Features

Low-voltage and Standard-voltage Operation

- 1.8 (V_{cc} = 1.8V to 5.5V)

- User-selectable Internal Organization - 1K: 128 x 8 or 64 x 16
- Three-wire Serial Interface
- 2 MHz Clock Rate (5V)
- Self-timed Write Cycle (5 ms max)
- High Reliability
 - Endurance: 1 Million Write Cycles
 - Data Retention: 100 Years
- 8-lead JEDEC PDIP, 8-lead JEDEC SOIC, 8-lead Ultra Thin mini-MAP (MLP 2x3), 8-lead TSSOP and 8-ball dBGA2 Packages
- Die Sales: Wafer Form, Tape and Reel, and Bumped Wafers

Description

The AT93C46D provides 1024 bits of serial electrically erasable programmable readonly memory (EEPROM), organized as 64 words of 16 bits each (when the ORG pin is connected to VCC), and 128 words of 8 bits each (when the ORG pin is tied to ground). The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operations are essential. The AT93C46D is available in space-saving 8-lead PDIP, 8-lead JEDEC SOIC, 8-lead Ultra Thin mini-MAP (MLP 2x3), 8-lead TSSOP, and 8-lead dBGA2 packages.

The AT93C46D is enabled through the Chip Select pin (CS) and accessed via a three-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a Read instruction at DI, the address is decoded and the data is clocked out serially on the DO pin. The Write cycle is completely self-timed, and no separate Erase cycle is required before Write. The Write cycle is only enabled when the part is in the Erase/Write Enable state. When CS is brought high following the initiation of a Write cycle, the DO pin outputs the Ready/Busy status of the part.

The AT93C46D is available in 1.8 (1.8V to 5.5V) version.

Table 0-1.Pin Configurations

Pin Name

CS SK DI

DO GND VCC ORG NC

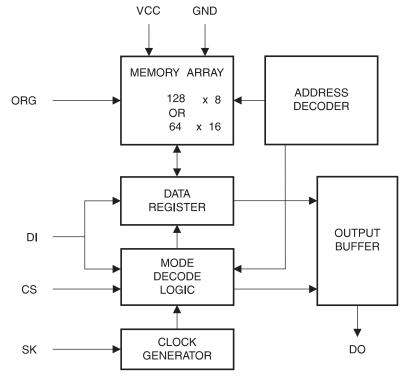
Pin Configurations		8-lead SOIC			8.	8-lead dBGA2		
F	Function	ſ			-		-	
(Chip Select	CS 🖂 SK 🖂	1 2	8 🔤 VCC 7 🔄 NC	VCC NC	8 (1) 7 (2)		
ę	Serial Data Clock		3 4	6 🔤 ORG 5 🔄 GND	ORG GND	6 3 5 4		
S	Serial Data Input	L			B	ottom Vie	ew	
S	Serial Data Output		8-lead P	DIP 8	lead Ultra Th	nin mini-l	MAP (MLP 2x	3)
C	Ground	CSE	1		VCC			
F	Power Supply	SK [3	7 🗆 NC 6 🗆 ORG		6	2 SK 3 DI	
I	nternal Organization	DO 🗆	4	5 🗆 GND	GND		4 DO	
١	No Connect			8-lead	E TSSOP	Bottom V	ïew	
			S	$ \begin{array}{c} \text{CS} \\ \text{SK} \\ \text{DI} \\ \text{DI} \\ \text{O} \\ \text{O}$	7 🗌 N 6 🗌 O	CC C RG ND		

Three-wire Serial EEPROM

1K (128 x 8 or 64 x 16)

AT93C46D

5193F-SEEPR-1/08



1. Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground1.0V to +7.0V
Maximum Operating Voltage 6.25V
DC Output Current 5.0 mA

Figure 1-1. Block Diagram

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

- Notes: 1. When the ORG pin is connected to VCC, the "x 16" organization is selected. When it is connected to ground, the "x 8" organization is selected. If the ORG pin is left unconnected and the application does not load the input beyond the capability of the internal 1 Meg ohm pullup, then the "x 16" organization is selected.
 - For the AT93C46D, if the "x 16" organization is the mode of choice and pin 6 (ORG) is left unconnected, Atmel[®] recommends using AT93C46E device. For more details, see the AT93C46E datasheet.

