April 1988 Revised September 2000

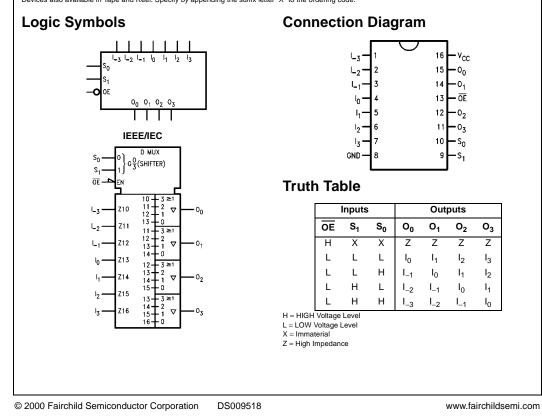
74F350 4-Bit Shifter with 3-STATE Outputs

FAIRCHILD

SEMICONDUCTOR

74F350 4-Bit Shifter with 3-STATE Outputs

General Description


The 74F350 is a specialized multiplexer that accepts a 4-bit word and shifts it 0, 1, 2 or 3 places, as determined by two Select (S₀, S₁) inputs. For expansion to longer words, three linking inputs are provided for lower-order bits; thus two packages can shift an 8-bit word, four packages a 16-bit word, etc. Shifting by more than three places is accomplished by paralleling the 3-STATE outputs of different packages and using the Output Enable (\overline{OE}) inputs as a third Select level. With appropriate interconnections, the 74F350 can perform zero-backfill, sign-extend or end-around (barrel) shift functions.

Features

- Linking inputs for word expansion
- 3-STATE outputs for extending shift range

Ordering Code:

	Package Number Package Description				
74F350SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow			
74F350SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74F350PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide			

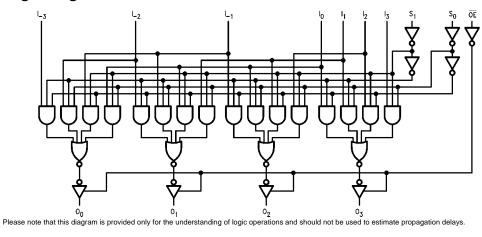
74F350

Unit Loading/Fan Out

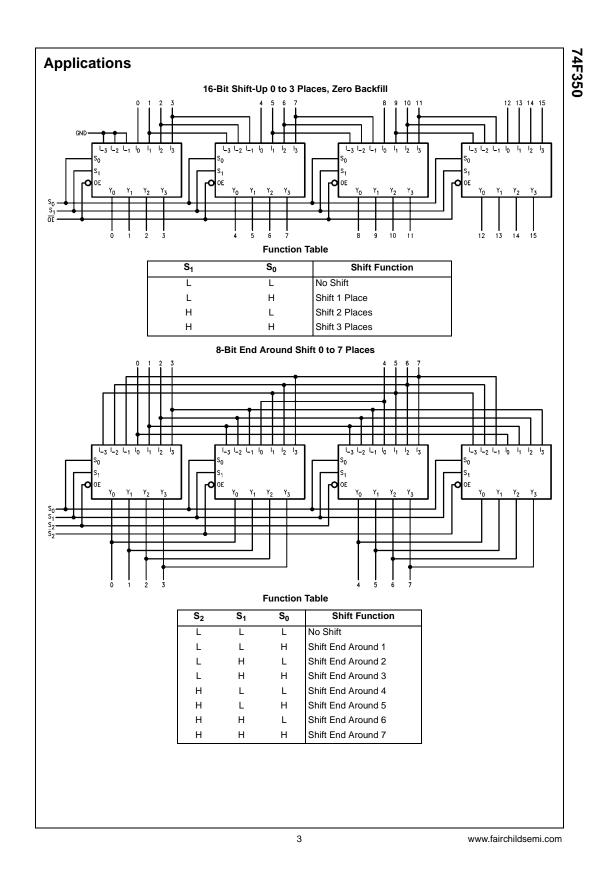
Din Manua	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
S ₀ , S ₁	Select Inputs	1.0/2.0	20 μA/–1.2 mA	
I_3I3 OE	Data Inputs	1.0/2.0	20 μA/–1.2 mA	
OE	Output Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA	
O ₀ –O ₃	3-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)	

