3.3V, 2.5Gb/s Dual AnyLevel[™] to LVDS Receiver/Driver/Buffer/ Translator with Internal Input Termination

NB4N527S is a clock or data Receiver/Driver/Buffer/Translator capable of translating AnyLevelTM input signal (LVPECL, CML, HSTL, LVDS, or LVTTL/LVCMOS) to LVDS. Depending on the distance, noise immunity of the system design, and transmission line media, this device will receive, drive or translate data or clock signals up to 2.5 Gb/s or 1.5 GHz, respectively.

The NB4N527S has a wide input common mode range of GND + 50 mV to V_{CC} – 50 mV combined with two 50 Ω internal termination resistors is ideal for translating differential or single–ended data or clock signals to 350 mV typical LVDS output levels without use of any additional external components (Figure 6).

The device is offered in a small 3 mm x 3 mm QFN–16 package. NB4N527S is targeted for data, wireless and telecom applications as well as high speed logic interface where jitter and package size are main requirements. Application notes, models, and support documentation are available on www.onsemi.com.

- Maximum Input Clock Frequency up to 1.5 GHz
- Maximum Input Data Rate up to 2.5 Gb/s (Figure 5)
- 470 ps Maximum Propagation Delay
- 1 ps Maximum RMS Jitter
- 140 ps Maximum Rise/Fall Times
- Single Power Supply; $V_{CC} = 3.3 \text{ V} \pm 10\%$
- Temperature Compensated TIA/EIA-644 Compliant LVDS Outputs
- Internal 50 Ω Termination Resistor per Input Pin
- GND + 50 mV to V_{CC} 50 mV V_{CMR} Range
- Pb-Free Packages are Available

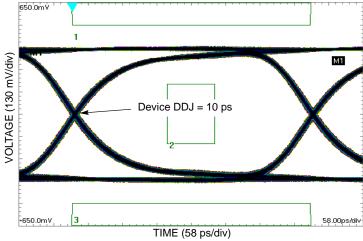
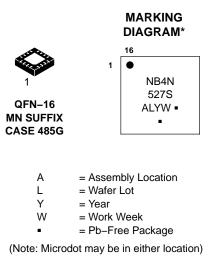
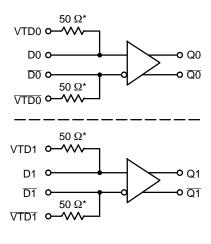



Figure 2. Typical Output Waveform at 2.488 Gb/s with PRBS 2^{23-1} (V_{INPP} = 400 mV; Input Signal DDJ = 14 ps)



ON Semiconductor®

http://onsemi.com

*For additional marking information, refer to Application Note AND8002/D.

Figure 1. Functional Block Diagram

*R_{TIN}

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Downloaded from Elcodis.com electronic components distributor

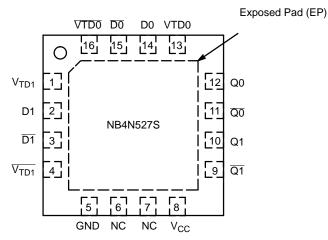


Figure 3. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description				
1	VTD1	_	Internal 50 Ω termination pin for D1. (R _{TIN})				
2	D1	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Noninverted differential clock/data D1 input (Note 1).				
3	D1	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Inverted differential clock/data $\overline{D1}$ input (Note 1).				
4	VTD1	-	Internal 50 Ω termination pin for $\overline{D1}$. (R _{TIN})				
5	GND	-	0 V. Ground.				
6, 7	NC		No connect.				
8	V _{CC}		Positive Supply Voltage.				
9	<u>Q1</u>	LVDS Output	Inverted D1 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.				
10	Q1	LVDS Output	Noninverted D1 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.				
11	<u>Q0</u>	LVDS Output	Inverted D0 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.				
12	Q0	LVDS Output	Noninverted D0 output. Typically loaded with 100 Ω receiver termination resistor across differential pair.				
13	VTD0	_	Internal 50 Ω termination pin for D0.				
14	D0	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Noninverted differential clock/data D0 input (Note 1).				
15	DO	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Inverted differential clock/data $\overline{D0}$ input (Note 1).				
16	VTD0	_	Internal 50 Ω termination pin for $\overline{\text{D0}}$.				
EP			Exposed pad. EP on the package bottom is thermally connected to the die improved heat transfer out of package. The pad is not electrically connected to the die, but is recommended to be soldered to GND on the PCB.				

