
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code
Connection Diagram
Logic Di

Logic Diagram

Pin Descriptions

Pin Name	Description
Q, <u>Q</u>	ECL Data Outputs
D, D	ECL Data Inputs
V _{BB}	Reference Voltage
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

Top View

© 2003 Fairchild Semiconductor Corporation DS500776

www.fairchildsemi.com

Downloaded from Elcodis.com electronic components distributor

Typical propagation delay of 300 ps Typical I_{EE} of 17 mA

Features

- Internal pull-down resistors on D
- Fairchild MSOP-8 package is a drop-in replacement to ON TSSOP-8

January 2003

Revised February 2003

- Meets or exceeds JEDEC specification EIA/JESD78 IC latch-up test
- Moisture Sensitivity Level 1
- ESD Performance:
- Human Body Model > 2000V Machine Model > 150V

Package Description

8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow

8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide

FAIRCHILD

SEMICONDUCTOR®

100LVEL16 3.3V ECL Differential Receiver

General Description

The 100LVEL16 is a low voltage differential receiver that contains an internally supplied voltage source, V_{BB} . When used in a single ended input condition the unused input must be tied to V_{BB} . When operating in this mode use a 0.01 μ F capacitor to decouple V_{BB} and V_{CC} and also limit the current sinking or sourcing capability to 0.5mA. When V_{BB} is not used it should be left open.

With inputs open the differential Q outputs default LOW and $\overline{\rm Q}$ outputs default HIGH.

Product

Code

Top Mark

KVL16

KV16

The 100 series is temperature compensated.

Package

Number M08A

MA08D

Ordering Code:

Order Number

100LVEL16M 100LVEL16M8

(Preliminary)

Absolute Maximum Ratings(Note 1)

PECL Supply Voltage (V _{CC}) $V_{EE} = 0V$	0.0V to +8.0V
NECL Supply Voltage (V _{EE}) $V_{CC} = 0V$	0.0V to -8.0V
PECL DC Input Voltage (VI) $V_{EE} = 0V$	0.0V to +6.0V
NECL DC Input Voltage (V _I) $V_{CC} = 0V$	0.0V to -6.0V
DC Output Current (I _{OUT})	
Continuous	50 mA
Surge	100 mA
V _{BB} Sink/Source Current (I _{BB})	±0.5 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions

PECL Power Supply $(V_{EE} = 0V)$ NECL Power Supply $(V_{CC} = 0V)$ Free Air Operating Temperature (T_A)

 $V_{CC} = 3.0V$ to 3.8V

 $V_{EE} = -3.8V \text{ to } -3.0V$ $-40^{\circ}C \text{ to } +85^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Symbol	Parameter	-40°C				25°C		85°C			Units
Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 3)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 3)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single Ended)	1490		1825	1490		1825	1490		1825	mV
V _{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
VIHCMR	Input HIGH Voltage Common Mode										
	Range (Differential) (Note 4)										
	V _{PP} < 500mV	1.2		2.9	1.1		2.9	1.1		2.9	v
	$V_{PP} \ge 500 mV$	1.5		2.9	1.4		2.9	1.4		2.9	v
IIH	Input HIGH Current (Note 5)			150			150			150	μA
IL	Input LOW Current (Note 5) D	0.5			0.5			0.5			μA
	D	-600			-600			-600			

LVPECL DC Electrical Characteristics $V_{CC} = 3.3V$; $V_{EE} = 0.0V$ (Note 2)

Note 2: Input and output parameters vary 1 to 1 with V_{CC}. V_{EE} can vary ± 0.3 V.

Note 3: Outputs are terminated through a 50Ω Resistor to V_{CC} – 2.0V.

Note 4: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1 to 1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 5: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

www.fairchildsemi.com

Symbol	Parameter	−40°C				25°C			Units		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 7)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
VIH	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
VIL	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 8)										
	V _{PP} < 500mV	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	v
	$V_{PP} \ge 500 mV$	-1.8		-0.4	-1.9		-0.4	-1.9		-0.4	v
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current D	0.5 600			0.5 600			0.5 600			μΑ

100LVEL16

Note 6: Input and output parameters vary 1 to 1 with V_{CC}. V_{EE} can vary ±0.3V.

