Integrated Circuit

Advance Information

28-Bit Registered Buffer for DDR2

Recommended Application:

- DDR2 Memory Modules
- Provides complete DDR DIMM solution with ICS98ULPA877A, ICS97ULP877, or IDTCSPUA877A
- Optimized for DDR2 400/533/667 JEDEC 4 Rank VLP DIMMS

Product Features:

- 28-bit 1:1 registered buffer with parity check functionality
- Supports SSTL_18 JEDEC specification on data inputs and outputs
- Supports LVCMOS switching levels on RESET input
- 50% more dynamic driver strength than standard SSTU32864
- Low voltage operation
$\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$ to 1.9 V
- Available in 96 BGA package

Pin Configuration

96 Ball BGA
(Top View)

Functionality Truth Table

In puts						Outputs		
RESET	$\overline{\text { DCSO }}$	$\overline{\text { DCS1 }}$	CK	$\overline{\mathrm{CK}}$	Dn, DODTn, DCKEn	Qn	$\overline{\text { QCS }}$	$\begin{aligned} & \text { QODT, } \\ & \text { QCKE } \end{aligned}$
H	L	L	\uparrow	\downarrow	L	L	L	L
H	L	L	\uparrow	\downarrow	H	H	L	H
H	L	L	L or H	L or H	X	Q_{0}	Q_{0}	Q_{0}
H	L	H	\uparrow	\downarrow	L	L	L	L
H	L	H	\uparrow	\downarrow	H	H	L	H
H	L	H	L or H	L or H	X	Q_{0}	Q_{0}	Q_{0}
H	H	L	\uparrow	\downarrow	L	L	H	L
H	H	L	\uparrow	\downarrow	H	H	H	H
H	H	L	L or H	L or H	X	Q_{0}	Q_{0}	Q_{0}
H	H	H	\uparrow	\downarrow	L	Q_{0}	H	L
H	H	H	\uparrow	\downarrow	H	Q_{0}	H	H
H	H	H	L or H	L or H	X	Q_{0}	Q_{0}	Q_{0}
L	$\begin{gathered} \mathrm{X} \text { or } \\ \text { floating } \end{gathered}$	X or floating	$\begin{gathered} \mathrm{X} \text { or } \\ \text { floating } \end{gathered}$	$\begin{gathered} \mathrm{X} \text { or } \\ \text { floating } \end{gathered}$	$\begin{gathered} \mathrm{X} \text { or } \\ \text { floating } \end{gathered}$	L	L	L

Ball Assignments

28 bit 1:1 Register

A	DCKE0	D0	$\mathrm{V}_{\text {REF }}$	V_{DD}	QCKE0	QCKE1
B	DCKE1	D1	GND	GND	Q0	Q1
C	D2	DODT1	V_{DD}	V_{DD}	Q2	Q21
D	DODT0	$\overline{\text { PTYERR }}$	GND	GND	QODT0	QODT1
E	D3	D4	V_{DD}	V_{DD}	Q3	Q4
F	D5	D6	GND	GND	Q5	Q6
G	PAR_IN	RESET	V_{DD}	V_{DD}	NC	NC
H	CK	$\overline{\text { DCSO }}$	GND	GND	$\overline{\text { QCSO }}$	$\overline{\text { QCS1 }}$
J	$\overline{\text { CK }}$	$\overline{\text { DCS1 }}$	V_{DD}	V_{DD}	NC	NC
K	D7	D8	GND	GND	Q7	Q8
L	D9	D10	V_{DD}	V_{DD}	Q9	Q10
M	D11	D12	GND	GND	Q11	Q12
N	D13	D14	V_{DD}	V_{DD}	Q13	Q14
P	D15	D16	GND	GND	Q15	Q16
R	D17	D18	V_{DD}	V_{DD}	Q17	Q18
T	D19	D20	D21	V_{DD}	Q19	Q20
1		2	3	4	5	6

ICSSSTUB32872A
Advance Information

General Description

This 28-bit $1: 1$ registered buffer with parity is designed for 1.7 V to $1.9 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ operation.
All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control inputs are LVCMOS. All outputs are 1.8 V CMOS drivers that have been optimized to drive the DDR2 DIMM load. The ICSSSTUB32872A operates from a differential clock (CK and CK). Data are registered at the crossing of CK going high, and CK going low.

