Registered Hex TTL to PECL Translator

Description

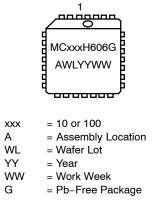
The MC10/100H606 is a 6-bit, registered, single supply TTL to PECL translator. The device features differential PECL outputs as well as a choice between either a differential PECL clock input or a TTL clock input. The asynchronous master reset control is a PECL level input.

With its differential PECL outputs and TTL inputs the H606 device is ideally suited for the transmit function of a HPPI bus type board-to-board interface application. The on chip registers simplify the task of synchronizing the data between the two boards.

The device is available in either ECL standard: the MECL $10H^{\text{TM}}$ device is compatible with MECL 10KH logic levels, with a V_{CC} of +5.0 V while the 100H device is compatible with 100K logic levels, with a V_{CC} of +5.0 V.

Features

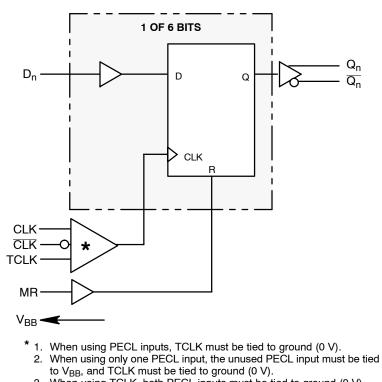
- Differential 50 Ω ECL Outputs
- Choice Between Differential PECL or TTL Clock Input
- Single Power Supply
- Multiple Power and Ground Pins to Minimize Noise
- Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

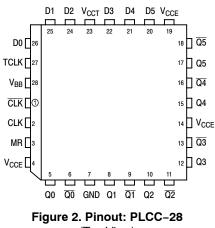
PLCC-28 FN SUFFIX CASE 776

MARKING DIAGRAM*


*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

© Semiconductor Components Industries, LLC, 2006 November, 2006 – Rev. 6

3. When using TCLK, both PECL inputs must be tied to ground (0 V).

Figure 1. Logic Diagram

(Top View)

Table 1. TRUTH TABLE

Dn	MR	TCLK/CLK	Qn+1
L	L	Z	LIL
H	L	Z	
X	H	X	

Z = LOW to HIGH Transition

Table	2. PIN	NAMES
-------	--------	-------

PIN	FUNCTION
D0 – D5 CLK, CLK TCLK MR Q0 – Q5 Q0 – Q5 V _{CCE} V _{CCT} GND	TTL Data Inputs Differential PECL Clock Input TTL Clock Input PECL Master Reset Input True PECL Outputs Inverted PECL Outputs PECL V_{CC} (+5.0 V) TTL V_{CC} (+5.0 V) TTL/PECL Ground

			$T_A = 0^{\circ}C$		C T _A = 25°C		T _A = 85°C		
Symbol	Characteristic	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{INH}	Input HIGH Current			255		175		175	μA
I _{INL}	Input LOW Current			0.5		0.5		0.5	μA
V _{IH}	Input HIGH Voltage (Note 4)	V _{CCT} = 5.0 V	3830	4160	3870	4190	3930	4280	mV
V _{IL}	Input LOW Voltage (Note 4)	V _{CCT} = 5.0 V	3050	3520	3050	3520	3050	3555	mV
V _{OH}	Output HIGH Voltage (Note 4)	V _{CCT} = 5.0 V	3980	4160	4020	4190	4080	4270	mV
V _{OL}	Output LOW Voltage (Note 4)	V _{CCT} = 5.0 V	3050	3370	3050	3370	3050	3400	mV
V_{BB}	Reference Voltage (Note 4)	V _{CCT} = 5.0 V	3600	3710	3630	3730	3670	3790	mV

Table 3. 10H PECL DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0 \text{ V} \pm 5\%$)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. PECL V_{IL}, V_{IH}, V_{OL}, V_{OH} V_{BB} are given for V_{CCT} = V_{CCE} = 5.0 V and will vary 1:1 with the power supply.

Table 4. 100H PECL DC CHARACTERISTICS (V_{CCT} = V_{CCE} = 5.0 V ± 5%)

			T _A = 0°C		T _A = 25°C		°C T _A = 85°C		
Symbol	Characteristic	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{INH}	Input HIGH Current			255		175		175	μΑ
I _{INL}	Input LOW Current			0.5		0.5		0.5	μΑ
V_{IH}	Input HIGH Voltage (Note 5)	V _{CCT} = 5.0 V	3835	4120	3835	4120	3835	4120	mV
V _{IL}	Input LOW Voltage (Note 5)	V _{CCT} = 5.0 V	3190	3525	3190	3525	3190	3525	mV
V _{OH}	Output HIGH Voltage (Note 5)	V _{CCT} = 5.0 V	3975	4120	3975	4120	3975	4120	mV
V _{OL}	Output LOW Voltage (Note 5)	V _{CCT} = 5.0 V	3190	3380	3190	3380	3190	3380	mV
V_{BB}	Output Bias Voltage (Note 5)	V _{CCT} = 5.0 V	3600	3720	3600	3720	3600	3720	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. PECL VIL, VIH, VOL, VOH VBB are given for VCCT = VCCE = 5.0 V and will vary 1:1 with the power supply.