AT93C46D

2

Table 1-1.Pin Capacitance⁽¹⁾

Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = +1.8V$ (unless otherwise noted)

Symbol	Test Conditions	Max	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	$V_{OUT} = 0V$
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	$V_{IN} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.

Table 1-2.DC Characteristics

Applicable over recommended operating range from: $T_{AI} = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = +1.8V$ to +5.5V (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			1.8		5.5	V
V _{CC2}	Supply Voltage			2.7		5.5	V
V _{CC3}	Supply Voltage			4.5		5.5	V
	Quantu Quarant		READ at 1.0 MHz		0.5	2.0	mA
I _{CC}	Supply Current	$v_{\rm CC} = 5.0 v$	V _{CC} = 5.0V WRITE at 1.0 MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 1.8V	CS = 0V		0.4	1.0	μA
I _{SB2}	Standby Current	V _{CC} = 2.7V CS = 0V			6.0	10.0	μA
I _{SB3}	Standby Current	$V_{CC} = 5.0V$	CS = 0V		10.0	15.0	μA
I _{IL}	Input Leakage	$V_{IN} = 0V$ to V_{CC}		0.1	1.0	μA	
I _{OL}	Output Leakage	$V_{IN} = 0V$ to V_{CC}			0.1	1.0	μA
V _{IL1} ⁽¹⁾	Input Low Voltage	0.7\(_<)		-0.6		0.8	V
V _{IH1} ⁽¹⁾	Input High Voltage	2.7∨≤∨	$V_{\rm CC} \le 5.5 {\rm V}$	2.0		V _{CC} + 1	v
V _{IL2} ⁽¹⁾	Input Low Voltage	1.01/~1		-0.6		V _{CC} x 0.3	V
V _{IH2} ⁽¹⁾	Input High Voltage	1.8V ≤ V	$V_{\rm CC} \le 2.7 V$	V _{CC} x 0.7		V _{CC} + 1	V
V _{OL1}	Output Low Voltage		I _{OL} = 2.1 mA			0.4	V
V _{OH1}	Output High Voltage	$2.7V \le V_{CC} \le 5.5V$	I _{OH} = -0.4 mA	2.4			V
V _{OL2}	Output Low Voltage	1.0)/ <)/ < 0.7)/	I _{OL} = 0.15 mA			0.2	V
V _{OH2}	Output High Voltage	$1.8V \le V_{CC} \le 2.7V$	I _{OH} = −100 μA	V _{CC} - 0.2			V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

Table 1-3.AC Characteristics

Applicable over recommended operating range from $T_{AI} = -40^{\circ}C$ to + 85°C, $V_{CC} = +2.7V$ to +5.5V, CL = 1 TTL Gate and 100 pF (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Units
f _{SK}	SK Clock Frequency	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.5V \\ 2.7V \leq V_{CC} \ \leq 5.5V \\ 1.8V \leq V_{CC} \ \leq 5.5V \end{array}$		0 0 0		2 1 0.25	MHz
t _{SKH}	SK High Time	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$		250 250 1000			ns
t _{SKL}	SK Low Time	$\begin{array}{l} 4.5 V \leq V_{CC} \leq 5.5 V \\ 2.7 V \leq V_{CC} \leq 5.5 V \\ 1.8 V \leq V_{CC} \leq 5.5 V \end{array}$		250 250 1000			ns
t _{CS}	Minimum CS Low Time	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$		250 250 1000			ns
t _{CSS}	CS Setup Time	Relative to SK	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	50 50 200			ns
t _{DIS}	DI Setup Time	Relative to SK	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	100 100 400			ns
t _{CSH}	CS Hold Time	Relative to SK		0			ns
t _{DIH}	DI Hold Time	Relative to SK	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	100 100 400			ns
t _{PD1}	Output Delay to "1"	AC Test	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$			250 250 1000	ns
t _{PD0}	Output Delay to "0"	AC Test	$\begin{array}{c} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \\ \end{array}$			250 250 1000	ns
t _{SV}	CS to Status Valid	AC Test	$\begin{array}{c} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$			250 250 1000	ns
t _{DF}	CS to DO in High Impedance	AC Test CS = V _{IL}	$\begin{array}{c} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$			100 150 400	ns
t _{WP}	Write Cycle Time		$1.8V \leq V_{CC} \leq 5.5V$	0.1	3	5	ms
Endurance ⁽¹⁾	5.0V, 25°C			1M			Write Cycles