The device supports low-power standby operation. When the reset input ($\overline{\mathrm{RESET}}$) is low, the differential input receivers are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when RESET is low all registers are reset, and all outputs except PTYERR are forced low. The LVCMOS RESET input must always be held at a valid logic high or low level.

To ensure defined outputs from the register before a stable clock has been supplied, $\overline{\text { RESET }}$ must be held in the low state during power up.

In the DDR2 RDIMM application, $\overline{\text { RESET }}$ is specified to be completely asynchronous with respect to CK and CK. Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared and the outputs will be driven low quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RESET until the input receivers are fully enabled, the design of the ICSSSTUB32872A must ensure that the outputs will remain low, thus ensuring no glitches on the output.

The device monitors both $\overline{\text { DCS0 }}$ and $\overline{\text { DCS1 }}$ inputs and will gate the Qn outputs from changing states when both DCS0 and DCS1 are high. If either DCS0 or DCS1 input is low, the Qn outputs will function normally. The RESET input has priority over the DCS0 and DCS1 control and will force the Qn outputs low and the PTYERR output high.

The ICSSSTU32872A includes a parity checking function. The ICSSSTUB32872A accepts a parity bit from the memory controller at its input pin PARIN, compares it with the data received on the D-inputs and indicates whether a parity error has occurred on its open-drain PTYERR pin (active LOW).
Package options include 96-ball Thin Profile Fine Pitch BGA (TFBGA, MO-TBD).

Inputs							Output
$\overline{\text { RESET }}$	$\overline{\text { DCS0 }}$	$\overline{\mathrm{DCS}} 1$	CK	$\overline{\mathbf{C K}}$	$\begin{aligned} & \text { of inputs = H } \\ & \text { (D0-D21) } \end{aligned}$	PARIN*	PTYERR**
H	L	H	\uparrow	\downarrow	Even	L	H
H	L	H	\uparrow	\downarrow	Odd	L	L
H	L	H	\uparrow	\downarrow	Even	H	L
H	L	H	\uparrow	\downarrow	Odd	H	H
H	H	L	\uparrow	\downarrow	Even	L	H
H	H	L	\uparrow	\downarrow	Odd	L	L
H	H	L	\uparrow	\downarrow	Even	H	L
H	H	L	\uparrow	\downarrow	Odd	H	H
H	H	H	\uparrow	\downarrow	X	X	$\overline{\text { PTYERR }}_{0}$
H	X	X	L or H	L or H	X	X	$\overline{\text { PTYERR }}_{0}$
L	X or floating	H					
PARIN arrives one clock cycle after the data to which it applies. This transition assumes $\overline{\text { PTYERR }}$ is high at the crossing of CK going high and $\overline{\mathrm{CK}}$ going low. If $\overline{\text { PTYERR }}$ is low, it stays latched low for two clock cycles or until $\overline{\text { RESET }}$ is driven low.							

