx may make changes to specifications and product descriptions at any time, without notice.

Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com.

Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.

\*Other names and brands may be claimed as the property of others.

Copyright © 2008, Numonyx, B.V., All Rights Reserved.