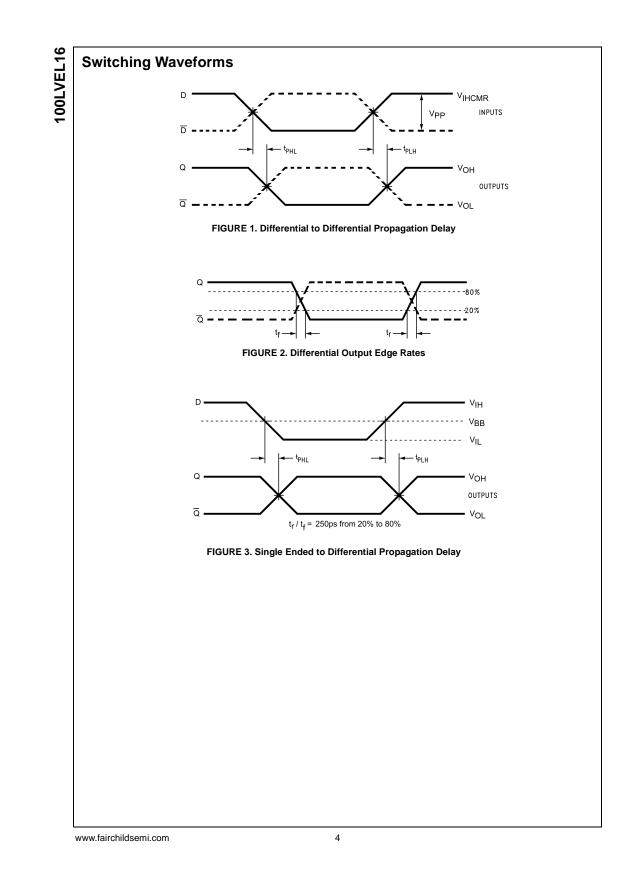
Note 7: Outputs are terminated through a 50 Ω Resistor to V_CC – 2.0V.

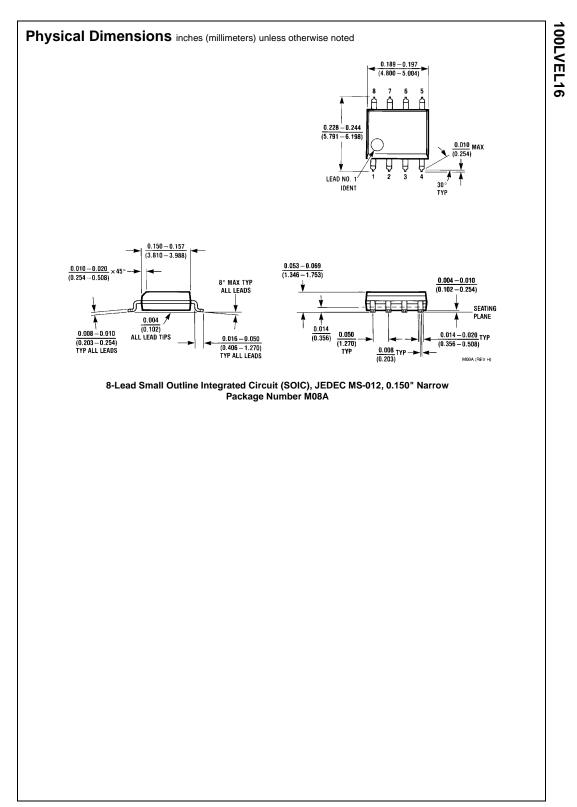
Note 8: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1-to-1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 9: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

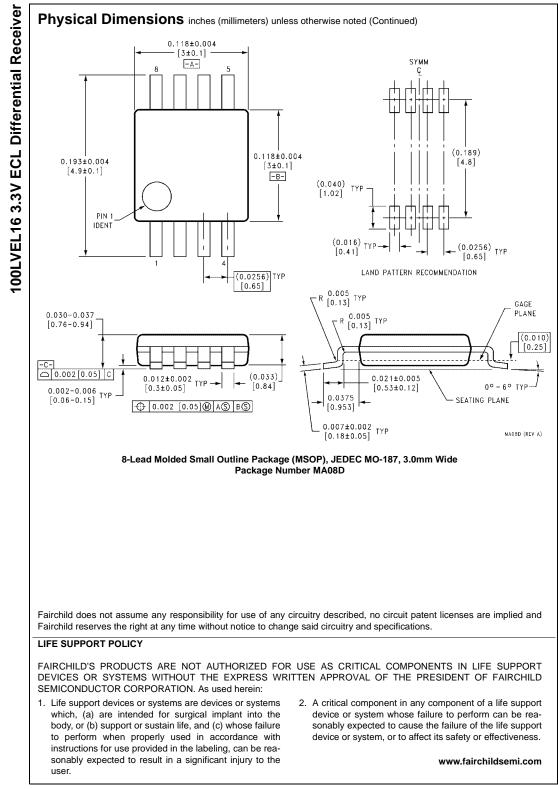
100LVEL16 AC Electrical Characteristics $V_{CC} = 3.3V$; $V_{EE} = 0.0V$ or $V_{CC} = 0.0V$; $V_{EE} = -3.3V$ (Note 10) (Note 11)


Parameter	−40°C			25°C			85°C			Units	Figure
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	Number
Maximum Toggle Frequency		TBD			TBD			TBD		GHz	
Propagation Delay to Output (Diff)	150	275	400	225	300	375	240	315	390	DS	Figures
(SE)	100	275	450	175	300	425	190	315	440		1, 3
Duty Cycle Skew (Note 12)		5	30		5	20		5	20	ps	
Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps	
Input Swing	150		1000	150		1000	150		1000	mV	Figure 1
Output Rise Times Q (20% to 80%)	120	220	320	120	220	320	120	220	320	ps	Figure 2
F C	Propagation Delay to Output (Diff) (SE) Duty Cycle Skew (Note 12) Cycle-to-Cycle Jitter nput Swing	Maximum Toggle Frequency Propagation Delay to Output (Diff) 150 (SE) 100 Outy Cycle Skew (Note 12) Cycle-to-Cycle Jitter nput Swing 150	Maximum Toggle Frequency TBD Propagation Delay to Output (Diff) 150 275 Outy Cycle Skew (Note 12) 5 Cycle-to-Cycle Jitter TBD nput Swing 150	Maximum Toggle Frequency TBD Propagation Delay to Output (Diff) 150 275 400 (SE) 100 275 450 Duty Cycle Skew (Note 12) 5 30 Cycle-to-Cycle Jitter TBD nput Swing 150 1000	Maximum Toggle Frequency TBD Propagation Delay to Output (Diff) 150 275 400 225 (SE) 100 275 450 175 Duty Cycle Skew (Note 12) 5 30 200 Cycle-to-Cycle Jitter TBD 1000 150	Maximum Toggle Frequency TBD TBD Propagation Delay to Output (Diff) 150 275 400 225 300 (SE) 100 275 450 175 300 Duty Cycle Skew (Note 12) 5 30 5 Cycle-to-Cycle Jitter TBD TBD TBD nput Swing 150 1000 150	Maximum Toggle Frequency TBD TBD Propagation Delay to Output (Diff) 150 275 400 225 300 375 (SE) 100 275 450 175 300 425 Duty Cycle Skew (Note 12) 5 30 5 20 Cycle-to-Cycle Jitter TBD TBD TBD nput Swing 150 1000 150 1000	Maximum Toggle Frequency TBD TBD Propagation Delay to Output (Diff) (SE) 150 275 400 225 300 375 240 (SE) 100 275 450 175 300 425 190 Duty Cycle Skew (Note 12) 5 30 5 20 Cycle-to-Cycle Jitter TBD TBD 100 150	Maximum Toggle Frequency TBD TBD TBD Propagation Delay to Output (Diff) 150 275 400 225 300 375 240 315 (SE) 100 275 450 175 300 425 190 315 Duty Cycle Skew (Note 12) 5 30 5 20 5 Cycle-to-Cycle Jitter TBD TBD TBD TBD nput Swing 150 1000 150 1000 150	Maximum Toggle Frequency TBD TBD TBD Propagation Delay to Output (Diff) 150 275 400 225 300 375 240 315 390 (SE) 100 275 450 175 300 425 190 315 440 Duty Cycle Skew (Note 12) 5 30 5 20 5 20 Cycle-to-Cycle Jitter TBD TBD TBD TBD 100 150 1000 150 1000 150 1000	Maximum Toggle Frequency TBD TBD GHz Propagation Delay to Output (Diff) 150 275 400 225 300 375 240 315 390 ps Outy Cycle Skew (Note 12) 5 30 5 20 5 20 5 20 ps Cycle-to-Cycle Jitter TBD 1000 150 1000 150 1000 mV


Note 10: V_{EE} can vary $\pm\,0.3V.$

Note 11: Measured using a 750 mV input swing centered at V_{CC} - 1.32V; 50% duty cycle clock source; $t_r = t_f = 250$ ps (20% - 80%) at $f_{IN} = 1$ MHz. All loading with 50 Ω to V_{CC} - 2.0V.

Note 12: Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device under identical conditions.


3

www.fairchildsemi.com

5