ICSSSTUB32872A
Advance Information

Ball Assignment

Signal Group	Signal Name	Type	Description
Ungated inputs	DCKE0, DCKE1, DODT0, DODT1	SSTL_18	DRAM function pins not associated with Chip Select.
Chip Select gated inputs	D0 ... D21	SSTL_18	DRAM inputs, re-driven only when Chip Select is LOW.
Chip Select inputs	$\overline{\text { DCS0 }, \overline{\text { DCS1 }}}$	SSTL_18	DRAM Chip Select signals. These pins initiate DRAM address/command decodes, and as such at least one will be low when a valid address/command is present. The register can be programmed to re-drive all D-inputs when at least one Chip Slect input is LOW.
Re-driven outputs	Q0...Q21, QCS0-1, QCKE0-1, QODT0-1	SSTL_18	Outputs of the register, valid after the specified clock count and immediately following a rising edge of the clock.
Parity input	PARIN	SSTL_18	Input parity is received on pin PARIN and should maintain odd parity across the D0...D20 inputs, at the rising edge of the clock.
Parity error output	$\overline{\text { PTYERR }}$	Open drain	When LOW, this output indicates that a parity error was identified associated with the address and/or command inputs. PTYERR will be active for two clock cycles, and delayed by an additional clock cycle for compatibility with final parity out timing on the industry-standard DDR-II register with parity (in JEDEC definition).
Clock inputs	CK, $\overline{\text { CK }}$	SSTL_18	Differential master clock input pair to the register. The register operation is triggered by a rising edge on the positive clock input (CK).
Miscellaneous inputs$\overline{\text { RESET }}$	1.8 V LVCMOS	Asynchronous reset input. When LOW, it causes a reset of the internal latches, thereby forcing the outputs LOW. RESET also resets the PTYERR signal.	

Block Diagram

Parity Functionality Block Diagram

RegisterTiming

Figure 4 -RESET switches from L to H
(1) After RESET is switched from LOW to HIGH, all data and PARIN input signals must be set and held LOW for a minimum time of $\mathrm{t}_{\mathrm{ACT}}(\mathrm{max})$ to avoid false error.

ICSSSTUB32872A
Advance Information

RegisterTiming

Figure $5-\overline{\mathrm{RESET}}$ being held HIGH

RegisterTiming

Figure 6 - $\overline{\text { RESET }}$ switches from H to L
(1) After Reset is switched from HIGH to LOW, all data and clock input signals must be set and held at valid logic levels (not floating) for a minimum time of $\mathrm{t}_{\text {INACT }}$ (max)

ICSSSTUB32872A
Advance Information

Absolute Maximum Ratings

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage	-0.5 V to 2.5 V
Input Voltage ${ }^{1,}$	-0.5V to VDD +2.5V
Output Voltage ${ }^{1,2}$	-0.5V to VDDQ + 0.5V
Input Clamp Current	$\pm 50 \mathrm{~mA}$
Output Clamp Current	$\pm 50 \mathrm{~mA}$
Continuous Output Current.	$\pm 50 \mathrm{~mA}$
VDD or GND Current/Pin	$\pm 100 \mathrm{~mA}$
Package Thermal Impedance ${ }^{3}$	$36^{\circ} \mathrm{C}$

Notes:

1. The input and output negative voltage ratings may be excluded if the input and output clamp ratings are observed.
2. This value is limited to 2.5 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Recommended Operating Conditions

PARAMETER	DESCRIPTION		MIN	TYP	MAX	UNITS
$V_{\text {DDQ }}$	I/O Supply Voltage		1.7	1.8	1.9	V
$\mathrm{V}_{\text {REF }}$	Reference Voltage		$0.49 \times \mathrm{V}_{\mathrm{DD}}$	$0.5 \times V_{\text {DD }}$	$0.51 \times \mathrm{V}_{\mathrm{DD}}$	
$\mathrm{V}_{\text {T }}$	Termination Voltage		$\mathrm{V}_{\text {REF }}-0.04$	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {REF }}+0.04$	
V_{1}	Input Voltage		0		$\mathrm{V}_{\text {DDQ }}$	
$\mathrm{V}_{\mathrm{IH}(\mathrm{DC})}$	DC Input High Voltage	Data Inputs	$\mathrm{V}_{\text {REF }}+0.125$			
$\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$	AC Input High Voltage		$\mathrm{V}_{\text {REF }}+0.250$			
$\left.\mathrm{V}_{\text {IL (}} \mathrm{DC}\right)$	DC Input Low Voltage				$\mathrm{V}_{\text {REF }}-0.125$	
$\left.\mathrm{V}_{\text {IL (}} \mathrm{AC}\right)$	AC Input Low Voltage				$\mathrm{V}_{\text {REF }}-0.250$	
V_{H}	Input High Voltage Level	RESET	$0.65 \times \mathrm{V}_{\text {DDQ }}$			
$\mathrm{V}_{\text {IL }}$	Input Low Voltage Level				$0.35 \times \mathrm{V}_{\text {DDQ }}$	
$\mathrm{V}_{1} \mathrm{CR}$	Common mode Input Range	CK, $\overline{C K}$	0.675		1.125	
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage		0.600			
$\mathrm{IOH}^{\text {O }}$	High-Level Output Current				-8	mA
l_{OL}	Low-Level Output Current				8	
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature		0		70	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Guaranteed by design, not 100% tested in production.
Note: Rst and Cn inputs must be helf at valid logic levels (not floating) to ensure proper device operation. The differential inputs must not be floating unless Rst is low.

ICSSSTUB32872A
Advance Information

Electrical Characteristics - DC

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.5+/-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=2.5+/-0.2 \mathrm{~V}$; (unless otherwise stated)

SYMBOL	PARAMETERS	CONDITIONS		$\mathrm{V}_{\text {DDQ }}$	MIN	TYP	MAX	UNITS
V_{OH}		$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$		1.7 V	1.2			
V_{OL}		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		1.7 V			0.5	
I_{1}	All Inputs	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or GND		1.9 V			± 5	$\mu \mathrm{A}$
I_{DD}	Standby (Static)	$\overline{\text { RESET }}$ = GND	$\mathrm{l}_{0}=0$	1.9V			200	$\mu \mathrm{A}$
	Operating (Static)	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})} \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{AC})}, \\ & \mathrm{RESET}=\mathrm{V}_{\mathrm{DD}} \\ & \hline \end{aligned}$					150	mA
$I_{\text {DDD }}$	Dynamic operating (clock only)	$\overline{R E S E T}=V_{D D}$, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$, CLK and CLK switching 50\% duty cycle.		1.8 V		TBD		$\mu \mathrm{A} /$ clock MHz
	Dynamic Operating (per each data input)	RESET $=V_{D D}$, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}}(\mathrm{AC})$, CLK and CLK switching 50\% duty cycle. One data input switching at half clock frequency, 50% duty cycle				TBD		$\mu \mathrm{A} /$ clock $\mathrm{MHz} /$ data
C_{i}	Data Inputs	$\mathrm{V}_{1}=\mathrm{V}_{\text {REF }} \pm 350 \mathrm{mV}$			2.5		5	pF
	CLK and CLK	$\mathrm{V}_{\text {ICR }}=1.25 \mathrm{~V}, \mathrm{~V}_{\text {I(PP) }}=360 \mathrm{mV}$			2		3.8	
	RESET	$\mathrm{V}_{1}=\mathrm{V}_{\text {DDQ }}$ or GND				4.5		pF

Notes:
1-Guaranteed by design, not 100% tested in production.

Output Buffer Characteristics

Output edge rates over recommended operating free-air temperature range (See figure 7)

PARAMETER	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$		UNIT
	MIN	MAX	
dV/dt_r	1	4	V/ns
dV/dt_f	1	4	V/ns
$\mathrm{dV} / \mathrm{dt} \Delta^{\text { }}$		1	V/ns

1. Difference between dV/dt_r (rising edge rate) and dV/dt_f (falling edge rate)

ICSSSTUB32872A
Advance Information

Timing Requirements

(over recommended operating free-air temperature range, unless otherwise noted)

SYMBOL	PARAMETERS		$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$		UNITS
			MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency			410	MHz
tw	Pulse duration		1		ns
$\mathrm{t}_{\text {ACT }}$	Differential inputs active time			10	ns
$\mathrm{t}_{\text {Inact }}$	Differential inputs inactive time			15	ns
t_{s}		Data before CK^, $\overline{\mathrm{CK}} \downarrow$	0.6		ns
	Setup time	$\begin{array}{\|l} \hline \overline{\text { DCSO}}, \overline{\mathrm{DSC1}} \text { before } \mathrm{CK} \uparrow, \\ \overline{\mathrm{CK}} \downarrow, \overline{\mathrm{CSR}} \text { high } \\ \hline \end{array}$	0.7		
t_{H}	Hold time	DCS, DODT, DCKE and Dn after $\mathrm{CK} \uparrow, \overline{\mathrm{CK}} \downarrow$	0.6		ns
	Hold time	PAR_IN after CK \uparrow, $\overline{C K} \downarrow$	0.5		ns

Notes: 1 - Guaranteed by design, not 100% tested in production.
2 - For data signal input slew rate of $1 \mathrm{~V} / \mathrm{ns}$.
3 - For data signal input slew rate of $0.5 \mathrm{~V} / \mathrm{ns}$ and $<1 \mathrm{~V} / \mathrm{ns}$.
$4-\mathrm{CK} / \overline{\mathrm{CK}}$ signal input slew rate of $1 \mathrm{~V} / \mathrm{ns}$.

Switching Characteristics

(over recommended operating free-air temperature range, unless otherwise noted)

Symbol	Parameter	Measurement Conditions	MIN	MAX	Units
fmax	Max input clock frequency		410		MHz
$\mathrm{t}_{\text {PDM }}$	Propagation delay, single bit switching	CK^ and $\overline{\mathrm{CK}} \downarrow$ to Qn	1.25	1.9	ns
${ }_{\text {th }}$	Low to High propagation delay	$\mathrm{CK} \uparrow$ and $\overline{\mathrm{CK}} \downarrow$ to $\overline{\text { PTYERR }}$	1.2	3	ns
$\mathrm{t}_{\text {HL }}$	High to low propagation delay		0.9	3	ns
$t_{\text {PDMSs }}$	Propagation delay simultaneous switching	$\mathrm{CK} \uparrow$ and $\overline{\mathrm{CK}} \downarrow$ to Qn		2	ns
$\mathrm{t}_{\text {PHL }}$	High to low propagation delay	$\overline{\text { RESET } ~} \downarrow$ to Qn \downarrow		3	ns
$\mathrm{t}_{\text {PLH }}$	Low to High propagation delay	$\overline{\text { RESET } \downarrow ~ \text { to } \overline{\text { PTYERR}} \uparrow \text { ¢ }}$		3	ns

1. Guaranteed by design, not 100% tested in production.

ICSSSTUB32872A
Advance Information

VOLTAGE WAVEFORMS - PULSE DURATION

VOLTAGE WAVEFORMS - PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS - PROPAGATION DELAY TIMES VOLTAGE WAVEFORMS - SETUP AND HOLD TIMES

Figure 6 -Parameter Measurement Information $\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}\right)$

Notes: 1. CL incluces probe and jig capacitance.
2. IDD tested with clock and data inputs held at V_{DD} or GND, and $10=0 \mathrm{~mA}$.
3. All input pulses are supplied by generators having the following chareacteristics: PRR $\leq 10 \mathrm{MHz}$, $\mathrm{Zo}=50 \Omega$, input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$ (unless otherwise specified).
4. The outputs are measured one at a time with one transition per measurement.
5. $V_{\text {REF }}=V_{D D} / 2$
6. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{REF}}+250 \mathrm{mV}$ (ac voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$ for LVCMOS input.
7. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\text {REF }}-250 \mathrm{mV}$ (ac voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IL}}=$ GND for LVCMOS input.
8. $\mathrm{V}_{\mathrm{ID}}=600 \mathrm{mV}$
9. $t_{\text {PLH }}$ and $t_{P H L}$ are the same as $t_{\text {PDM }}$.

LOAD CIRCUIT - HIGH-TO-LOW SLEW-RATE MEASUREMENT
Output

VOLTAGE WAVEFORMS - HIGH-TO-LOW SLEW-RATE MEASUREMENT

LOAD CIRCUIT - LOW-TO-HIGH SLEW-RATE MEASUREMENT

VOLTAGE WAVEFORMS - LOW-TO-HIGH SLEW-RATE MEASUREMENT

Figure 7 -Output Slew-Rate Measurement Information $\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}_{ \pm} 0.1 \mathrm{~V}\right)$

Notes: 1. C_{L} includes probe and jig capacitance.
2. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=$ 50Ω, input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$ (unless otherwise specified).

3 Test circuits and switching waveforms (cont'd)
3.3 Error output load circuit and voltage measurement information ($\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}$; $Z_{\mathrm{O}}=50 \Omega$; input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$, unless otherwise specified.

LOAD CIRCUIT - HIGH-TO-LOW SLEW-RATE MEASUREMENT
(1) C_{L} includes probe and jig capacitance.

Figure 28 - Load circuit, error output measurements

Figure 29 - Voltage waveforms, open-drain output low-to-high transition time with respect to reset input

Figure 30 - Voltage waveforms, open-drain output high-to-low transition time with respect to clock inputs

Figure 31 - Voltage waveforms, open-drain output low-to-high transition time with respect to clock inputs

3 Test circuits and switching waveforms (cont'd)
3.4 Partial-parity-out load circuit and voltage measurement information ($\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}$; $Z_{\mathrm{O}}=50 \Omega$; input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$, unless otherwise specified.

(1) C_{L} includes probe and jig capacitance.

Figure 32 - Partial-parity-out load circuit,

$\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{DD}} / 2$
$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {PD }}$.
$\mathrm{V}_{\mathrm{I}(\mathrm{PP})}=600 \mathrm{mV}$
Figure 33 - Partial-parity-out voltage waveforms; propagation delay times with respect to clock inputs

[^0]Figure 34 - Partial-parity-out voltage waveforms; propagation delay times with respect to reset input

ALL DIMENSIONS IN MILLIMETERS

D	E	T	e	----- BALL GRID -----		Max. TOTAL	d	h	REF. DIMENSIONS b c	
				HORIZ	VERT					
		Min/Max					Min/Max	Min/Max		
13.50 Bsc	5.50 Bsc	1.20/1.40	0.80 Bsc	6	16	96	0.40/0.50	0.25/0.41	0.75	0.75
11.50 Bsc	5.00 Bsc	1.00/1.20	0.65 Bsc	6	16	96	0.35/0.45	0.25/0.35	0.875	0.875

Note: Ball grid total indicates maximum ball count for package. Lesser quantity may be used.

* Source Ref.: JEDEC Publication 95, MO-205

10-0055C

Ordering Information

ICSSSTUB32872Az(LF)T
Example:

1222F-3/13/07
Designation for tape and reel packaging
Lead Free, RoHS Compliant (Optional)
Package Type
H = LFBGA (reduced size: 5.5×13.50)
HM = TFBGA (reduced size: 5.0×11.50)
Revision Designator (will not correlate with datasheet revision)
Device Type
Prefix
ICS = Standard Device

Revision History

Rev.	Issue Date	Description	Page \#
A	$5 / 2 / 2006$	Initial Release.	-
B	$12 / 12 / 2006$	Electrical table, Ci Data input max changed from 3.5 to 5.0, CLK max changed from 3 to 3.8	11
C	$12 / 20 / 2006$	liming table, ts Data before CK changed from 0.5 to 0.7, th DCS after CK changed from 0.5 to 0.6	12
D	$12 / 21 / 2006$	Applications, removed "800"; Electrical table, Idd Operating max changed from 80 to 150, Ci RESET typ changed from 2.5 to 4.5; Timing table, th Hold Time, changed Q to Dn, Switching table, changed tpdm max from 1.7 to 1.9, thl min from 1 to 0.9, and tpdmss max from 1.9 to 2.	$1,11,12$
E	$3 / 6 / 2007$	Timing table, ts Data before CK changed from 0.7 to 0.6; Switching table, fixed typos.	12
F	$3 / 13 / 2007$	Page 1, Recc. List, changed 3rd bullet to "Provides complete DDR DIMM solution with ICS98ULPA877A, ICS97ULP877, or IDTCSPUA877A"; page 11, fixed typos.	1,11

[^0]: $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{DD}} / 2$
 $t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {PD }}$.
 $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {REF }}+250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$ for LVCMOS inputs.
 $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{REF}}-250 \mathrm{mV}$ (AC voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{DD}}$ for LVCMOS inputs.

