74F182 Carry Lookahead Generator

FAIRCHILD

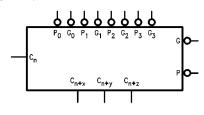
SEMICONDUCTOR

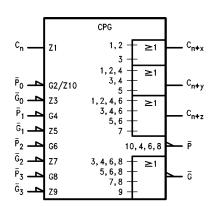
74F182 Carry Lookahead Generator

General Description

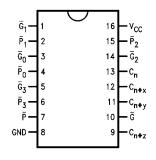
The 74F182 is a high-speed carry lookahead generator. It is generally used with the 74F181 or 74F381 4-bit arithmetic logic units to provide high-speed lookahead over word lengths of more than four bits.

Features


- Provides lookahead carries across a group of four ALUs
- Multi-level lookahead high-speed arithmetic operation over long word lengths


Ordering Code:

Order Number	Package Number	Package Description
74F182SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F182PC (Note 1)	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Tape and Reel. Specify	/ by appending the suffix letter "X" to the ordering code.


Note 1: This device not available in Tape and Reel.

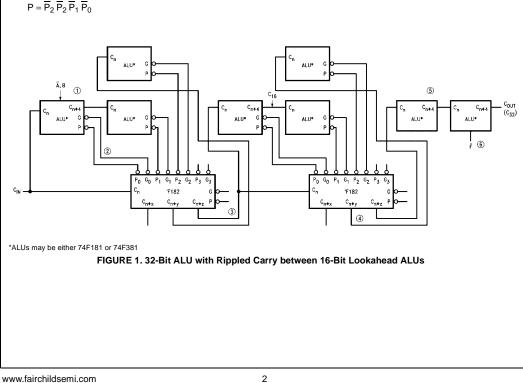
Logic Symbols

Connection Diagram

www.fairchildsemi.com

74F182

Unit Loading/Fan Out


Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
i in Numes	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
C _n	Carry Input	1.0/2.0	20 µA/-1.2 mA	
$\overline{G}_0, \overline{G}_2$	Carry Generate Inputs (Active LOW)	1.0/14.0	20 µA/-8.4 mA	
G ₁	Carry Generate Input (Active LOW)	1.0/16.0	20 µA/-9.6 mA	
G ₃	Carry Generate Input (Active LOW)	1.0/8.0	20 µA/-4.8 mA	
P ₀ , P ₁	Carry Propagate Inputs (Active LOW)	1.0/8.0	20 µA/-4.8 mA	
P ₂	Carry Propagate Input (Active LOW)	1.0/6.0	20 µA/-3.6 mA	
P ₃	Carry Propagate Input (Active LOW)	1.0/4.0	20 µA/–2.4 mA	
$C_{n+x} - C_{n+z}$	Carry Outputs	50/33.3	-1 mA/20 mA	
G	Carry Generate Output (Active LOW)	50/33.3	-1 mA/20 mA	
P	Carry Propagate Output (Active LOW)	50/33.3	-1 mA/20 mA	

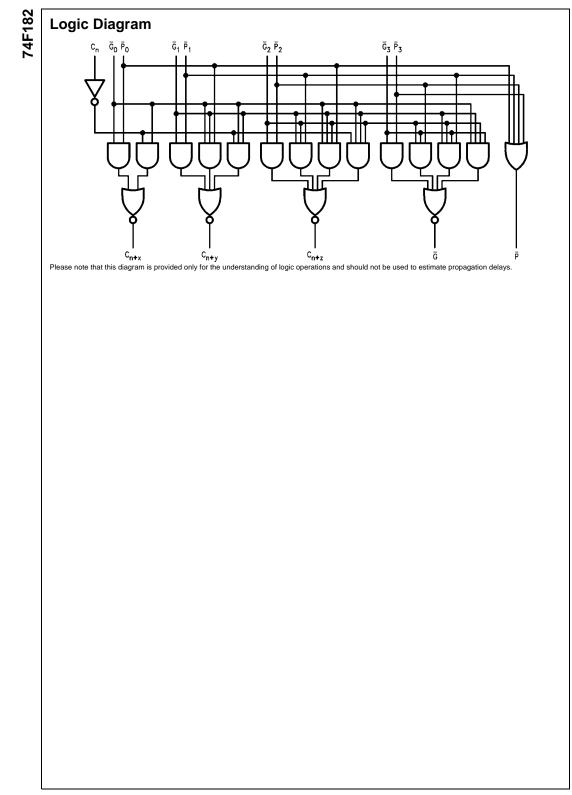
Functional Description

The 74F182 carry lookahead generator accepts up to four pairs of Active LOW Carry Propagate $(\overline{P}_0-\overline{P}_3)$ and Carry Generate $(\overline{G}_0-\overline{G}_3)$ signals and an Active HIGH Carry input (C_n) and provides anticipated Active HIGH carries $(C_{n+x}, C_{n+y}, C_{n+z})$ across four groups of binary adders. The 74F182 also has Active LOW Carry Propagate (\overline{P}) and Carry Generate (\overline{G}) outputs which may be used for further levels of lookahead. The logic equations provided at the outputs are:

$$\begin{split} & C_{n+x} = G_0 + P_0 \, C_n \\ & C_{n+y} = G_1 + P_1 \, G_0 + P_1 \, P_0 \, C_n \\ & C_{n+z} = G_2 + P_2 \, G_1 + P_2 \, P_1 \, G_0 + P_2 \, P_1 \, P_0 \, C_n \\ & G = \overline{G}_3 + \overline{P}_3 \, \overline{G}_2 + \overline{P}_3 \, \overline{P}_2 \, \overline{G}_1 + \overline{P}_3 \, \overline{P}_2 \, \overline{P}_1 \, \overline{G}_0 \\ & P = \overline{P}_2 \, \overline{P}_2 \, \overline{P}_1 \, \overline{P}_0 \end{split}$$

Also, the 74F182 can be used with binary ALUs in an active LOW or active HIGH input operand mode. The connections (Figure 1) to and from the ALU to the carry lookahead generator are identical in both cases. Carries are rippled between lookahead blocks. The critical speed path follows the circled numbers. There are several possible arrangements for the carry interconnects, but all achieve about the same speed. A 28-bit ALU is formed by dropping the last 74F181 or 74F381.

Truth Table


Inputs										Outputs					
Cn	G ₀	P ₀	G ₁	P ₁	\overline{G}_2	P ₂	\overline{G}_3	P ₃	$\mathbf{C}_{\mathbf{n}+\mathbf{x}}$	$\mathbf{C}_{\mathbf{n}+\mathbf{y}}$	$\boldsymbol{C}_{n\!+\!z}$	G	F		
Х	Н	Н							L						
L	н	Х							L						
Х	L	Х							н						
н	Х	L							н						
х	х	х	н	н						L					
Х	н	н	н	Х						L					
L	н	Х	н	Х						L					
Х	Х	Х	L	Х						н					
Х	L	Х	Х	L						Н					
н	Х	L	Х	L						Н					
х	х	х	х	х	н	н					L				
Х	Х	Х	н	н	н	Х					L				
Х	н	н	н	Х	н	Х					L				
L	н	Х	н	Х	н	Х					L				
Х	Х	Х	Х	Х	L	Х					н				
Х	Х	Х	L	Х	Х	L					н				
Х	L	Х	Х	L	Х	L					н				
н	Х	L	Х	L	Х	L					н				
	х		х	х	х	х	н	н				н			
	Х		Х	Х	н	н	н	Х				н			
	Х		н	н	н	Х	н	Х				н			
	н		Н	Х	Н	Х	н	Х				н			
	Х		Х	Х	Х	Х	L	Х				L			
	Х		Х	Х	L	Х	Х	L				L			
	Х		L	Х	Х	L	Х	L				L			
	L		Х	L	Х	L	Х	L				L			
		н		х		х		х							
		Х		н		Х		Х							
		Х		Х		Н		Х					I		
		Х		Х		Х		Н							
		L		L		L		L							

3

www.fairchildsemi.com

Downloaded from $\underline{\text{Elcodis.com}}$ electronic components distributor

74F182

www.fairchildsemi.com

4

Absolute Maximum Ratings(Note 2)

	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 3)	-0.5V to +7.0V
Input Current (Note 3)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

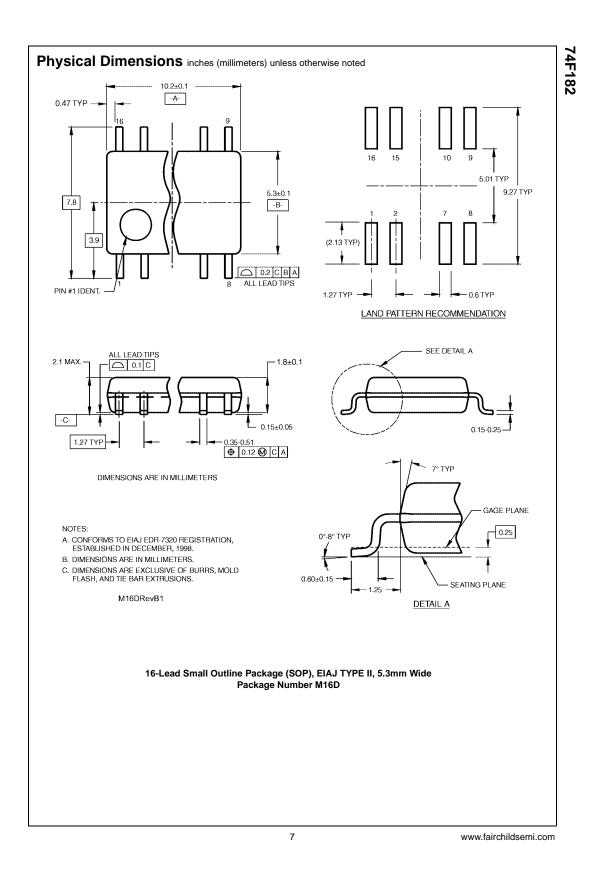
Recommended Operating Conditions

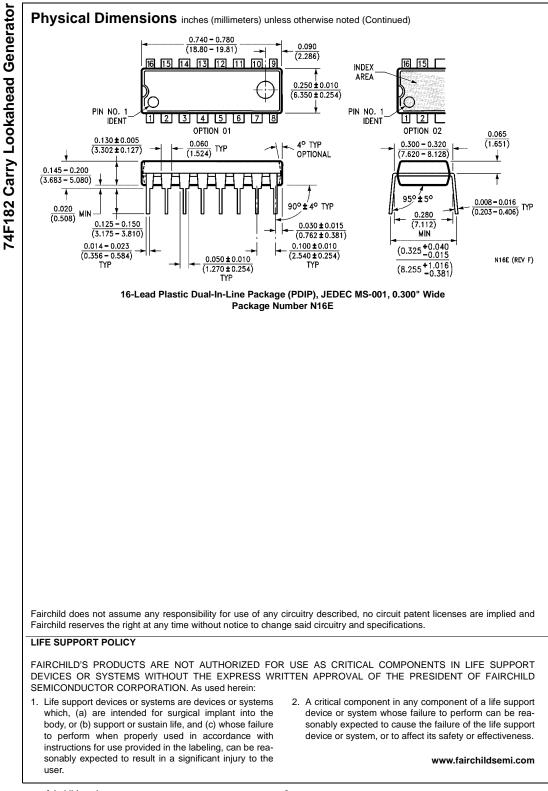
Free Air Ambient Temperature Supply Voltage

74F182

0°C to +70°C +4.5V to +5.5V

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 3: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			v	Min	I _{OH} = -1 mA
	Voltage	5% V _{CC}	2.7			v	IVIIN	$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	M		L 00 m A
	Voltage				0.5	V	Min	I _{OL} = 20 mA
I _{IH}	Input HIGH				5.0			V 0.7V
	Current				5.0	μA	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current				7.0			N 70V
	Breakdown Test				7.0	μA	Max	V _{IN} = 7.0V
ICEX	Output HIGH							
	Leakage Current				50	μA	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v		All Other Pins Grounded
I _{OD}	Output Leakage				3.75	A	0.0	V _{IOD} = 150 mV
	Circuit Current				3.75	μA	0.0	All Other Pins Grounded
I _{IL}	Input LOW				-1.2	mA	Max	$V_{IN} = 0.5V (C_n)$
	Current				-2.4			$V_{IN} = 0.5V (\overline{P}_3)$
					-3.6			$V_{IN} = 0.5V (\overline{P}_2)$
					-4.8			$V_{IN} = 0.5V \ (\overline{G}_3, \overline{P}_0, \overline{P}_1)$
					-8.4			$V_{IN} = 0.5V \ (\overline{G}_0, \ \overline{G}_2)$
					-9.6			$V_{IN} = 0.5V (\overline{G}_1)$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CCH}	Power Supply Current			18.4	28.0	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			23.5	36.0	mA	Max	$V_{\Omega} = LOW$

Symbol			$T_A = +25^{\circ}C$;	$T_A = -55^{\circ}C$	C to +125°C			Unite
	Parameter		V _{CC} = +5.0	/	V _{CC} =	+ 5.0V			
			$C_L = 50 \ pF$		$C_L = 50 \text{ pF}$		C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	-
t _{PLH}	Propagation Delay	3.0	6.6	8.5	3.0	12.0	3.0	9.5	ns
t _{PHL}	C _n to C _{n+x} , C _{n+y} , C _{n+z}	3.0	6.8	9.0	3.0	11.0	3.0	10.0	
t _{PLH}	Propagation Delay	2.5	6.2	8.0	2.5	11.0	2.5	9.0	
t _{PHL}	\overline{P}_0 , \overline{P}_1 , or \overline{P}_2 to	1.5	3.7	5.0	1.0	7.0	1.5	6.0	ns
	C _{n+x} , C _{n+y} , or C _{n+z}								
t _{PLH}	Propagation Delay	2.5	6.5	8.5	2.5	11.0	2.5	9.5	
t _{PHL}	$\overline{G}_0, \overline{G}_1, \text{ or } \overline{G}_2 \text{ to}$	1.5	3.9	5.2	1.0	7.0	1.5	6.0	ns
	C_{n+x} , C_{n+y} , or C_{n+z}								
t _{PLH}	Propagation Delay	3.0	7.9	10.0	3.0	12.0	3.0	11.0	
t _{PHL}	$\overline{P}_1, \overline{P}_2, \text{ or } \overline{P}_3 \text{ to } \overline{G}$	3.0	6.0	8.0	2.5	10.0	3.0	9.0	ns
t _{PLH}	Propagation Delay	3.0	8.3	10.5	3.0	12.0	3.0	11.5	
t _{PHL}	G _n to G	3.0	5.7	7.5	2.5	10.0	3.0	8.5	ns
t _{PLH}	Propagation Delay	3.0	5.7	7.5	2.5	10.0	3.0	8.5	
t _{PHL}	\overline{P}_n to \overline{P}	2.5	4.1	5.5	2.5	8.0	2.5	6.5	ns

www.fairchildsemi.com

www.fairchildsemi.com

8