FEATURES:

- Pin-out compatible with standard '244 Logic products
- 5Ω A/B bi-directional switch
- Isolation under power-off conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100 mA
- Vcc = 2.3V-3.6V, Normal Range
- ESD > 2000V per MIL-STD-883, Method 3015; $>200 \mathrm{~V}$ using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in QSOP and TSSOP packages

DESCRIPTION:

The octal bus switch has standard 244 pinouts. The CBTLV3244 is designed for asynchronous communication between data buses. Sets of four switches are controlled by one output Enable ($\overline{\mathrm{OE}})$. When $\overline{\mathrm{OE}}$ is low, the set of four bus switches is on and port A is connected to port B. When $\overline{\mathrm{OE}}$ is high, the set of four bus switches is off and a high impedance exists between port A and port B.
To ensure the high-impedance state during power up or power down, both $\overline{\mathrm{O}}$ s should be tied to Vcc through a pullup resistor.

APPLICATIONS:

- 3.3V High Speed Bus Switching and Bus Isolation

FUNCTIONAL BLOCK DIAGRAM

SIMPLIFIED SCHEMATIC, EACH SWITCH

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VCC	SupplyVoltage Range	-0.5 to +4.6	V
VI	Input Voltage Range	-0.5 to +4.6	V
	Continuous Channel Current	128	mA
IIK	Input Clamp Current, $\mathrm{V} / 0<0$	-50	mA
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
$\mathrm{x} \overline{\mathrm{O}} \mathrm{E}$	Output Enable(ActiveLOW)
Ax	PortA Inputs or Outputs
Bx	Port B Inputs or Outputs

FUNCTIONTABLE ${ }^{(1)}$

Input		1A, 1B I/Os	2A, 2B I/Os
$1 \overline{\mathrm{O}}$	$2 \overline{\mathrm{E}}$		
H	H	Disconnect	Disconnect
L	H	1A Port = 1B Port	Disconnect
H	L	Disconnect	2 A Port $=2 \mathrm{BP}$ Port
L	L	1A Port = 1B Port	2 A Port $=2 \mathrm{~B}$ Port

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level

OPERATING CHARACTERISTICS, $\mathrm{TA}=25^{\circ} \mathrm{C}^{(1)}$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	$\mathrm{VcC}=2.3 \mathrm{~V}$ to 2.7V	1.7	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	2	-	
VIL	Low-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	-	0.8	
TA	Operating Free-AirTemperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Conditions: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
VIK	Control Inputs, Data Inputs	$\mathrm{VcC}=3 \mathrm{~V}, \mathrm{II}=-18 \mathrm{~mA}$		-	-	-1.2	V
11	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	± 1	$\mu \mathrm{A}$
Ioz	Data I/O	Vcc $=3.6 \mathrm{~V}$, Vo $=0$ or 3.6 V , switch disabled		-	-	5	$\mu \mathrm{A}$
IOFF		$\mathrm{VCC}=0, \mathrm{VI}$ or Vo $=0$ to 3.6V		-	-	50	$\mu \mathrm{A}$
ICC		$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{lo}=0, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	10	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}^{(1)}$	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}$, one input at 3V, other inputs at Vcc or GND		-	-	300	$\mu \mathrm{A}$
Cl	Control Inputs	$\mathrm{VI}=3 \mathrm{~V}$ or 0		-	4	-	pF
Clo(OFF)		$\mathrm{Vo}=3 \mathrm{~V}$ or $0, \overline{\mathrm{OE}}=\mathrm{Vcc}$		-	6	-	pF
Ron ${ }^{(2)}$	$\mathrm{VcC}=2.3 \mathrm{~V}$	V I $=0$	$10=64 \mathrm{~mA}$	-	5	8	Ω
	Typ. at $\mathrm{Vcc}=2.5 \mathrm{~V}$		$10=24 \mathrm{~mA}$	-	5	8	
		V I $=1.7 \mathrm{~V}$	$10=15 \mathrm{~mA}$	-	27	40	
	$\mathrm{Vcc}=3 \mathrm{~V}$	V I $=0$	$10=64 \mathrm{~mA}$	-	5	7	
			$10=24 \mathrm{~mA}$	-	5	7	
		$\mathrm{VI}=2.4 \mathrm{~V}$	$\mathrm{l}=15 \mathrm{~mA}$	-	10	15	

NOTES:

1. The increase in supply current is attributable to each current that is at the specified voltage level rather than Vcc or GND.
2. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	
tpD ${ }^{(1)}$	PropagationDelay	-	0.15	-	0.25	ns
	A to B or B to A					
ten	OutputEnable Time $\overline{\mathrm{OE}}$ to A or B	1	4.5	1	4	ns
tols	OutputDisable Time $\overline{\mathrm{OE}}$ to A or B	1	4.5	1	5	ns

NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance driven by an ideal voltage source (zero output impedance).

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)} \mathbf{= 3 . 3 V} \pm 0.3 \mathrm{~V}$	$\mathrm{Vcc}^{(2)} \mathbf{=} \mathbf{2 . 5 V} \pm 0.2 \mathrm{~V}$	Unit
VLOAD	6	$2 \times \mathrm{Vcc}$	V
VIH	3	Vcc	V
$\mathrm{V} T$	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	150	mV
VHz	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs

DEFINITIONS:

$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
RT $=$ Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tr} \leq 2.5 \mathrm{~ns}$; $\mathrm{tr} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tPZ 1 tPZL	VLOAD
tPHZIPZH	GND
tPD	Open

Propagation Delay

Enable and Disable Times

ORDERING INFORMATION

for SALES:
800-345-7015 or 408-284-8200 fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

