74LVQ151 Low Voltage 8-Input Multiplexer

FAIRCHILD

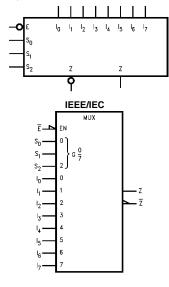
SEMICONDUCTOR

74LVQ151 Low Voltage 8-Input Multiplexer

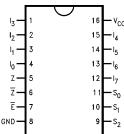
General Description

The LVQ151 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one line of data from up to eight sources. The LVQ151 can be used as a universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

Features


- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Guaranteed incident wave switching into 75Ω

Ordering Code:


74LVQ151SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
	WITOA	To-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74LVQ151SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description		
I ₀ -I ₇	Data Inputs		
$S_0 - S_2$	Select Inputs		
Ē	Enable Input		
Z	Data Output		
Z	Inverted Data Output		

© 2001 Fairchild Semiconductor Corporation DS011351

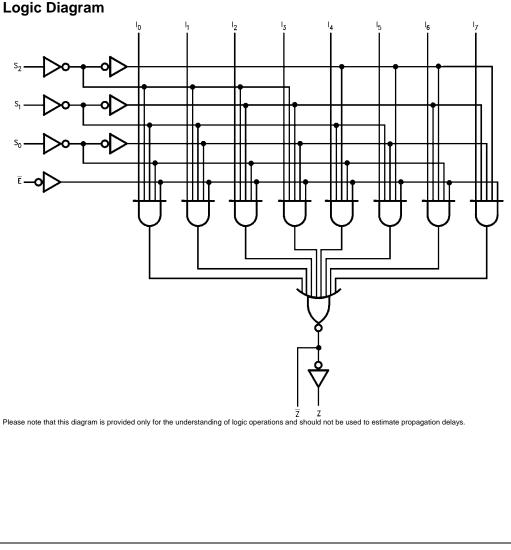
www.fairchildsemi.com

74LVQ151

Truth Table

	Inp	Out	outs		
E	S ₂	S ₁	S ₀	z	z
Н	Х	Х	Х	Н	L
L	L	L	L	Īo	I ₀
L	L	L	н	Ī ₁	I ₁
L	L	н	L	\overline{I}_2	I_2
L	L	н	н	Ī ₃	l ₃
L	н	L	L	\overline{I}_4	I_4
L	н	L	н	\overline{I}_5	I_5
L	н	н	L	Ī ₆	I_6
L	н	н	н	\overline{I}_7	I ₇

H = HIGH Voltage Level L = LOW Voltage Level


X = Immaterial

Functional Description

The LVQ151 is a logic implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both true and complementary outputs are provided. The Enable input (\overline{E}) is active LOW. When it is not activated, the complementary output is HIGH and the true output is LOW regardless of all other inputs. The logic function provided at the output is:

$$Z = \overline{E} \cdot (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet \overline{S}_2)$$

The LVQ151 provides the ability, in one package to select from eight sources of data or control information. By proper manipulation of the inputs, the LVQ151 can provide any logic function of four variables and its complement.

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±200 mA
Storage Temperature (T _{STG})	-65°C to +150°C
DC Latch-Up Source or	
Sink Current	±100 mA

Recommended Operating Conditions (Note 2)

()			
Supply Voltage (V _{CC})	2.0V to 3.6V		
Input Voltage (V _I)	0V to V_{CC}		
Output Voltage (V _O)	0V to V _{CC}		
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$		
Minimum Input Edge Rate ($\Delta V/\Delta t$)			
V _{IN} from 0.8V to 2.0V			
V _{CC} @ 3.0V	125 mV/ns		

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = +25°C		$T_A = -40^\circ C$ to $+85^\circ C$	Units	Conditions
Symbol		(V)	Тур	Guaranteed Limits			Conditions
V _{IH}	Minimum High Level Input Voltage	3.0	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$
V _{IL}	Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$
V _{OH}	Minimum High Level	3.0	2.99	2.9	2.9	V	I _{OUT} = -50 μA
	Output Voltage	3.0		2.58	2.48	V	$V_{IN} = V_{IL} \text{ or } V_{IH} \text{ (Note 3)}$ $I_{OH} = -12 \text{ mA}$
V _{OL}	Maximum Low Level	3.0	0.002	0.1	0.1	V	I _{OUT} = 50 μA
	Output Voltage	3.0		0.36	0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH} \text{ (Note 3)}$ $I_{OL} = 12 \text{ mA}$
I _{IN}	Maximum Input Leakage Current	3.6		±0.1	±1.0	μΑ	$V_1 = V_{CC},$ GND
I _{OLD}	Minimum Dynamic	3.6			36	mA	V _{OLD} = 0.8V Max (Note 5
I _{OHD}	Output Current (Note 4)	3.6			-25	mA	V _{OHD} = 2.0V (Note 5)
I _{CC}	Maximum Quiescent Supply Current	3.6		4.0	40.0	μΑ	V _{IN} = V _{CC} or GND
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 6)(Note 7)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 6)(Note 7)
V _{IHD}	Maximum High Level Dynamic Input Voltage	3.3	1.7	2.0		V	(Note 6)(Note 8)
V _{ILD}	Maximum Low Level Dynamic Input Voltage	3.3	1.7	0.8		V	(Note 6)(Note 8)

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74LVQ. Note 6: Worst case package.

Note 7: Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V; one output at GND.

Note 8: Max number of Data Inputs (n) switching. (n - 1) inputs switching 0V to 3.3V. Input-under-test switching: 3.3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1 MHz.

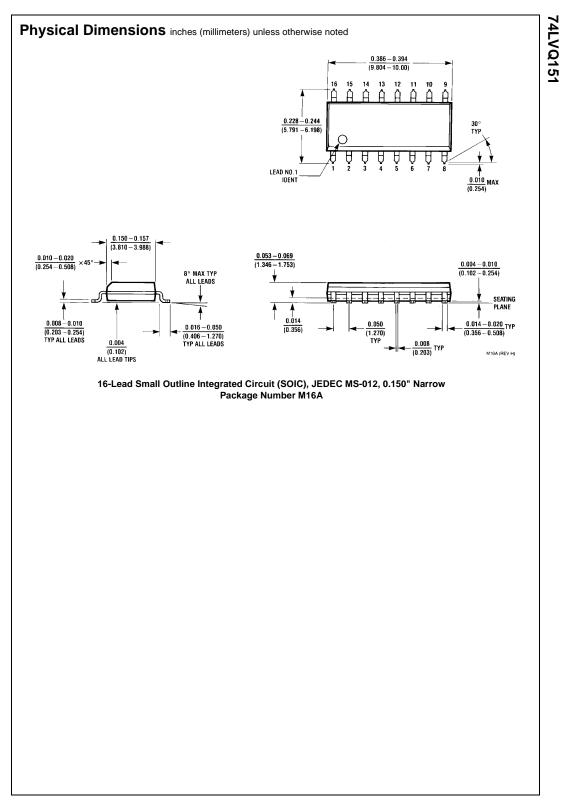
3

74LVQ151

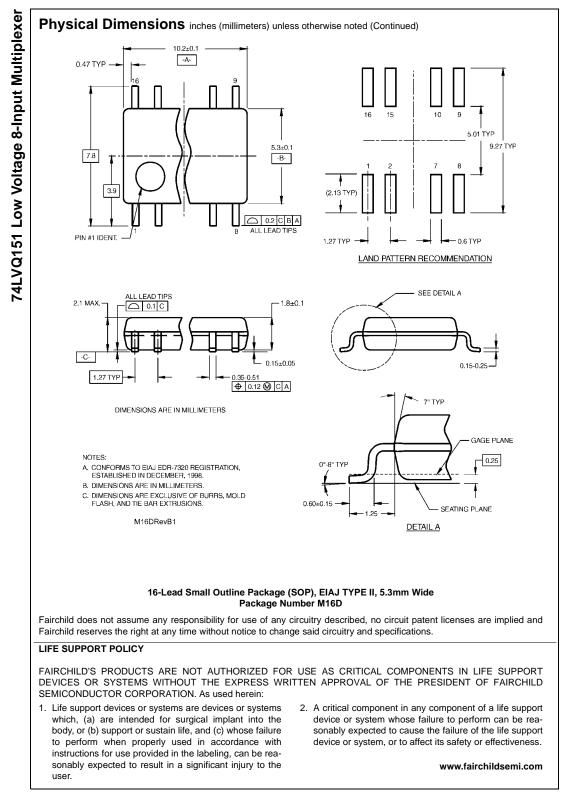
74LVQ151

AC Electrical Characteristics

				$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C		
Symbol	Parameter	V _{CC} (V)	C _L = 50 pF			C _L = 50 pF		Units	
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	2.7	3.0	13.8	25.3	3.0	28.0	ns	
	S_n to Z or \overline{Z}	$\textbf{3.3}\pm\textbf{0.3}$	3.0	11.5	18.0	3.0	20.0		
t _{PHL}	Propagation Delay	2.7	2.5	14.4	25.3	2.5	28.0	ns	
	S_n to Z or \overline{Z}	3.3 ± 0.3	2.5	12.0	18.0	2.5	20.0		
t _{PLH}	Propagation Delay	2.7	2.5	9.6	18.3	2.0	20.0	ns	
	E to Z or Z	$\textbf{3.3}\pm\textbf{0.3}$	2.5	8.0	13.0	2.0	14.0		
t _{PHL}	Propagation Delay	2.7	1.5	10.2	18.3	1.5	20.0	-	
	E to Z or Z	$\textbf{3.3}\pm\textbf{0.3}$	1.5	8.5	13.0	1.5	14.0	ns	
t _{PLH}	Propagation Delay	2.7	2.5	11.4	19.7	2.0	22.0	ns	
	I_n to Z or \overline{Z}	3.3 ± 0.3	2.5	9.5	14.0	2.0	15.5		
t _{PHL}	Propagation Delay	2.7	2.5	11.4	21.1	2.0	23.0	ns	
	I_n to Z or \overline{Z}	3.3 ± 0.3	2.5	9.5	15.0	2.0	16.0		
t _{OSHL}	Output to Output Skew (Note 9)	2.7		1.0	1.5		1.5	ns	
t _{OSLH}	Data to Output	3.3 ± 0.3		1.0	1.5	1	1.5	ns	


Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance


Symbol	Parameter	Тур	Units	Conditions			
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = Open			
C _{PD} (Note 10)	Power Dissipation Capacitance	45	pF	$V_{CC} = 3.3V$			
Note do. C is measured at 10 MHz							

Note 10: C_{PD} is measured at 10 MHz.

www.fairchildsemi.com

www.fairchildsemi.com