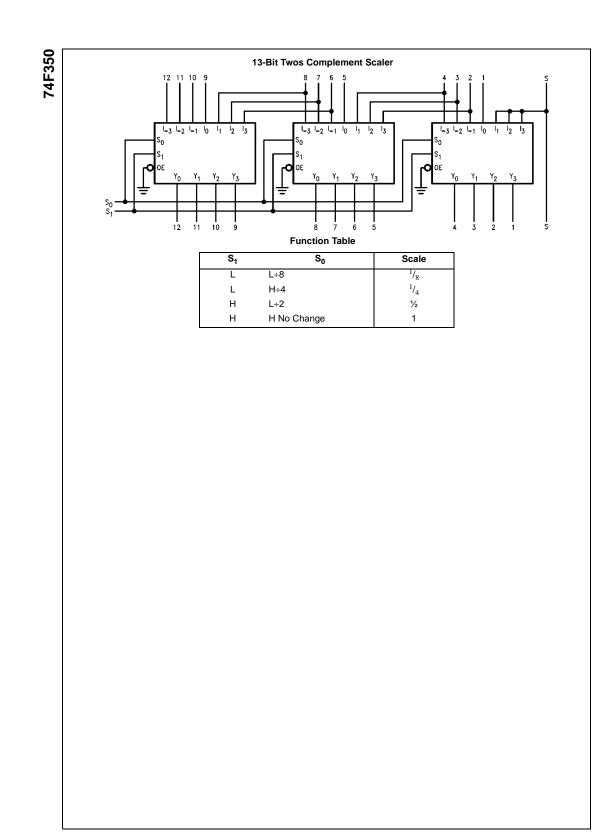
Functional Description

The 74F350 is operationally equivalent to a 4-input multiplexer with the inputs connected so that the select code causes successive one-bit shifts of the data word. This internal connection makes it possible to perform shifts of 0, 1, 2 or 3 places on words of any length.


A 4-bit data word is introduced at the I_n inputs and is shifted according to the code applied to the select inputs $S_0,\ S_1.$ Outputs O_0-O_3 are 3-STATE, controlled by an active LOW output enable (\overline{OE}). When \overline{OE} is LOW, data outputs will follow selected data inputs; when HIGH, the data outputs will be forced to the high impedance state. This feature allows shifters to be cascaded on the same output lines or to a common bus. The shift function can be

Logic Diagram


logical, with zeros pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.


Logic Equations

- $$\begin{split} &O_0=\overline{S}_0\overline{S}_1I_0+S_0\overline{S}_1I_{-1}+\overline{S}_0S_1I_{-2}+S_0S_1I_{-3}\\ &O_1=\overline{S}_0\overline{S}_1I_1+S_0\overline{S}_1I_0+\overline{S}_0S_1I_{-1}+S_0S_1I_{-2}\\ &O_2=\overline{S}_0\overline{S}_1I_2+S_0\overline{S}_1I_1+\overline{S}_0S_1I_0+S_0S_1I_{-1} \end{split}$$
- $O_3 = \overline{S}_0 \overline{S}_1 I_3 + S_0 \overline{S}_1 I_2 + \overline{S}_0 S_1 I_1 + S_0 S_1 I_0$

www.fairchildsemi.com

www.fairchildsemi.com

4

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max)

