FAIRCHILD			March 1995 Revised June 2002
SEMICONDபCTORTM			
74LCX16500			
Low Voltage 18-Bit Universal Bus Transceivers with			
5 V Tolerant Inputs and Outputs			
General Description Features			
These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.			- 5 V tolerant inputs and outputs - 2.3V-3.6V V_{CC} specifications provided
Data flow in each direction is controlled by output-enable (OEAB and $\overline{\mathrm{OEBA}}$), latch-enable (LEAB and LEBA), and clock ($\overline{\mathrm{CLKAB}}$ and $\overline{\mathrm{CLKBA}}$) inputs.			■ Power down high impedance inputs and outputs - Supports live insertion/withdrawal (Note 1)
The LCX16500 is designed for low voltage (2.5V or 3.3 V) V_{CC} applications with the capability of interfacing to a 5 V signal environment.			■ $\pm 24 \mathrm{~mA}$ output drive ($\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$)
			■ Uses patented noise/EMI reduction circuitry - Latch-up performance exceeds 500 mA
The LCX16500 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power.			ESD performance: Human body model > 2000V
			Machine model > 200V ■ Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)
			Note 1: To ensure the high-impedance state during power up or down, $\overline{O E}$ should be tied to V_{CC} and OE tied to GND through a resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.
Ordering Code:			
Order Number	Package Number		Package Description
$\begin{aligned} & \hline \text { 74LCX16500G } \\ & \text { (Note 2)(Note 3) } \end{aligned}$	BGA54A	54-Ball Fine-Pitch Bal	Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
$\begin{aligned} & \hline \text { 74LCX16500MEA } \\ & \text { (Note 3) } \end{aligned}$	MS56A	56-Lead Shrink Small	Uutline Package (SSOP), JEDEC MO-118, 0.300" Wide
$\begin{aligned} & \text { 74LCX16500MTD } \\ & \text { (Note 3) } \end{aligned}$	MTD56	56-Lead Thin Shrink	mall Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Note 2: Ordering code " G " indicates Trays. Note 3: Devices also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering code.			

Connection Diagrams
Pin Assignment for SSOP and TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\mathrm{A}_{1}-\mathrm{A}_{18}$	Data Register A Inputs/3-STATE Outputs
$\mathrm{B}_{1}-\mathrm{B}_{18}$	Data Register B Inputs/3-STATE Outputs
$\mathrm{CLKAB}, \overline{\mathrm{CLKBA}}$	Clock Pulse Inputs
LEAB, LEBA	Latch Enable Inputs
OEBA, $\overline{\text { OEBA }}$	Output Enable Inputs

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	A_{2}	$\mathrm{~A}_{1}$	OEAB	GND	B_{1}	$\mathrm{~B}_{2}$
\mathbf{B}	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	LEAB	$\overline{\mathrm{CLKAB}}$	B_{3}	$\mathrm{~B}_{4}$
\mathbf{C}	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	B_{5}	$\mathrm{~B}_{6}$
\mathbf{D}	$\mathrm{~A}_{8}$	$\mathrm{~A}_{7}$	GND	GND	B_{7}	$\mathrm{~B}_{8}$
\mathbf{E}	$\mathrm{~A}_{10}$	$\mathrm{~A}_{9}$	GND	GND	B_{9}	$\mathrm{~B}_{10}$
\mathbf{F}	$\mathrm{~A}_{12}$	$\mathrm{~A}_{11}$	GND	GND	B_{11}	$\mathrm{~B}_{12}$
\mathbf{G}	$\mathrm{~A}_{14}$	$\mathrm{~A}_{13}$	$\mathrm{~V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$	B_{13}	$\mathrm{~B}_{14}$
\mathbf{H}	$\mathrm{~A}_{16}$	$\mathrm{~A}_{15}$	$\overline{\text { OEBA }}$	$\overline{\text { CLKBA }}$	B_{15}	$\mathrm{~B}_{16}$
\mathbf{J}	$\mathrm{~A}_{17}$	$\mathrm{~A}_{18}$	LEBA	GND	B_{18}	$\mathrm{~B}_{17}$

Truth Table (Note 4)

Inputs				Output
OEAB	LEAB	$\overline{\text { CLKAB }}$	A $_{\boldsymbol{n}}$	B $_{\boldsymbol{n}}$
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\downarrow	L	L
H	L	\downarrow	H	H
H	L	H	X	B_{0} (Note 5)
H	L	L	X	B_{0} (Note 6)

Note 4: A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{\mathrm{OEBA}}$, LEBA, and CLKBA.
Note 5: Output level before the indicated steady-state input conditions were established.

Note 6: Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.

Functional Description

For A-to-B data flow, the LCX16500 operates in the transparent mode when LEAB is HIGH. When LEAB is LOW the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/flip-flop on the HIGH-to-LOW transition of CLKAB Output-enable OEAB is active-HIGH. When OEAB is HIGH, the outputs are active. When OEAB is LOW, the outputs are in the high impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active HIGH and $\overline{O E B A}$ is active LOW).

Absolute Maximum Ratings(Note 7)				
Symbol	Parameter	Value	Conditions	Units
V_{Cc}	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to } \mathrm{V}_{\mathrm{cc}}+0.5 \end{gathered}$	Output in 3-STATE Output in HIGH or LOW State (Note 8)	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}$	mA
Iok	DC Output Diode Current	$\begin{array}{r} \hline-50 \\ +50 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$	mA
Io	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current per Supply Pin	± 100		mA
IGND	DC Ground Current per Ground Pin	± 100		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Note 7: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recom mended Operating Conditions" table will define the conditions for actual device operation.
Note 8: l_{0} Absolute Maximum Rating must be observed.
Note 9: Unused (inputs or I/O's) must be held HIGH or LOW. They may not float.
DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.3-2.7	1.7		V
			2.7-3.6	2.0		
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.3-2.7		0.7	v
			2.7-3.6		0.8	
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		v
		$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-3.6		0.2	v
		$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
loz	3-STATE I/O Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$

DC Electrical Characteristics（Continued）						
Symbol	Parameter	Conditions	$V_{C C}$ （V）	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2．3－3．6		20	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$（Note 10）	2．3－3．6		± 20	
$\Delta \mathrm{l}$ CC	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2．3－3．6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

 specification applies to any outputs switching in the same direction，either HIGH－to－LOW（ $\mathrm{t}_{\mathrm{OSHL}}$ ），or LOW－to－HIGH（ $\mathrm{t}_{\mathrm{OSLH}}$ ）．

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
			（V）	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline-0.8 \\ & -0.6 \end{aligned}$	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open， $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{/ \mathrm{O}}$	Input／Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$, and 2.7 V $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $t_{\text {rec }}$ Waveforms

3-STATE Output Low Enable and Disable Times for Logic

FIGURE 2. Waveforms
(Input Characteristics; $\mathbf{f = 1 M H z ,} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{3 n s}$)

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