 In the differential configuration when the input termination pins(VTD0/VTD0, VTD1/ VTD1) are connected to a common termination voltage or left open, and if no signal is applied on D0/D0, D1/D1 input, then the device will be susceptible to self–oscillation.

Table 2. ATTRIBUTES

Charac	Value	
Moisture Sensitivity (Note 2)	Level 1	
Flammability Rating	UL 94 V-0 @ 0.125 in	
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 200 V > 1 kV
Transistor Count	281	
Meets or exceeds JEDEC Spe	c EIA/JESD78 IC Latchup Test	

2. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		3.8	V
VI	Positive Input	GND = 0 V	$V_I = V_{CC}$	3.8	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		35 70	mA mA
I _{OSC}	Output Short Circuit Current Line-to-Line (Q to \overline{Q}) Line-to-End (Q or \overline{Q} to GND)	$Q \text{ or } \overline{Q} \text{ to } GND$ $Q \text{ to } \overline{Q}$	Continuous Continuous	12 24	mA
T _A	Operating Temperature Range	QFN-16		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN-16 QFN-16	41.6 35.2	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	1S2P (Note 3)	QFN-16	4.0	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

3. JEDEC standard multilayer board – 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.

Symbol	Characteristic	Min	Тур	Max	Unit
I _{CC}	Power Supply Current (Note 8)		40	53	mA
DIFFERE	NTIAL INPUTS DRIVEN SINGLE-ENDED (Figures 11, 12, 16, and 18)				-
V _{th}	Input Threshold Reference Voltage Range (Note 7)	GND +100		V _{CC} – 100	mV
V _{IH}	Single-ended Input HIGH Voltage	V _{th} + 100		V _{CC}	mV
V _{IL}	Single-ended Input LOW Voltage	GND		V _{th} – 100	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7, 8, 9, 10, 17, and 19	9)			
V _{IHD}	Differential Input HIGH Voltage	100		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	GND		V _{CC} – 100	mV
V _{CMR}	Input Common Mode Range (Differential Configuration)	GND + 50		V _{CC} – 50	mV
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	100		V _{CC}	mV
R _{TIN}	Internal Input Termination Resistor	40	50	60	Ω
LVDS OU	TPUTS (Note 4)			•	•
V _{OD}	Differential Output Voltage	250		450	mV

VOD	Differential Output Voltage	250		450	mv
ΔV_{OD}	Change in Magnitude of V_{OD} for Complementary Output States (Note 9)	0	1	25	mV
V _{OS}	Offset Voltage (Figure 15)	1125		1375	mV
ΔV_{OS}	Change in Magnitude of V_{OS} for Complementary Output States (Note 9)	0	1	25	mV
V _{OH}	Output HIGH Voltage (Note 5)		1425	1600	mV
V _{OL}	Output LOW Voltage (Note 6)	900	1075		mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. LVDS outputs require 100 Ω receiver termination resistor between differential pair. See Figure 14.

5. $V_{OL}max = V_{OS}max + \frac{1}{2}V_{OD}max$. 6. $V_{OL}max = V_{OS}min - \frac{1}{2}V_{OD}max$. 7. V_{th} is applied to the complementary input when operating in single-ended mode.

8. Input termination pins open, Dx/Dx at the DC level within V_{CMR} and output pins loaded with $R_L = 100 \Omega$ across differential. 9. Parameter guaranteed by design verification not tested in production.