-65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

0°C to +70°C

+4.5V to +5.5V

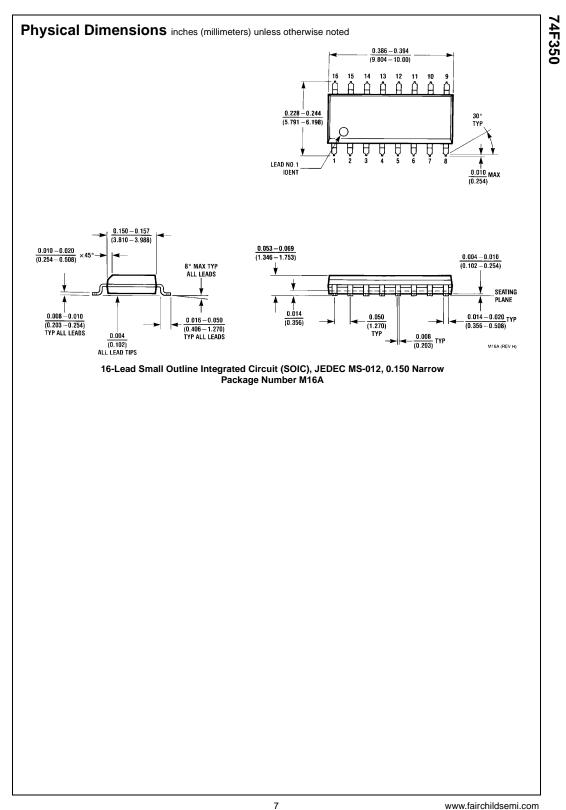
74F350

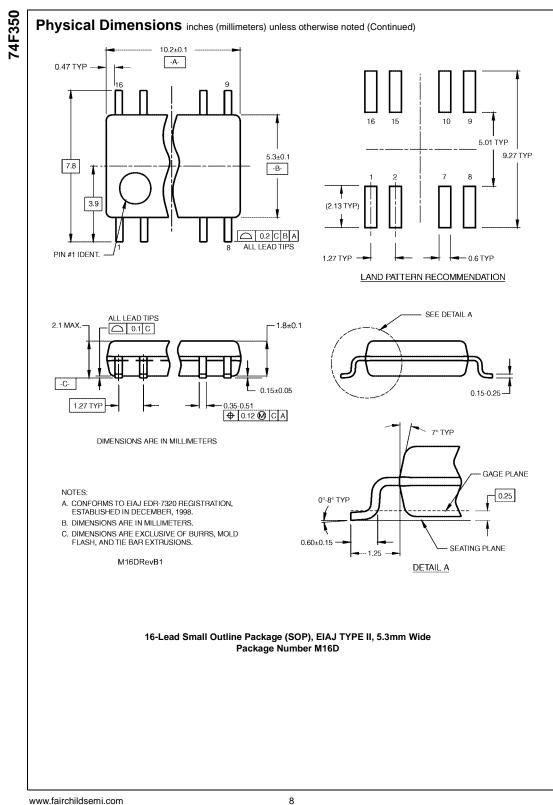
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

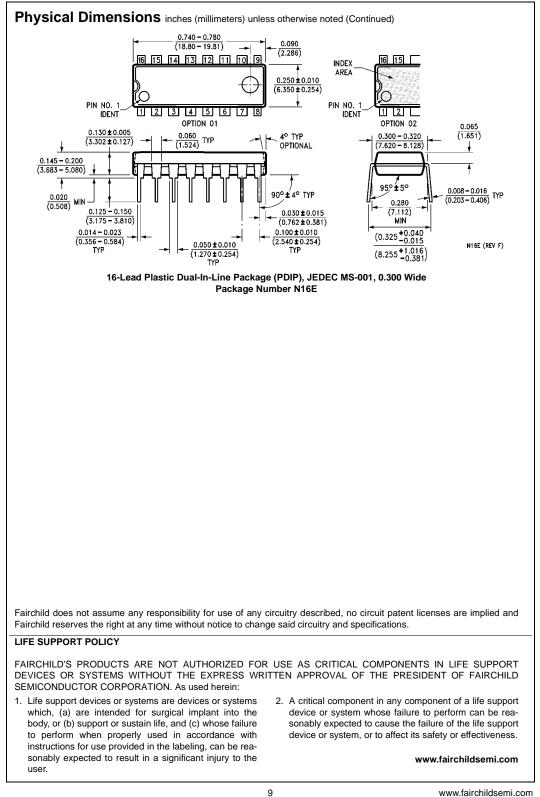
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Symbol	Paramete	r	Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltag	le			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH 10% V _{CC}		2.5				I _{OH} = -1 mA	
	Voltage	10% V _{CC}	2.4			v	Min	$I_{OH} = -3 \text{ mA}$
		5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$
		10% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
I _{IH}	Input HIGH Current				5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΛ	IVIAN	VIN - 7.0V
ICEX	Output HIGH				50	μA	Max	$V_{OUT} = V_{CC}$
	Leakage Current	Current 30 µA		μΛ	IVIAN	*OUI = *CC		
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μA	0.0	V _{IOD} = 150 mV
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded
Ι _{ΙL}	Input LOW Current				-1.2	mA	Max	$V_{IN} = 0.5V$
I _{OZH}	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$
los	Output Short-Circuit Curre	ent	-60		-150	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$
I _{CCH}	Power Supply Current			34	42	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			40	57	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			40	57	mA	Max	V _O = HIGH Z

DC Electrical Characteristics


www.fairchildsemi.com


74F350


AC Electrical Characteristics

Symbol	Parameter		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units		
		Min	Тур	Max	Min	Max	-
t _{PLH}	Propagation Delay	3.0	4.5	6.0	3.0	7.0	ns
t _{PHL}	I _n to O _n	2.5	4.0	5.5	2.5	6.5	
t _{PLH}	Propagation Delay	4.0	7.8	10.0	4.0	13.5	
t _{PHL}	S _n to O _n	3.0	6.5	8.5	3.0	9.5	ns
t _{PZH}	Output Enable Time	2.5	5.0	7.0	2.5	8.0	
t _{PZL}		4.0	7.0	9.0	4.0	10.0	
t _{PHZ}	Output Disable Time	2.0	3.9	5.5	2.0	6.5	ns
t _{PLZ}		2.0	4.0	5.5	2.0	7.5	

www.fairchildsemi.com

74F350 4-Bit Shifter with 3-STATE Outputs