ADVANCE INFORMATION

PI3CH401

Low Voltage, 5Ω, 4-Channel 2-Port *NanoSwitch*[™]

Features

- Near-Zero propagation delay
- 5Ω switches connect inputs to outputs
- High signal passing bandwidth (500 MHz)
- · Beyond Rail-to-Rail switching
- 5V I/O tolerant with 3.3V supply in OFF and ON state
- 2.5V and 3.3V supply voltage operation
- Hot insertion capable
- Industrial operating temperature: -40°C to +85°C
- 2kV ESD protection (human body model)
- Latch-up performance: >250mA per JESD17
- Packaging (Pb-free & Green available):
 16-pin 170-mil wide plastic TSSOP (L)
 16-pin 150-mil wide plastic QSOP (Q)
 - 20-contact TQFN (ZH)

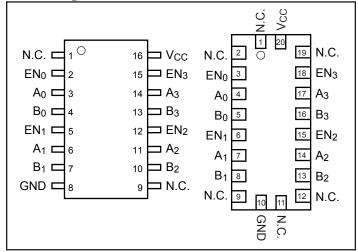
Block Diagram

Truth Table⁽¹⁾

ENx	Ax	Bx	V _{CC}	Function
X ⁽²⁾	Hi-Z	Hi-Z	GND	Disconnect
L	Hi-Z	Hi-Z	V _{CC}	Disconnect
Н	Bx	Ax	V _{CC}	Connect

Notes:

- 1. H = High Voltage Level
 - L = Low Voltage Level
 - Hi-Z = High-Impedance
- 2. A pull-up resistor should be provided for power-up protection.


Description

The PI3CH401 is a low voltage, 4-channel switch designed with fast indiviual enables. The switch introduces no additional propagation delay or additional ground bounce noise.

Applications

- · High Bandwidth Data Switching
- · Hot-Docking
- Analog Signal Switching
- Differential Signal Switching

Pin Configuration

Notes:

N.C. = No internal connection

Pin Description

Pin Name	Description
EN _x	Switch Enable
A3 - A0	A Ports
B3 - B0	B Ports
GND	Ground
V _{CC}	Power

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Supply Voltage to Ground Potential	-0.5V to +4.6V
DC Input Voltage	-0.5V to +6.0V
DC Output Current	120mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics, 3.3V Supply (Over Operating Range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 3.3V \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2			
V _{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$		-0.8	-1.8	
I _{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	
I _{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μA
I _{OZH}	High-Impedence Current	$0 \leq A, B \leq V_{CC}$			±1	
R _{ON}	Switch On-Resistance ⁽³⁾	$V_{CC} = Min., V_{IN} = 0V,$ $I_{ON} = 48mA \text{ or } 64mA$		4	6	Ω
		$V_{CC} = Min., V_{IN} = 3.6V, I_{ON} = -15mA$		5	8	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at V_{CC} = 3.3V, T_A = 25°C ambient and maximum loading.

3. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A,B) pins.

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	1.8		$V_{CC} + 0.3$	
V _{IL}	Inout LOW Voltage	Guaranteed Logic LOW Level	-0.3		0.8	V
V _{IK}	Clamp Diode Voltage	$V_{CC} = Max., I_{IN} = -6mA$		-0.7	-1.8	
I _{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	
I _{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μΑ
I _{OZH}	High Impedance Current	$0 \leq A, B \leq V_{CC}$			±1	
Pour	Switch On-Resistance ⁽³⁾	$V_{CC} = Min., V_{IN} = 0V,$ $I_{ON} = 48mA$		4	8	Ω
R _{ON}	Switch On-Resistance	$V_{CC} = Min., V_{IN} = 2.25V,$ $I_{ON} = -15mA$		7	14	52

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$ ambient and maximum loading.
- 3. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A,B) pins.

Capacitance ($T_A = 25^{\circ}C f = 1 MHz$)

Parameters ⁽¹⁾	Description	Test Conditions	Тур.	Units
C _{IN}	Input Capacitance		2.1	
C _{OFF}	A/B Capacitance, Switch Off	$V_{IN} = 0V$	3.1	pF
C _{ON}	A/B Capacitance, Switch On		6.6	

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	$V_{CC} = 3.6V$, $V_{IN} = GND$ or V_{CC}			0.8	mA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at $V_{CC} = 3.3V$, +25°C ambient.

		o for the operating range (IA		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Parameter	Description	Test Condition	Min.	Тур.	Max.	Units
X _{TALK}	Crosstalk	10 MHz		-78		dD
O _{IRR}	Off-Isolation	10 MHz		-60		dB
BW	-3dB Bandwidth	See Test Diagram	200	500		MHz

Dynamic Electrical Characteristics Over the Operating Range ($T_A = -40^\circ$ to $+85^\circ$, $V_{CC} = 3.3V \pm 10\%$)

Switching Characteristics over 3.3V Operating Range

Parameters	Description	Conditions ⁽¹⁾		Com.		Units
rarameters	Description	Conditions	Min.	Тур.	Max.	Units
t _{PLH} t _{PHL}	Propogation $Delay^{(2,3)}$ Ax to Bx, Bx to Ax	See Test Diagram			0.3	
t _{PZH} t _{PZL}	Enable Time ENx to Ax or Bx	Saa Taat Diagram	1.5		9.0	ns
t _{PHZ} t _{PLZ}	Disable Time ENx to Ax or Bx	See Test Diagram	1.5		9.0	

Notes:

1. See test circuit and waveforms.

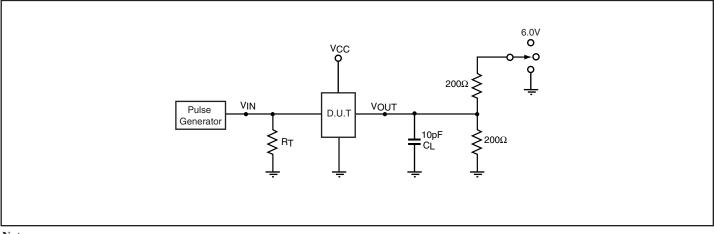
2. This parameter is guaranteed but not tested on Propagation Delays.

3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Switching Characteristics over 2.5V Operating Range

Davamatava	Description	Conditions ⁽¹⁾	Co	m.	Ita
Parameters	Description	Conditions	Min.	Max.	Units
t _{PLH} t _{PHL}	Propogation $Delay^{(2,3)}$ Ax to Bx, Bx to Ax	See Test Diagram		0.3	
t _{PZH} t _{PZL}	Enable Time ENx to Ax or Bx	See Test Diegrom	1.5	15.0	ns
t _{PHZ} t _{PLZ}	Disable Time ENx to Ax or Bx	See Test Diagram	1.5	12.0	

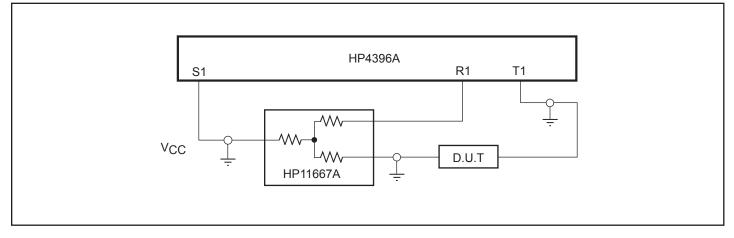
Notes:


1. See test circuit and waveforms.

2. This parameter is guaranteed but not tested on Propagation Delays.

3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

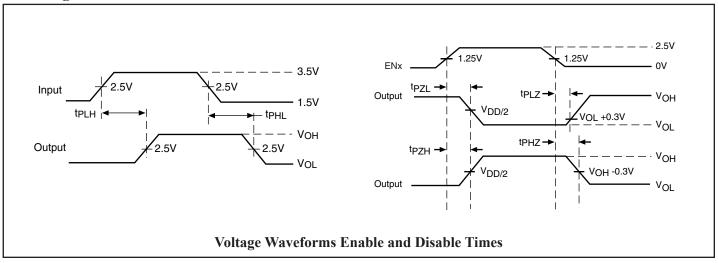
Test Circuit for Electrical Characteristics⁽¹⁾


Notes:

- C_L = Load capacitance: includes jig and probe capacitance.
- R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- All input impulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, $Z_0 = 50\Omega$, $t_R \leq 2.5$ ns, $t_F \leq 2.5$ ns.
- The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
t _{PLZ} , t _{PZL}	6.0V
t _{PHZ} , t _{PZH}	GND
Prop Delay	Open