Note: 1. This parameter is ensured by characterization.

4

		Ор	Add	ress	Data		
Instruction	SB	Code	x 8	x 16	x 8	x 16	Comments
READ	1	10	$A_{6} - A_{0}$	$A_{5} - A_{0}$			Reads data stored in memory, at specified address
EWEN	1	00	11XXXXX	11XXXX			Write enable must precede all programming modes
ERASE	1	11	$A_{6} - A_{0}$	$A_{5} - A_{0}$			Erases memory location $A_n - A_0$
WRITE	1	01	$A_{6} - A_{0}$	$A_{5} - A_{0}$	$D_{7} - D_{0}$	$D_{15} - D_0$	Writes memory location $A_n - A_0$
ERAL	1	00	10XXXXX	10XXXX			Erases all memory locations. Valid only at V_{CC} = 4.5V to 5.5V
WRAL	1	00	01XXXXX	01XXXX	$D_7 - D_0$	D ₁₅ - D ₀	Writes all memory locations. Valid only at V_{CC} = 4.5V to 5.5V
EWDS	1	00	00XXXXX	00XXXX			Disables all programming instructions

Table 1-4.Instruction Set for the AT93C46D

Note: The Xs in the address field represent DON'T CARE values and must be clocked.

2. Functional Description

The AT93C46D is accessed via a simple and versatile three-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. *A valid instruction starts with a rising edge of CS* and consists of a start bit (logic "1") followed by the appropriate op code and the desired memory address location.

READ (READ): The Read (READ) instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock SK. It should be noted that a dummy bit (logic "0") precedes the 8- or 16-bit data output string.

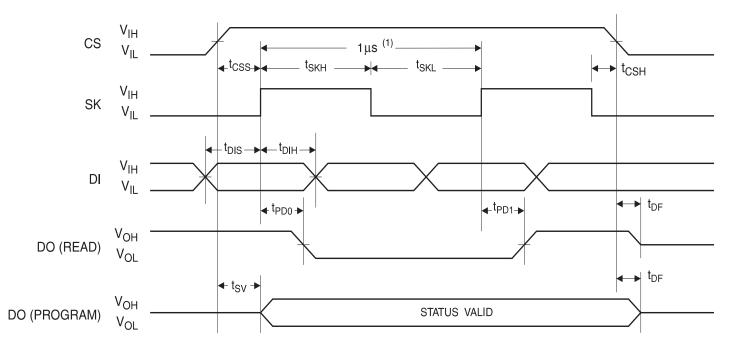
ERASE/WRITE ENABLE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the EWEN state, programming remains enabled until an EWDS instruction is executed or V_{CC} power is removed from the part.

ERASE (ERASE): The Erase (ERASE) instruction programs all bits in the specified memory location to the logical "1" state. The self-timed erase cycle starts once the Erase instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "1" at pin DO indicates that the selected memory location has been erased and the part is ready for another instruction.

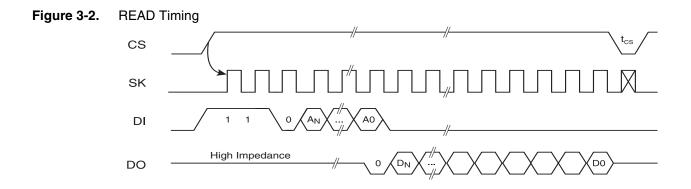
WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle t_{WP} starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the Read/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "0" at DO indicates that programming is still in progress. A logic "1" indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the

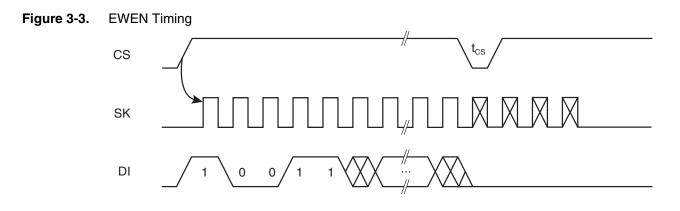
part is ready for further instructions. A Ready/Busy status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle tWP.

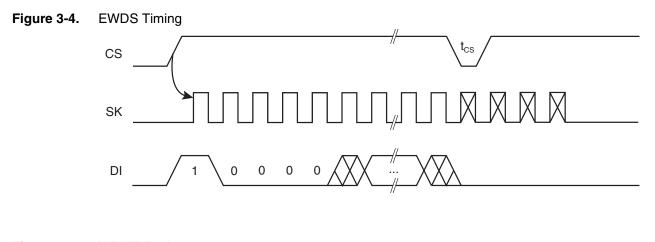
ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic "1" state and is primarily used for testing purposes. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The ERAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

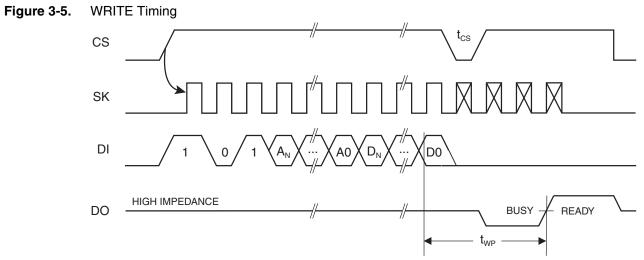

WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The WRAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

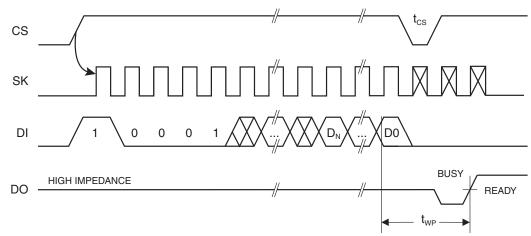
ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturb, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the Read instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.


Timing Diagrams 3.


Note: 1. This is the minimum SK period.


Table 3-1.	Organizat	ion Key for Timing Diagrams				
		AT93C46D (1K)				
I/O		x 8	x 16			
A _N		A ₆	A ₅			
D _N		D ₇	D ₁₅			






8

Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V.

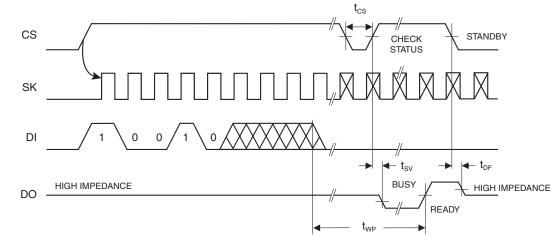


Figure 3-8. ERAL Timing⁽¹⁾

Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V.

4. AT93C46D Ordering Information

Ordering Code	Voltage	Package	Operation Range
AT93C46D-PU (Bulk form only)	1.8	8P3	
AT93C46DN-SH-B ⁽¹⁾ (NiPdAu Lead finish)	1.8	8S1	
AT93C46DN-SH-T ⁽²⁾ (NiPdAu Lead finish)	1.8	8S1	Lead-free/Halogen-free/
AT93C46D-TH-B ⁽¹⁾ (NiPdAu Lead finish)	1.8	8A2	Industrial Temperature (–40°C to 85°C)
AT93C46D-TH-T ⁽²⁾ (NiPdAu Lead finish)	1.8	8A2	(+0 0 10 00 0)
AT93C46DY6-YH-T ⁽²⁾ (NiPdAu Lead finish)	1.8	8Y6	
AT93C46DU3-UU-T ⁽²⁾	1.8	8U3-1	
AT93C46D-W-11 ⁽³⁾	1.8	Die Sale	Industrial (–40°C to 85°C)

Notes: 1. "-B" denotes bulk

2. "-T" denotes tape and reel. SOIC = 4K per reel. TSSOP, Ultra Thin Mini MAP, and dBGA2 = 5K per reel.