Tuble 0.												
			T _A = 0°C			$T_{A} = 0^{\circ}C \qquad \qquad T_{A} = + 25^{\circ}C$			°C	TA	= + 85	°C
Symbol	Characteristic	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
I _{CCL}	Supply Current	Outputs LOW		18	30		18	30		18	30	
I _{CCH}	Supply Current	Outputs HIGH		13	25		13	25		13	25	
I _{GND}	Supply Current			75	90		75	90		75	95	

Table 5. DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0 \text{ V} \pm 5\%$)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Unit

mΑ

mΑ

mΑ

Table 6. TTL DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0 \text{ V} \pm (5\%)$)

			T _A =	: 0°C	T _A =	25°C	5°C T _A = 85°C		
Symbol	Characteristic	Condition	Min	Max	Min	Max	Min	Max	Unit
V _{IH}	Input HIGH Voltage		2.0		2.0		2.0		V
V _{IL}	Input LOW Voltage			0.8		0.8		0.8	V
V _{IK}	Input Clamp Voltage	I _{IN} = -18 mA		-1.2		-1.2		-1.2	V
I _{IH}	Input HIGH Current	V _{IN} = 2.7 V V _{IN} = 7.0 V		20 100		20 100		20 100	V
IIL	Input LOW Current	V _{IN} = 0.5 V		-0.6		-0.6		-0.6	mA

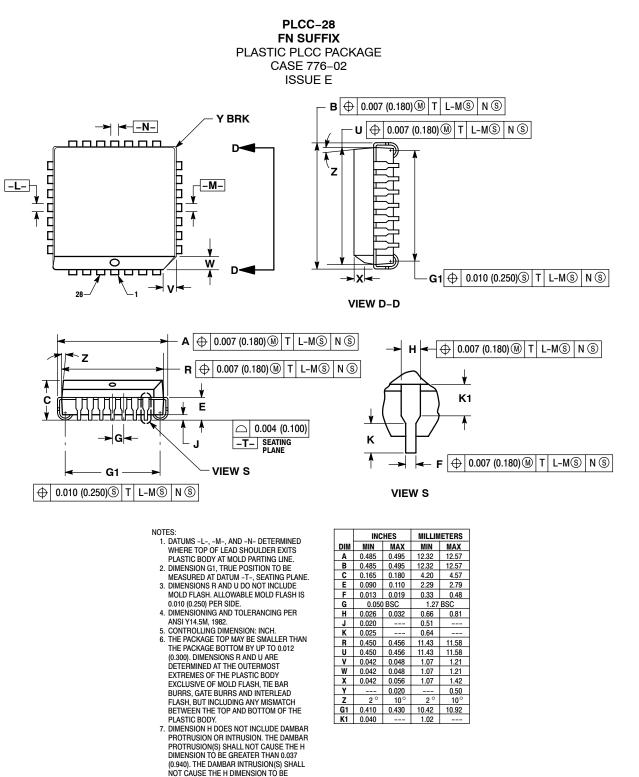
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

			Т	$T_A = 0^{\circ}C$		TA	= + 25	°C	T _A = + 85°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{PD}	Propagation Delay TCLK++	50 Ω to V _{CC} –2.0 V	1.75		3.75	1.75	3.00	3.75	1.75		3.75	ns
t _{PD}	Propagation Delay TCLK+-	50 Ω to V _{CC} –2.0 V	1.75		3.75	1.75	3.00	3.75	1.75		3.75	ns
t _{PD}	Propagation Delay CLK++	50 Ω to V _{CC} –2.0 V	1.50		3.50	1.50	2.50	3.50	1.50		3.50	ns
t _{PD}	Propagation Delay CLK+-	50 Ω to V _{CC} –2.0 V	1.50		3.50	1.50	2.50	3.50	1.50		3.50	ns
t _{PD}	Propagation Delay MR+-	50 Ω to V _{CC} –2.0 V	1.50		3.50	1.50	2.50	3.50	1.75		3.75	ns
t _{SKEW}	Device Skew Part-to-Part Within Device	50 Ω to V _{CC} –2.0 V			2.0 0.5		1.0 0.3	2.0 0.5			2.0 0.5	ns
t _S	Setup Time	50 Ω to V _{CC} –2.0 V	1.5	0.5		1.5	0.5		1.5	0.5		ns
t _H	Hold Time	50 Ω to V _{CC} –2.0 V	1.5	0.5		1.5	0.5		1.5	0.5		ns
t _{PW}	Minimum Pulse Width CLK	50 Ω to V _{CC} –2.0 V	1.5			1.5	1.0		1.5			ns
t _{PW}	Minimum Pulse Width MR	50 Ω to V _{CC} –2.0 V	1.5			1.5			1.5			ns
t _r	Rise Time	50 Ω to V _{CC} –2.0 V			2.0		1.0	2.0			2.0	ns
t _f	Fall Time	50 Ω to V _{CC} –2.0 V			2.0		1.0	2.0			2.0	ns
t _{RES/REC}	Reset/Recovery Time	50 Ω to V _{CC} –2.0 V	2.5	2.0		2.5	2.0		2.5	2.0		ns

Table 7. AC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0 \text{ V} \pm (5\%)$)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

ORDERING INFORMATION


Device	Package	Shipping [†]
MC10H606FN	PLCC-28	37 Units / Rail
MC10H606FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC10H606FNR2	PLCC-28	500 / Tape & Reel
MC10H606FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel
MC100H606FN	PLCC-28	37 Units / Rail
MC100H606FNG	PLCC-28 (Pb-Free)	37 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	_	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	_	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	_	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SMALLER THAN 0.025 (0.635).

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). MECL 10 H is a trademark of Motorola, Inc.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application is unich the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use personal and such applications for any goal of the spin-the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative