DM74S283 4-Bit Binary Adder with Fast Carry

FAIRCHILD

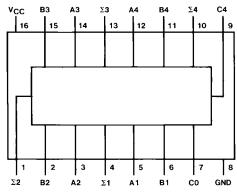
SEMICONDUCTOR

DM74S283 4-Bit Binary Adder with Fast Carry

General Description

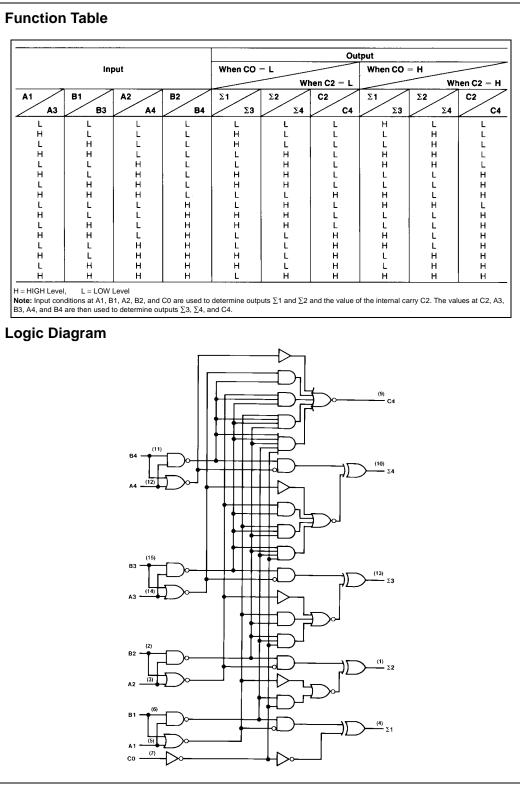
These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial lookahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.


Features

- Full-carry look-ahead across the four bits
- Systems achieve partial look-ahead performance with the economy of ripple carry
- Typical add times
 Two 8-bit words
 Two 16-bit words
 30 ns
- Typical power dissipation 510 mW

Ordering Code:


Order Number	Package Number	Package Description
DM74S283N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Connection Diagram

www.fairchildsemi.com

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74S283

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units	
V _{CC}	Supply Voltage	4.75	5	5.25	V	
V _{IH}	HIGH Level Input Voltage	2			V	
V _{IL}	LOW Level Input Voltage			0.8	V	
I _{ОН}	HIGH Level Output Current (Output C4)			-0.5	mA	
	HIGH Level Output Current (Other Outputs)	er Outputs) -1				
I _{OL}	LOW Level Output Current (Output C4)	Dutput Current (Output C4) 10		10	mA	
	LOW Level Output Current (Other Outputs)			20	IIIA	
T _A	Free Air Operating Temperature	0		70	°C	

Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.2	V
V _{OH}	HIGH Level	$V_{CC} = Min, I_{OH} = Max$		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.1	3.4		v
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max				0.5	V
	Output Voltage	$V_{IH} = Min, V_{IL} = Max$				0.5	v
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_{I} = 2.7V$				50	μΑ
ΙL	LOW Level Input Current	$V_{CC} = Max, V_I = 0.5V$				-2	mA
I _{OS}	Short Circuit	V _{CC} = Max	C4 Output	-20		-100	mA
	Output Current	(Note 3)	Other Outputs	-40		-100	
I _{CC1}	Supply Current	V _{CC} = Max (Note 4)	•		80	120	mA
I _{CC2}	Supply Current	V _{CC} = Max (Note 5)			95	160	mA

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

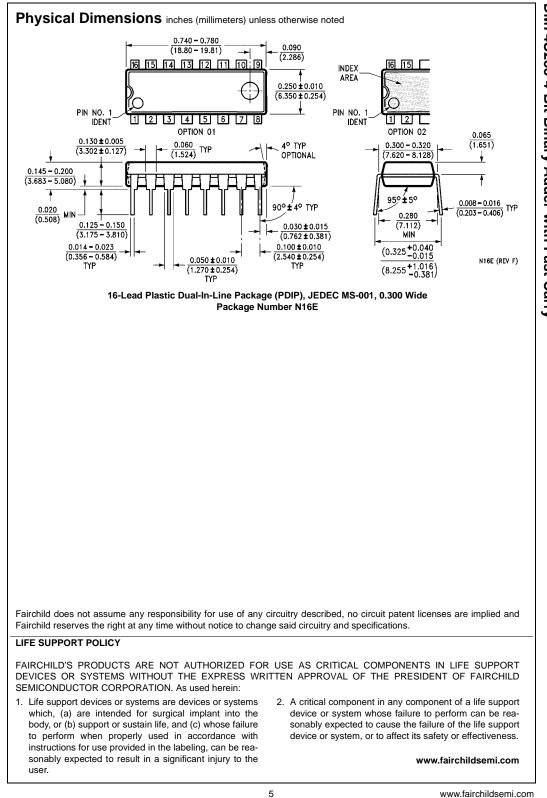
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC1} is measured with all outputs OPEN, all B inputs LOW and all other inputs at 4.5V.

Note 5: $\mathrm{I}_{\mathrm{CC2}}$ is measured with all outputs OPEN and all inputs at 4.5V.

www.fairchildsemi.com

က
œ
2
S
4
r
5
<
Δ


Switching Characteristics

	Parameter	From (Input) To (Output)	$R_L = 280\Omega$				
Symbol			C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	1
t _{PLH}	Propagation Delay Time	C0 to $\Sigma 1$ or $\Sigma 2$		18		20	ns
	LOW-to-HIGH Level Output	0010210122					
t _{PHL}	Propagation Delay Time	C0 to $\Sigma 1$ or $\Sigma 2$		18		20	ns
	HIGH-to-LOW Level Output	0010210122				20	
t _{PLH}	Propagation Delay Time	C0 to Σ3		18		20	ns
	LOW-to-HIGH Level Output	001025				20	
t _{PHL}	Propagation Delay Time	C0 to ∑3		18		20	ns
	HIGH-to-LOW Level Output						
t _{PLH}	Propagation Delay Time	C0 to ∑4	18	19		20	ns
	LOW-to-HIGH Level Output			10		20	
t _{PHL}	Propagation Delay Time	C0 to Σ4		18		20	ns
	HIGH-to-LOW Level Output	001024				20	
t _{PLH}	Propagation Delay Time	A _i , B _i to S _i		18		20	ns
	LOW-to-HIGH Level Output	A _i , b _i to S _i		10		20	113
t _{PHL}	Propagation Delay Time	A _i , B _i to S _i		18		20	ns
	HIGH-to-LOW Level Output					20	
t _{PLH}	Propagation Delay Time	C0 to Σ4		11		15	ns
	LOW-to-HIGH Level Output (Note 6)	001024			15		113
t _{PHL}	Propagation Delay Time	C0 to Σ4		11		15	ns
	HIGH-to-LOW Level Output (Note 6)	001024			15		115
t _{PLH}	Propagation Delay Time	A _i , B _i to C4		12		16	ns
	LOW-to-HIGH Level Output (Note 6)				10		113
t _{PHL}	Propagation Delay Time	A _i , B _i to C4	12	1	16	ns	
	HIGH-to-LOW Level Output (Note 6)	Λ _i , Δ _i 10 C4		12		10	113

Note 6: $R_L = 560 \Omega$.

www.fairchildsemi.com

4