3. Available in tape and reel, and wafer form; order as SL788 for inkless wafer form. Bumped die available upon request. Please contact Serial Interface Marketing.

	Package Type						
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)						
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)						
8A2	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)						
8U3-1	8-ball, Die Ball Grid Array Package (dBGA2)						
8Y6	8-lead, 2.00 mm x 3.00 mm Body, 0.50mm Pitch, Ultra-Thin Mini-MAO, Dual No Lead Package. (DFN), (MLP 2x3mm)						
	Options						
-1.8	Low Voltage (1.8V to 5.5V)						

5. Part Marking Scheme

5.1 AT93C46D 8-PDIP

TOP MARK	Seal Year	Y = SEAL	YEAR		WW = SEAL WEEK
	Seal Week	6: 2006	0:	2010	02 = Week 2
		7: 2007	1:	2011	04 = Week 4
	-	8: 2008	2:	2012	:: : :::: :
A T M L U	Y W W	9: 2009	3:	2013	:: : :::: ::
	-				50 = Week 50
4 6 D 1					52 = Week 52
	-				
* Lot Number		Lot Numb	er to	Use ALL	Characters in Marking
	-				
I		BOTTOM M	ARK		
Pin 1 Indicator (Do	ot)			No Bott	om Mark

5.2 AT93C46D 8-SOIC

TOP M					1			Week
						 Y	 W	 W
		-		_		-		
	4				1		I	I
-								
I	* '		Nur		I			I
-								
P	 in 1	l In	dica	ator	(Dot	=)		

Y =	SEAL	YEAR		WW = SEAL WEEK
6:	2006	0:	2010	02 = Week 2
7:	2007	1:	2011	04 = Week 4
8:	2008	2:	2012	:: : :::: :
9:	2009	3:	2013	:: : :::: ::
				50 = Week 50
				52 = Week 52

Lot Number to Use ALL Characters in Marking

BOTTOM MARK

No Bottom Mark

12 **AT93C46D**

5.3 AT93C46D 8-TSSOP

TOP MARK

Pin 1 Indicator (Dot)	Y = SEAL YEAR	WW = SEAL WEEK
1	6: 2006 0: 2010	02 = Week 2
	7: 2007 1: 2011	04 = Week 4
* H Y W W	8: 2008 2: 2012	:: : :::: :
	9: 2009 3: 2013	:: : :::: ::
4 6 D 1 *		50 = Week 50
		52 = Week 52

BOTTOM MARK

С	0		0			
	-	-				
А	А	А	А	А	А	А
	-	-				
<-	Pin	1]	Indio	cator	-	

5.4 AT93C46D 8-Ultra Thin Mini MAP

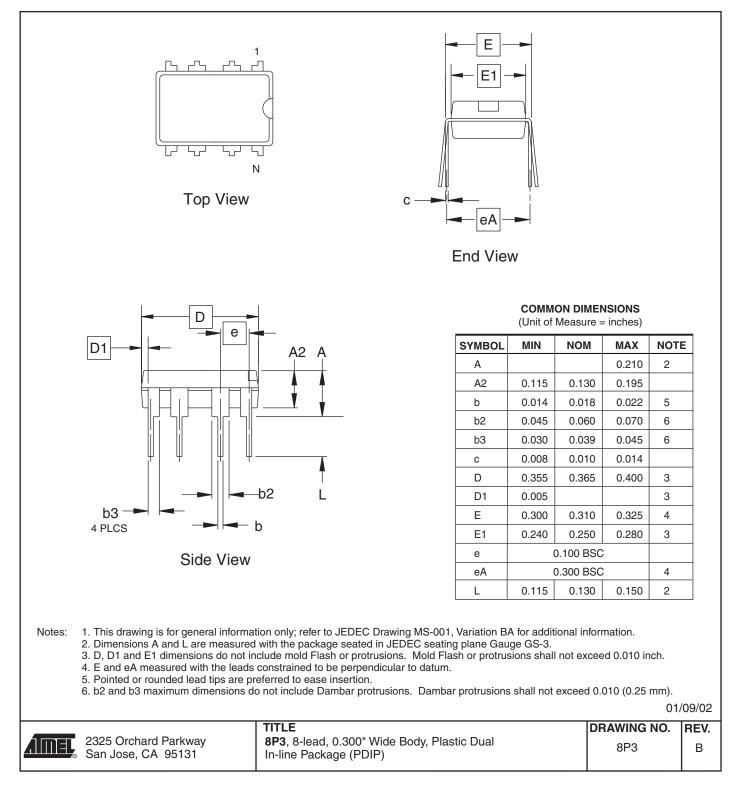
TOP MARK

Y = YEAR OF ASSEMBLY

5.5 AT93C46D dBGA2

TOP MARK

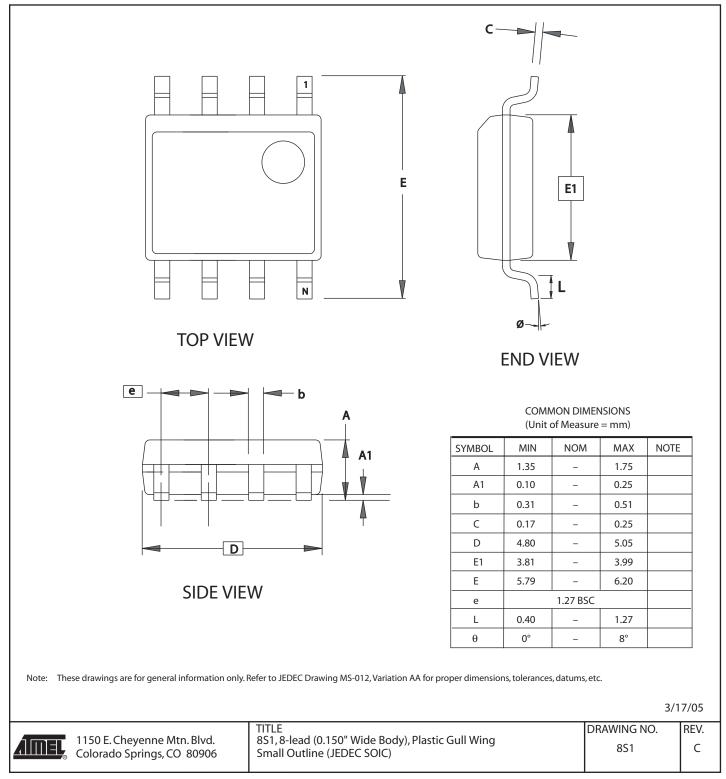
LINE 1----> 46DU LINE 2----> YMTC <-- Pin 1 This Corner</pre> Y = ONE DIGIT YEAR CODE 4: 2004 7: 2007 5: 2005 8: 2008 6: 2006 9: 2009 M = SEAL MONTH (USE ALPHA DESIGNATOR A-L) A = JANUARYB = FEBRUARYJ = OCTOBER K = NOVEMBER L = DECEMBER TC = TRACE CODE (ATMEL LOT


NUMBERS TO CORRESPOND

WITH ATK TRACE CODE LOG BOOK)

14 **AT93C46D**

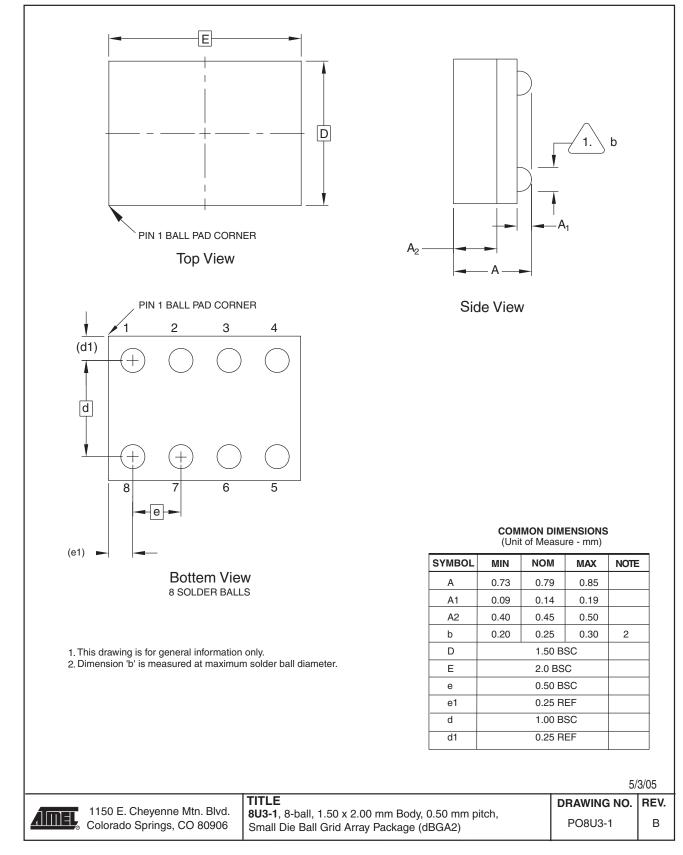
6. Package Information


8P3 - PDIP

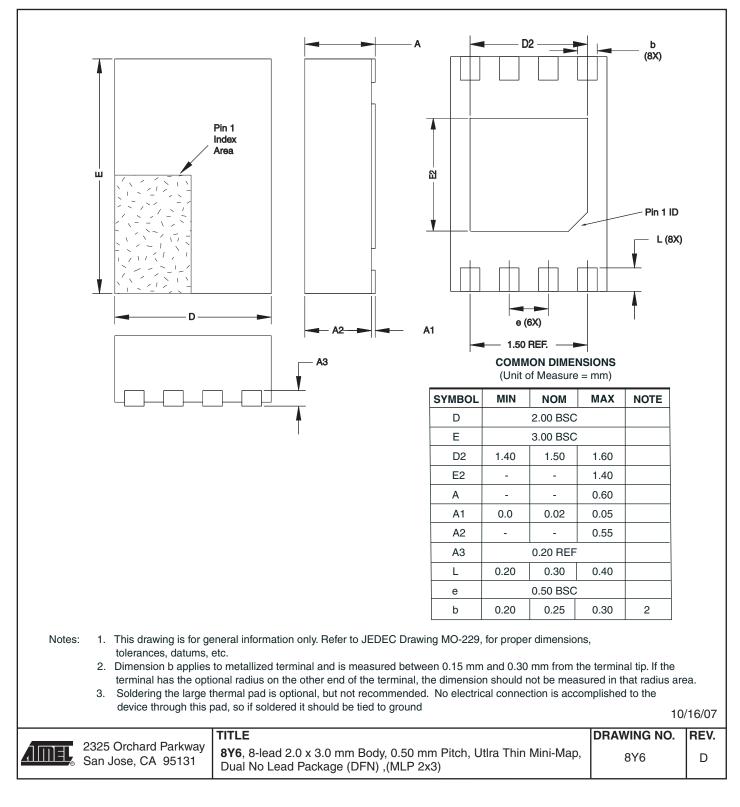

8S1 - JEDEC SOIC

16

AT93C46D


8A2 - TSSOP

8U3-1 - dBGA2



AT93C46D

18

AT93C46D

8Y6 – MLP 2x3

7. Revision History

Doc. Rev.	Date	Comments
5193F	1/2008	Removed 'preliminary' status
5193E	11/2007	Modified 'max' value in AC Characteristics table
5193D	8/2007	Moved Pinout figure Added new feature for Die Sales Modified Ordering Information table layout Modified Park Marking Schemes
5193C	6/2007	Updated to new template Added Product Markup Scheme Added Technical email contact
5193C	3/2007	Corrected Figures 4 and 5.
5193B	2/2007	Added 'Ultra Thin' description to 8-lead Mini-MAP package.
5193A	1/2007	Initial document release.

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com *Technical Support* s_eeprom@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

©2008 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.