

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	$\begin{gathered} \text { Input } \mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}} \\ \text { Output } \mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}} \end{gathered}$
$\overline{\mathrm{RE}}$	Register Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
S/P	Serial (HIGH) or Parallel (LOW) Mode Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{SE}}$	Sign Extend Input (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
S	Serial Data Select Input	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Serial Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	3-STATE Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
Q_{0}	Bi-State Serial Output	50/33.3	-1 mA/-20 mA
$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	Multiplexed Parallel Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	3-STATE Parallel Data Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)

Functional Description

The 74F322 contains eight D-type edge triggered flip-flops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A LOW signal on $\overline{\mathrm{RE}}$ enables shifting or parallel loading, while a HIGH signal enables the hold mode. A HIGH signal on S / \bar{P} enables shift right, while a LOW signal disables the 3-STATE output buffers and enables parallel loading. In the shift right mode a HIGH sig-
nal on $\overline{\text { SE }}$ enables serial entry from either D_{0} or D_{1}, as determined by the S input. A LOW signal on $\overline{\mathrm{SE}}$ enables shift right but Q_{7} reloads its contents, thus performing the sign extend function required for the 74F384 Twos Complement Multiplier. A HIGH signal on $\overline{\mathrm{OE}}$ disables the 3STATE output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed.

Mode Select Table

Mode	Inputs							Outputs								Q_{0}
	$\overline{\mathrm{MR}}$	$\overline{\mathrm{RE}}$	S/ $\overline{\mathbf{P}}$	$\overline{\text { SE }}$	S	$\overline{\mathrm{OE}}$ (Note 1)	CP	I/O7	$\mathrm{I} / \mathrm{O}_{6}$	$\mathrm{I} / \mathrm{O}_{5}$	$\mathrm{I} / \mathrm{O}_{4}$	$\mathrm{I} / \mathrm{O}_{3}$	$\mathrm{I} / \mathrm{O}_{2}$	$\mathrm{I} / \mathrm{O}_{1}$	$\mathrm{I} / \mathrm{O}_{0}$	
Clear	L	X	X	X	X	L	X	L	L	L	L	L	L	L	L	L
	L	X	X	X	X	H	X	Z	Z	Z	Z	Z	Z	Z	Z	L
Parallel Load	H	L	L	X	X	X	\sim	I_{7}	I_{6}	I_{5}	I_{4}	I_{3}	I_{2}	I_{1}	I_{0}	I_{0}
Shift	H	L	H	H	L	L	\sim	D_{0}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{1}
Right	H	L	H	H	H	L	\sim	D_{1}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{1}
Sign Extend	H	L	H	L	X	L	\sim	O_{7}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{1}
Hold	H	H	X	X	X	L	\sim	NC								

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{Z}=$ High Impedance Output State
$\widetilde{=}=$ LOW-to-HIGH Transition
NC = No Change
Note: $1_{7}-I_{0}=$ The level of the steady-state input at the respective I/O terminal is loaded into the flip-flop while the flip-flop outputs (except Q_{0}) are isolated from the I/O terminal.
Note: $\mathrm{D}_{0}, \mathrm{D}_{1}=$ The level of the steady-state inputs to the serial multiplexer input.
Note: $\mathrm{O}_{7}-\mathrm{O}_{0}=$ The level of the respective Q_{n} flip-flop prior to the last Clock LOW-to-HIGH transition.
Note 1: When the $\overline{\mathrm{OE}}$ input is HIGH all $/ / \mathrm{O}_{\mathrm{n}}$ terminals are at the high impedance state; sequential operation or clearing of the register is not affected.

Absolute Maximum Ratings(Note 2)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 3)
Input Current (Note 3)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
3-STATE Output
Current Applied to Output
in LOW State (Max)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

-30 mA to +5.0 mA
-0.5 V to V_{CC}
-0.5 V to +5.5 V
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	v_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{1 \mathrm{~L}}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{0}, \mathrm{l} / \mathrm{O}_{n}\right) \\ & \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{I} / \mathrm{O}_{n}\right) \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{0}, I / \mathrm{O}_{n}\right) \\ & \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(1 / \mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	$\begin{array}{ll}\text { Output LOW Voltage } & \begin{array}{l}10 \% \mathrm{~V}_{\mathrm{CC}} \\ 10 \% \mathrm{~V}_{\mathrm{CC}}\end{array}\end{array}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA}\left(\mathrm{Q}_{0}\right) \\ & \mathrm{IOL}^{2}=24 \mathrm{~mA}\left(1 / \mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
${ }_{1} \mathrm{H}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$ (Non-1/O Inputs)
$\mathrm{I}_{\text {BVIt }}$	Input HIGH Current Breakdown Test (1/O)			0.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
IL	Input LOW Current			$\begin{aligned} & \hline-0.6 \\ & -1.2 \\ & -1.8 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	Max Max Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\overline{\mathrm{RE}}, \mathrm{~S} / \overline{\mathrm{P}}, \mathrm{D}_{\mathrm{n}}, \mathrm{CP}, \overline{\mathrm{MR}}, \overline{\mathrm{OE}}\right) \\ & \mathrm{V}_{\mathbb{I N}}=0.5 \mathrm{~V}(\mathrm{~S}) \\ & \mathrm{V}_{\mathbb{I}}=0.5 \mathrm{~V}(\overline{\mathrm{SE}}) \end{aligned}$
$\begin{aligned} & \mathrm{l}_{\mathrm{HH}^{+}} \\ & \mathrm{I}_{\mathrm{OZZH}} \end{aligned}$	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{I}} \mathrm{O}=2.7 \mathrm{~V}\left(\mathrm{I} / \mathrm{O}_{\mathrm{n}}\right)$
$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{LL}}+ \\ \mathrm{I}_{\mathrm{OZL}} \end{array}$	Output Leakage Current			-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{I}} \mathrm{O}=0.5 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
Icc	Power Supply Current		60	90	mA	Max	

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	70	90		50		70		MHz
$t_{\text {PLH }}$	Propagation Delay	3.5	7.0	7.5	3.5	9.5	3.5	8.5	ns
$\mathrm{t}_{\text {PHL }}$	CP to $1 / \mathrm{O}_{\mathrm{n}}$	5.0	8.5	11.0	3.5	10.0	5.0	12.0	
${ }_{\text {tpLH }}$	Propagation Delay	3.5	7.0	9.0	3.5	11.0	3.5	10.0	
$\mathrm{t}_{\text {PHL }}$	CP to Q_{0}	3.5	7.0	8.0	3.5	10.0	3.5	9.0	
${ }_{\text {t PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	6.0	10.0	13.0	6.0	15.0	6.0	14.0	ns
${ }_{\text {t PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{0}	5.5	7.5	12.0	5.5	14.0	5.5	13.0	ns
$\overline{t_{\text {PZH }}}$	Output Enable Time	3.0	6.5	9.0	3.0	12.5	3.0	10.0	ns
$t_{\text {PZL }}$	$\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	4.0	8.5	11.0	4.0	14.5	4.0	12.0	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	2.0	4.5	6.0	2.0	8.0	2.0	7.0	
tplz	$\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	2.0	5.0	7.0	2.0	10.0	2.0	8.0	
$\mathrm{t}_{\text {PzH }}$	Output Enable Time	4.5	8.0	10.5	4.5	13.5	4.5	11.5	ns
$t_{\text {PZL }}$	$\mathrm{S} / \overline{\mathrm{P}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.5	10.0	14.0	5.5	17.0	5.5	15.0	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	5.0	9.0	11.5	5.0	16.5	5.0	12.5	
tpLz	$\mathrm{S} / \overline{\mathrm{P}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	6.0	12.0	15.5	6.0	19.5	6.0	16.5	

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=\mathbf{0 C}$ to $+75^{\circ} \mathrm{C}$		Units
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	6.0		14.0		7.0		
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	$\overline{\mathrm{RE}}$ to CP	14.0		18.0		16.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	0		0		0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	$\overline{\mathrm{RE}}$ to CP	0		0		0		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	6.5		8.5		7.5		ns
$\mathrm{ts}^{(L)}$	$\mathrm{D}_{0}, \mathrm{D}_{1}$ or $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	6.5		8.5		7.5		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	2.0		3.0		3.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	$\mathrm{D}_{0}, \mathrm{D}_{1}$ or $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	2.0		3.0		3.0		ns
${ }_{\text {ts }}{ }^{\text {H }}$)	Setup Time, HIGH or LOW	7.0		9.0		8.0		
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	$\overline{\text { SE }}$ to CP	2.5		11.0		3.5		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	2.0		2.0		2.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	$\overline{\text { SE }}$ to CP	0.0		1.0		0.0		ns
$\mathrm{t}_{\mathrm{S}}(\mathrm{H})$	Setup Time, HIGH or LOW	11.0		13.0		12.0		
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$	S / \bar{P} to CP	13.5		21.0		15.5		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	6.5		8.5		7.5		
$\mathrm{t}_{\text {S }}(\mathrm{L})$	S to CP	9.0		11.0		10.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	0		1.0		0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	S or S/P to CP	0		0		0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	CP Pulse Width, HIGH or LOW	7.0		8.0		7.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$								
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR Pulse Width, LOW }}$	5.5		7.5		6.5		
$\mathrm{t}_{\text {REC }}$	Recovery Time	8.0		12.0		8.0		ns
	$\overline{\mathrm{MR}}$ to CP							

[^0]
[^0]: Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

