October 1987 Revised May 2002

MM74C165 Parallel-Load 8-Bit Shift Register

MM74C165 Parallel-Load 8-Bit Shift Register

General Description

FAIRCHILD

The MM74C165 functions as an 8-bit parallel-load, serial shift register. Data is loaded into the register independent of the state of the clock(s) when PARALLEL LOAD (\overline{PL}) is low. Shifting is inhibited as long as \overline{PL} is low. Data is sequentially shifted from complementary outputs, Q_7 and $\overline{Q_7}$, highest-order bit (P7) first. New serial data may be entered via the SERIAL DATA (Ds) input. Serial shifting occurs on the rising edge of CLOCK1 or CLOCK2. Clock inputs may be used separately or together for combined clocking from independent sources. Either clock input may be used also as an active-low clock enable. To prevent double-clocking when a clock input is used as an enable, the enable must be changed to a high level (disabled) only while the clock is HIGH.

Features

- Wide supply voltage range: 3V to 15V
- Guaranteed noise margin: 1V
- High noise immunity: 0.45 V_{CC} (typ.)
- Low power TTL compatibility: fan out of 2 driving 74L
- Parallel loading independent of clock
- Dual clock inputs
- Fully static operation

Ordering Code:

Connection Diagram

© 2002 Fairchild Semiconductor Corporation DS005897

Truth Table

State	Inputs				Internal		Outputs		
	PL	Clock1	Clock2	Ds	P0 thru P7	Q0	Q1	Q7	Q7
			(as enable)						
Parallel Load	L	х	х	Х	P0P7	P0	P1	P7	P7
Enable	Н	L	L	Х	х	P0	P1	P7	P7
Shift (with Ds)	н	Ŷ	L	Н	х	Н	P0	P6	P6
Shift (with Ds)	н	Ŷ	L	L	х	L	Н	P5	P5
Hold (Disable)	н	Ŷ	н	Х	х	L	Н	P5	P5

X = Don't Care $H = V_{IN(1)}$

 $\begin{array}{l} 1 & - \ v_{IN(1)} \\ 1 & = \ V_{IN(0)} \\ \uparrow = \mbox{Clock transition from } V_{IN(0)} \ \mbox{to } V_{IN(1)} \\ \mbox{P0 thru } \mbox{P7} = \mbox{Data present (and loaded into) parallel inputs} \\ \mbox{Q0 thru } \mbox{Q6} = \mbox{Internal flip-flop outputs} \end{array}$

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	–0.3V to V _{CC} + 0.3V
Operating Temperature Range	$-55^{\circ}C$ to $+125^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Absolute Maximum V _{CC}	18V
Power Dissipation	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3V to 15V
Lead Temperature	
(Soldering, 10 seconds)	260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
CMOS TO	CMOS						
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			N	
		$V_{CC} = 10V$	8.0			v	
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V	
		$V_{CC} = 10V$			2.0	v	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \ \mu A$	4.5			V	
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			v	
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = +10 \ \mu A$			0.5	V	
		$V_{CC} = 10V, I_{O} = +10 \ \mu A$		1.0		v	
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ	
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ	
I _{CC}	Supply Current	$V_{CC} = 15V$		0.05	300	μΑ	
CMOS TO	LPTTL INTERFACE						
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V	
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = -360 \ \mu A$	2.4			V	
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V	
OUTPUT I	DRIVE (See Family Characteristics	Data Sheet) (short circuit current)					
ISOURCE	Output Source Current	$V_{CC} = 5V$	1 75	-3.3		mA	
	(P-Channel)	$T_A = 25^{\circ}C, \ V_{OUT} = 0V$	-1.75				
ISOURCE	Output Source Current	$V_{CC} = 10V$	8.0	-15		mA	
	(P-Channel)	$T_A=25^\circ C, \ V_{OUT}=0V$	-6.0				
I _{SINK}	Output Sink Current	$V_{CC} = 5V$	4.75	3.6			
	(N-Channel)	$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	1.75			IIIA	
I _{SINK}	Output Sink Current	$V_{CC} = 10V$	0.0	16		m 4	
	(N-Channel)	$T_A = 25^{\circ}C$, $V_{OUT} = V_{CC}$	8.0			mA	

52
Q
Σ
Ģ
7
2
⋝

AC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd0} , t _{pd1}	Propagation Delay Time to a Logical "0" or	$V_{CC} = 5V$		200	400	ns	
	Logical "1" from Clock or Load to Q or \overline{Q}	$V_{CC} = 10V$		80	200		
t _{pd0} , t _{pd1}	Propagation Delay Time to a Logical "0" or	$V_{CC} = 5V$		200	400		
	Logical "1" from H to Q or Q	$V_{CC} = 10V$		80	200	ns	
t _S	Clock Inhibit Set-up Time	$V_{CC} = 5V$	150	75		<u> </u>	
		$V_{CC} = 10V$	60	30		ns	
t _S	Serial Input Set-up Time	$V_{CC} = 5V$	50	25			
		$V_{CC} = 10V$	30	15		115	
t _H	Serial Input Hold Time	$V_{CC} = 5V$	50	0		ns	
		$V_{CC} = 10V$	30	0			
t _S	Parallel Input Set-Up Time	$V_{CC} = 5V$	150	75		ne	
		$V_{CC} = 10V$	60	30		ns	
t _H	Parallel Input Hold Time	$V_{CC} = 5V$	50	0		ns	
		$V_{CC} = 10V$	30	0		115	
t _W	Minimum Clock Pulse Width	$V_{CC} = 5V$		70	200	-	
		$V_{CC} = 10V$		30	100	115	
t _W	Minimum Load Pulse Width	$V_{CC} = 5V$		85	180		
		$V_{CC} = 10V$		30	90	115	
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$	2.5	6			
		$V_{CC} = 10V$	5	12		IVII IZ	
t _r , t _f	Maximum Clock Rise and Fall Time	$V_{CC} = 5V$	10				
		$V_{CC} = 10V$	5			μs	
CIN	Input Capacitance	(Note 3)		5		pF	
C _{PD}	Power Dissipation Capacitance	(Note 4)		65		pF	

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note AN-90.

Switching Time Waveform