Test Circuit for Dynamic Electrical Characteristics

ADVANCE INFORMATION

Switching Waveforms

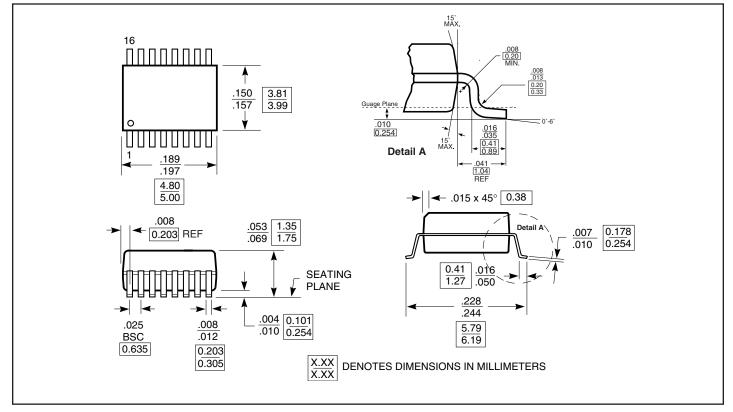
Applications Information

Logic Inputs

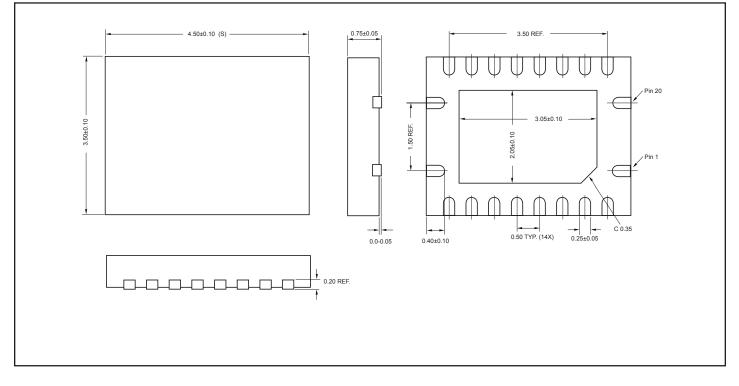
The logic control inputs can be driven up to 3.6V regardless of the supply voltage. For example, given a +3.3V supply, EN may be driven LOW to 0V and HIGH to 3.6V. Driving EN Rail-to-Rail[®] minimizes power consumption.

Power Supply-Sequencing

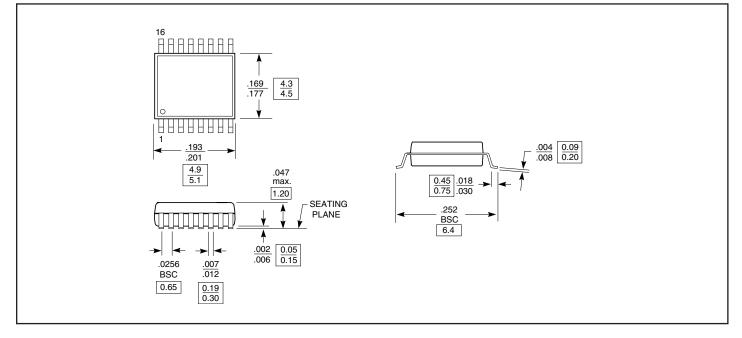
Proper power supply sequencing is recommended for all CMOS devices. Always apply V_{CC} before applying signals to the input/ output or control pins.


Hot Insertion

For Datacom and Telecom applications that have ten or more volts passing through the backplane, a high voltage from the power supply may be seen at the device input pins during hot insertion. The PI3CHxx devices have maximum limits of 6V and 120mA for 20ns. If the power is higher or applied for a longer time or repeatedly reaches the maximum limits, the devices can be damaged.


Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Packaging Mechanical: 16-pin QSOP (Q)



Packaging Mechanical: 20-Contact TQFN (ZH)

Packaging Mechanical: 16-pin TSSOP (L)

Ordering Information

Ordering Code	Packaging Code	Package Description
PI3CH401L	L	170-mil, 16-pin TSSOP
PI3CH401LE	L	Pb-free & Green, 170-mil, 16-pin TSSOP
PI3CH401Q	Q	150-mil, 16-pin QSOP
PI3CH401QE	Q	Pb-free & Green, 150-mil, 16-pin QSOP
PI3CH401ZHE	ZH	Pb-free & Green, 20-contact TQFN

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• E = Pb-free & Green

• Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com