Ordering Code:

Order Number	Package Number	Package Description
74F382SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74F382SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F382PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A Operand Inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	B Operand Inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Function Select Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
C_{n}	Carry Input	$1.0 / 5.0$	$20 \mu \mathrm{~A} /-3.0 \mathrm{~mA}$
$\mathrm{C}_{\mathrm{n}}+4$	Carry Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
OVR^{2}	Overflow Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~F}_{0}-\mathrm{F}_{3}$	Function Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

Signals applied to the Select inputs $\mathrm{S}_{0}-\mathrm{S}_{2}$ determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Truth Table. The circuit performs the arithmetic functions for either active HIGH or active LOW operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a carry (HIGH for active HIGH operands, LOW for active LOW operands) into the C_{n} input of the least significant package. Ripple expansion is illustrated in Figure 2. The overflow output OVR is the Exclusive-OR of $\mathrm{C}_{\mathrm{n}+3}$ and $\mathrm{C}_{\mathrm{n}+4}$; a HIGH signal on OVR indicates overflow in twos complement operation. Typical delays for Figure 2 are given in Figure 1.

Function Select Table

Select			Operation
$\mathbf{S}_{\mathbf{0}}$	S $_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	
L	L	L	Clear
H	L	L	B Minus A
L	H	L	A Minus B
H	H	L	A Plus B
L	L	H	A \oplus B
H	L	H	A + B
L	H	H	AB
H	H	H	Preset

H=HIGH Voltage Level
L=LOW Voltage Level

Path Segment	Toward F	Output $\mathbf{C}_{\boldsymbol{n}+4}$, OVR
A_{1} or B_{1} to $\mathrm{C}_{\mathrm{n}+4}$	6.5 ns	6.5 ns
C_{n} to $\mathrm{C}_{\mathrm{n}+4}$	6.3 ns	6.3 ns
C_{n} to $\mathrm{C}_{\mathrm{n}+4}$	6.3 ns	6.3 ns
C_{n} to F	8.1 ns	-
C_{n} to $\mathrm{C}_{\mathrm{n}+4}$, OVR	-	8.0 ns
Total Delay	27.2 ns	27.1 ns

FIGURE 1. 16-Bit Delay Tabulation

FIGURE 2. 16-Bit Ripply Carry ALU Expansion

Truth Table												
	Inputs						Outputs					
Function	S_{0}	S_{1}	S_{2}	C_{n}	A_{n}	B_{n}	F_{0}	F_{1}	F_{2}	F_{3}	OVR	$\mathrm{C}_{\mathrm{n}+4}$
CLEAR	L	L	L	L	X	X	L	L	L	L	H	H
				H	X	X	L	L	L	L	H	H
B MINUS A	H	L	L	L	L	L	H	H	H	H	L	L
				L	L	H	L	H	H	H	L	H
				L	H	L	L	L	L	L	L	L
				L	H	H	H	H	H	H	L	L
				H	L	L	L	L	L	L	L	H
				H	L	H	H	H	H	H	L	H
				H	H	L	H	L	L	L	L	L
				H	H	H	L	L	L	L	L	H
A MINUS B	L	H	L	L	L	L	H	H	H	H	L	L
				L	L	H	L	L	L	L	L	L
				L	H	L	L	H	H	H	L	H
				L	H	H	H	H	H	H	L	L
				H	L	L	L	L	L	L	L	H
				H	L	H	H	L	L	L	L	L
				H	H	L	H	H	H	H	L	H
				H	H	H	L	L	L	L	L	H
A PLUS B	H	H	L	L	L	L	L	L	L	L	L	L
				L	L	H	H	H	H	H	L	L
				L	H	L	H	H	H	H	L	L
				L	H	H	L	H	H	H	L	H
				H	L	L	H	L	L	L	L	L
				H	L	H	L	L	L	L	L	H
				H	H	L	L	L	L	L	L	H
				H	H	H	H	H	H	H	L	H
$\mathrm{A} \oplus \mathrm{B}$	L	L	H	X	L	L	L	L	L	L	L	L
				X	L	H	H	H	H	H	L	L
				L	H	L	H	H	H	H	L	L
				X	H	H	L	L	L	L	H	H
				H	H	L	H	H	H	H	H	H
A + B	H	L	H	X	L	L	L	L	L	L	L	L
				X	L	H	H	H	H	H	L	L
				X	H	L	H	H	H	H	L	L
				L	H	H	H	H	H	H	L	L
				H	H	H	H	H	H	H	H	H
AB	L	H	H	X	L	L	L	L	L	L	H	H
				X	L	H	L	L	L	L	L	L
				X	H	L	L	L	L	L	H	H
				L	H	H	H	H	H	H	L	L
				H	H	H	H	H	H	H	H	H
PRESET	H	H	H	X	L	L	H	H	H	H	L	L
				X	L	H	H	H	H	H	L	L
				X	H	L	H	H	H	H	L	L
				L	H	H	H	H	H	H	L	L
				H	H	H	H	H	H	H	H	H
$\mathrm{H}=$ HIGH Voltage Level		L = LOW Voltage Level			$\mathrm{X}=\mathrm{lm}$							

Absolute Maximum Ratings（Note 1）

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage（Note 2）
Input Current（Note 2）
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA
Voltage Applied to Output

in HIGH State（with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ）	
Standard Output	-0.5 V to V_{CC}
3－STATE Output	-0.5 V to +5.5 V

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 1：Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Note 2：Either voltage limit or current limit is sufficient to protect inputs．

Current Applied to Output
in LOW State（Max）
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$

DC Electrical Characteristics over Operating Temperature Range unless otherwise specified

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{V}_{\text {cc }}$	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage $\quad 10 \% \mathrm{~V}_{\mathrm{CC}}$			0.5	V	Min	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$
I_{H}	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
I_{OD}	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current			$\begin{aligned} & -0.6 \\ & -2.4 \\ & -3.0 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~S}_{0}-\mathrm{S}_{2}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~A}_{0}-\mathrm{A}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{C}_{\mathrm{n}}\right) \end{aligned}$
los	Output Short－Circuit Current	－60		－150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
I_{CC}	Power Supply Current		54	81	mA	Max	

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
${ }_{\text {tpLH }}$	Propagation Delay	3.0	8.1	12.0	3.0	13.0	ns
$\mathrm{t}_{\text {PHL }}$	$C_{n} \text { to } F_{i}$	2.5	5.7	8.0	2.5	9.0	
${ }_{\text {tpLH }}$	Propagation Delay	4.0	10.4	15.0	3.5	17.0	ns
$\mathrm{t}_{\text {PHL }}$	Any A or B to Any F	3.0	8.2	11.0	2.5	12.0	
${ }_{\text {tpLH }}$	Propagation Delay	6.5	11.0	20.5	5.5	21.5	ns
$\mathrm{t}_{\text {PHL }}$	S_{i} to F_{i}	4.0	8.2	15.0	4.0	17.5	
$\mathrm{tplh}^{\text {l }}$	Propagation Delay	3.5	6.0	8.5	3.5	11.0	ns
$\mathrm{t}_{\text {PHL }}$	A_{i} or Bi_{i} to $\mathrm{C}_{\mathrm{n}}+4$	3.5	6.5	9.0	3.5	10.5	
${ }_{\text {tpLH }}$	Propagation Delay	7.0	12.5	16.5	7.0	17.5	ns
$\mathrm{t}_{\text {PHL }}$	S_{i} to OVR or $\mathrm{C}_{\mathrm{n}+4}$	5.0	9.0	12.0	5.0	14.5	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	2.5	5.6	8.0	2.0	9.0	ns
$\mathrm{t}_{\text {PHL }}$	C_{n} to $\mathrm{C}_{\mathrm{n}+4}$	3.5	6.3	9.0	2.0	10.0	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	3.5	8.0	11.0	3.5	13.0	ns
$\mathrm{t}_{\text {PHL }}$	C_{n} to OVR	2.5	7.1	10.0	2.5	11.0	
${ }_{\text {tpLH }}$	Propagation Delay	7.0	11.5	15.5	7.0	16.5	ns
$\mathrm{t}_{\text {PHL }}$	A_{i} or B_{i} to OVR	3.0	8.0	10.5	3.0	11.5	

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
 Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