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	Unit
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) $f_{in} \le 1.0 \text{ GHz}$ (Figure 4) $f_{in} = 1.5 \text{ GHz}$	220 200	350 300		220 200	350 300		220 200	350 300		mV
f _{DATA}	Maximum Operating Data Rate	1.5	2.5		1.5	2.5		1.5	2.5		Gb/s
t _{PLH} , t _{PHL}	Differential Input to Differential Output Propagation Delay	270	370	470	270	370	470	270	370	470	ps
t _{SKEW}	Duty Cycle Skew (Note 11) Within Device Skew (Note 17) Device–to–Device Skew (Note 15)		8 5 30	45 25 100		8 5 30	45 25 100		8 5 30	45 25 100	ps
^t JITTER	$\begin{array}{ll} \text{RMS Random Clock Jitter (Note 13)} & f_{\text{in}} = 1.0 \text{ GHz} \\ f_{\text{in}} = 1.5 \text{ GHz} \\ \text{Deterministic Jitter (Note 14)} & f_{\text{DATA}} = 622 \text{ Mb/s} \\ f_{\text{DATA}} = 1.5 \text{ Gb/s} \\ f_{\text{DATA}} = 1.5 \text{ Gb/s} \\ \text{f}_{\text{DATA}} = 2.488 \text{ Gb/s} \\ \text{Crosstalk Induced Jitter (Note 16)} \end{array}$		0.5 0.5 6 7 10 20	1 1 20 20 25 40		0.5 0.5 6 7 10 20	1 20 20 25 40		0.5 0.5 6 7 10 20	1 20 20 25 40	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 12)	100		V _{CC} - GND	100		V _{CC} - GND	100		V _{CC} - GND	mV
t _r t _f	Output Rise/Fall Times @ 250 MHz Q, Q (20% - 80%)	60	100	140	60	100	140	60	100	140	ps

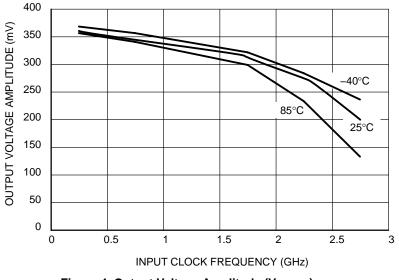
Table 5. AC CHARACTERISTICS $V_{CC} = 3.0 \text{ V}$ to 3.6 V, GND = 0 V; (Note 10)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10. Measured by forcing V_{INPPmin} with 50% duty cycle clock source and V_{CC} – 1400 mV offset. All loading with an external R_L = 100 Ω across "D" and "D" of the receiver. Input edge rates 150 ps (20%–80%).

11. See Figure 13 differential measurement of tskew = |tPLH - tPHL| for a nominal 50% differential clock input waveform @ 250 MHz.

12. Input voltage swing is a single-ended measurement operating in differential mode.


13. RMS jitter with 50% duty cycle input clock signal.

14. Deterministic jitter with input NRZ data at PRBS 2²³–1 and K28.5.

15. Skew is measured between outputs under identical transition @ 250 MHz.

16. Crosstalk induced jitter is the additive deterministic jitter to channel one with channel two active both running at 622 Gb/s PRBS 2²³ –1 as an asynchronous signals.

17. The worst case condition between Q0/Q0 and Q1/Q1 from either D0/D0 or D1/D1, when both outputs have the same transition.

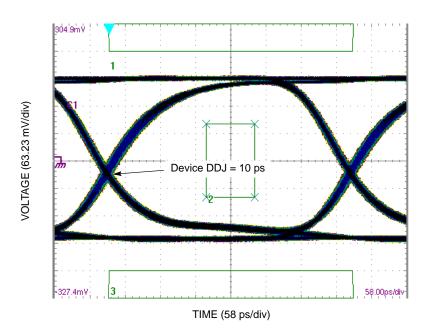


Figure 5. Typical Output Waveform at 2.488 Gb/s with PRBS 2^{23-1} and OC48 mask (V_{INPP} = 100 mV; Input Signal DDJ = 14 ps)

