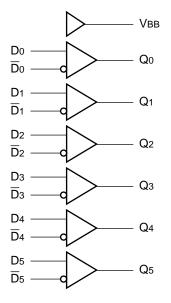


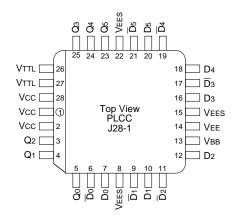
FEATURES


- Max. propagation delay of 3.7ns
- IEE min. of –37mA
- TTL outputs
- Extended supply voltage option: VEE = -4.2V to -5.5V
- 25% faster than National's 325
- Differential inputs with built-in offset
- Voltage and temperature compensation for improved noise immunity
- VBB output for single-ended use
- Internal 75KΩ input pull-down resistors
- Function and pinout compatible with Fairchild F100K
- Available in 28-pin PLCC package

DESCRIPTION

The SY100S325 are hex translators for converting 100K ECL logic levels to TTL logic levels. Inputs can be used as inverting, non-inverting or differential receivers. An internal reference voltage generator provides VBB for single-ended operation or for use in Schmitt trigger applications. All inputs have $75K\Omega$ pull-down resistors. The outputs will go LOW when the inputs are either open or have the same potential.

When used in single-ended operation, the apparent input threshold of the true inputs is 20mV to 40mV higher (positive) than the threshold of the complementary inputs. The VTTL and VEE power may be applied in either order.


BLOCK DIAGRAM

PIN NAMES

Function			
Data Inputs			
Inverting Data Inputs			
Data Outputs			
VEE Substrate			
TTL Vcc Power Supply			
Vcco for ECL Outputs			

PACKAGE/ORDERING INFORMATION

Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY100S325JC	J28-1	Commercial	SY100S325JC	Sn-Pb
SY100S325JCTR ⁽¹⁾	J28-1	Commercial	SY100S325JC	Sn-Pb
SY100S325JY ⁽²⁾	J28-1	Industrial	SY100S325JY with Pb-Free bar-line indicator	Matte-Tin
SY100S325JYTR ^(1, 2)	J28-1	Industrial	SY100S325JY with Pb-Free bar-line indicator	Matte-Tin

Notes:

1. Tape and Reel.

2. Pb-Free package is recommended for new designs.

28-Pin PLCC (J28-1)

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min.	Тур.	Max.	Unit	Co	ondition
Vон	Output HIGH Voltage	2.5		_	V	Iон = -2.0mA	VIN = VIH (Max.)
Vol	Output LOW Voltage	—		0.5	V	IOL = 24mA	VIN = VI∟ (Min.)
Vdiff	Input Voltage Differential	150	_	—	mV	Required for Full Output Swing	
Vсм	Common Mode Voltage			1.0	V	Permissible ±VCM with Respect to VBB	
Іін	Input HIGH Current			350	μA	VIN = VIH (Max.), D0–D5 = VBB, <u>D</u> 0– <u>D</u> 5 = VIL (Min	
liL	Input LOW Current	0.5		_	μA	VIN = VIH (Min.), D0–D5 = VBB	
los	Output Short Circuit Current	-150	-80	-60	mA	Vout = GND	
IEE	VEE Power Supply Current	-37	-24	-17	mA	D0-D5 = Vвв	
ITTL	VTTL Power Supply Current		42	65	mA	D0-D5 = Vвв	
Vbb	Ouptut Reference Voltage	-1380	-1320	-1260	mV	Ivвв = -2.1mА	
Viн	Single-Ended Input HIGH Voltage	-1165	—	-880	mV	Guaranteed HIGH Sig Tied to VBB)	gnal for All Inputs (with One
VIL	Single-Ended Input LOW Voltage	-1810	_	-1475	mV	Guaranteed LOW Sig Tied to VBB)	nal for All Inputs (with One

AC ELECTRICAL CHARACTERISTICS

VEE = -4.2V to -5.5V unless otherwise specified, VCC = VCCA = GND, VTTL = +4.5V to +5.5V

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tPLH tPHL	Propagation Delay Data to Output	900	2100	2900	ps	CL = 15pF, Figure 2
tPLH tPHL	Propagation Delay Data to Output	900	3100	3700	ps	CL = 50pF, Figure 2

SWITCHING WAVEFORM

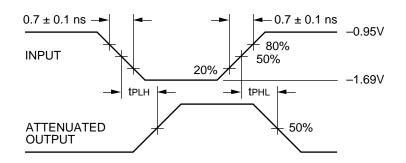


Figure 1. Propagation Delay

Note:

VEE = -4.2V to -5.5V unless otherwise specified, Vcc = VccA = GND

TEST CIRCUITS

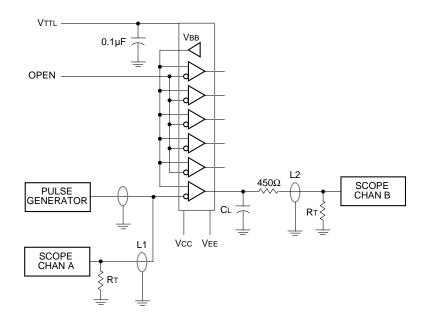
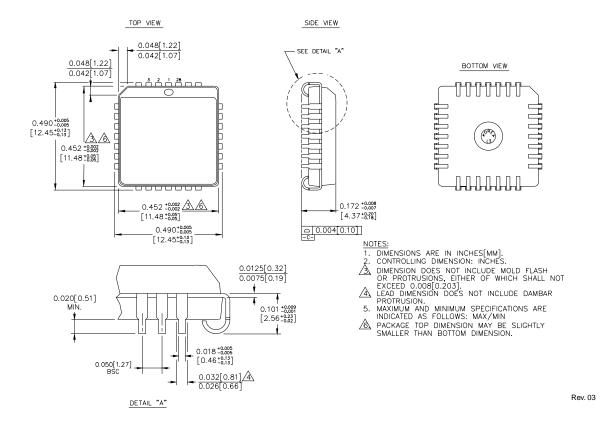



Figure 2. AC Test Circuit for 15pF Loading

Notes:

 $\label{eq:VCC} \begin{array}{l} \mathsf{VCC} = \mathsf{0V}, \ \mathsf{VEE} = -4.5\mathsf{V}, \ \mathsf{VTTL} = +5\mathsf{V} \\ \mathsf{L1} \mbox{ and } \mathsf{L2} = equal \ \mathsf{length} \ 50\Omega \ \mathsf{impedance} \ \mathsf{lines} \\ \mathsf{R\tau} = 50\Omega \ \mathsf{terminator} \ \mathsf{internal} \ \mathsf{to} \ \mathsf{scope} \\ \mathsf{Decoupling} \ 0.1\mu\mathsf{F} \ \mathsf{from} \ \mathsf{GND} \ \mathsf{to} \ \mathsf{Vcc}, \ \mathsf{VEE} \ \mathsf{and} \ \mathsf{VTTL} \\ \mathsf{All} \ \mathsf{unused} \ \mathsf{outputs} \ \mathsf{are} \ \mathsf{loaded} \ \mathsf{with} \ 500\Omega \ \mathsf{to} \ \mathsf{GND} \\ \mathsf{CL} = \ \mathsf{Fixture} \ \mathsf{and} \ \mathsf{stray} \ \mathsf{capacitance} = \ \mathsf{3pF} \end{array}$

28-PIN PLCC (J28-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

теь + 1 (408) 944-0800 FAX + 1 (408) 474-1000 web http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.