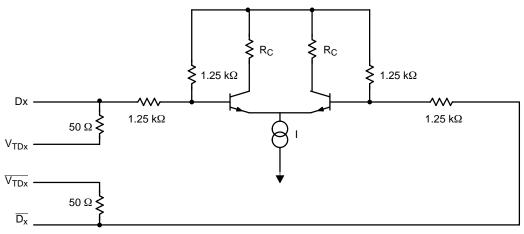


Figure 6. Input Structure

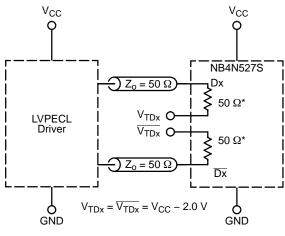


Figure 7. LVPECL Interface

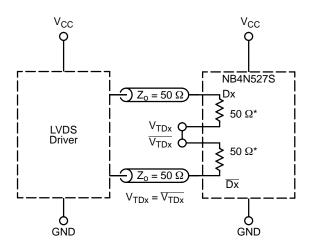


Figure 8. LVDS Interface

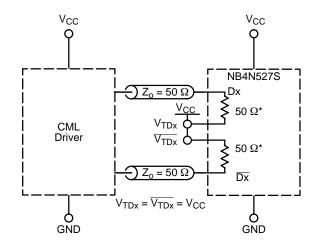
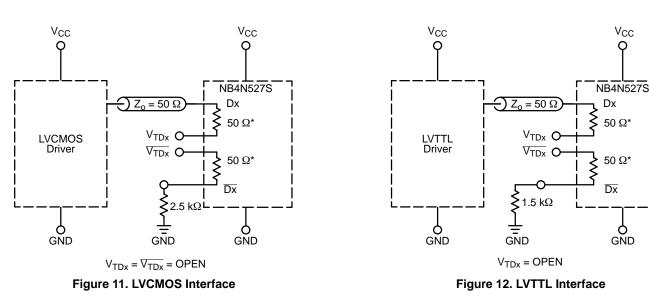



Figure 9. Standard 50 Ω Load CML Interface

*R_{TIN}, Internal Input Termination Resistor.

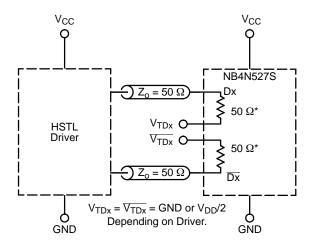
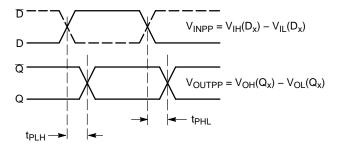



Figure 10. HSTL Interface

V_{CC}

О

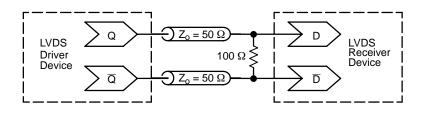
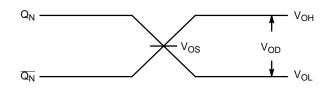
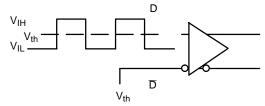





Figure 14. Typical LVDS Termination for Output Driver and Device Evaluation

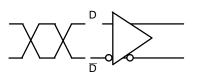


Figure 17. Differential Inputs Driven Differentially

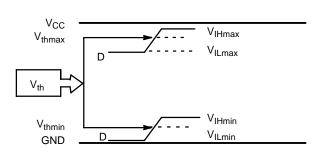


Figure 18. V_{th} Diagram

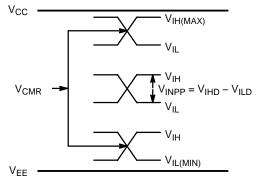
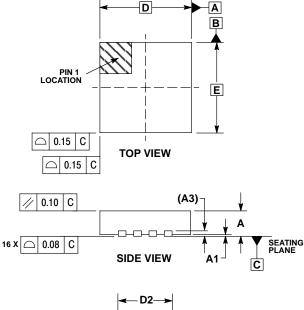
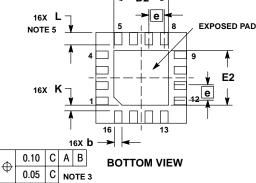


Figure 19. V_{CMR} Diagram

ORDERING INFORMATION

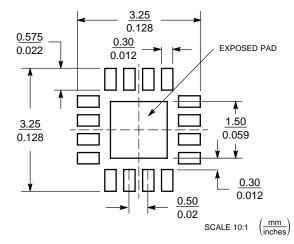

Device	Package	Shipping [†]
NB4N527SMN	QFN–16	123 Units / Rail
NB4N527SMNG	QFN-16 (Pb-Free)	123 Units / Rail
NB4N527SMNR2	QFN–16	3000 / Tape & Reel
NB4N527SMNR2G	QFN-16 (Pb-Free)	3000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

16 PIN QFN CASE 485G-01

ISSUE C



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14 5M 1994
- CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 3.
- 0.25 AND 0.30 MM FROM TERMINAL 4.
- COPLANATIY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. Lmax CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP 5. AND FLAG

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.80	1.00			
A1	0.00	0.05			
A3	0.20	REF			
b	0.18 0.30				
D	3.00 BSC				
D2	1.65	1.85			
Е	3.00	BSC			
E2	1.65	1.85			
e	0.50	BSC			
κ	0.18 TYP				
L	0.30	0.50			

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative