MM74C164 8-Bit Parallel-Out Serial Shift Register

FAIRCHILD

SEMICONDUCTOR

MM74C164 8-Bit Parallel-Out Serial Shift Register

General Description

The MM74C164 shift registers are a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. These 8-bit shift registers have gated serial inputs and clear. Each register bit is a D-type master/slave flip-flop. A high-level input enables the other input which will then determine the state of the flip-flop.

Data is serially shifted in and out of the 8-bit register during the positive going transition of clock pulse. Clear is independent of the clock and accomplished by a low level at the clear input. All inputs are protected against electrostatic effects.

Features

- Supply voltage range: 3V to 15V
- Tenth power TTL compatible: drive 2 LPTTL loads
- High noise immunity: 0.45 V_{CC} (typ.)
- Low power: 50 nW (typ.)
- Medium speed operation: 0.8 MHz (typ.) with 10V supply

Applications

- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering
- Computers

Ordering Code:

a.

13

14

Order Number	Package Number	Package Description
MM74C164M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C164N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

CLEAR

CLOCK

Connection Diagram

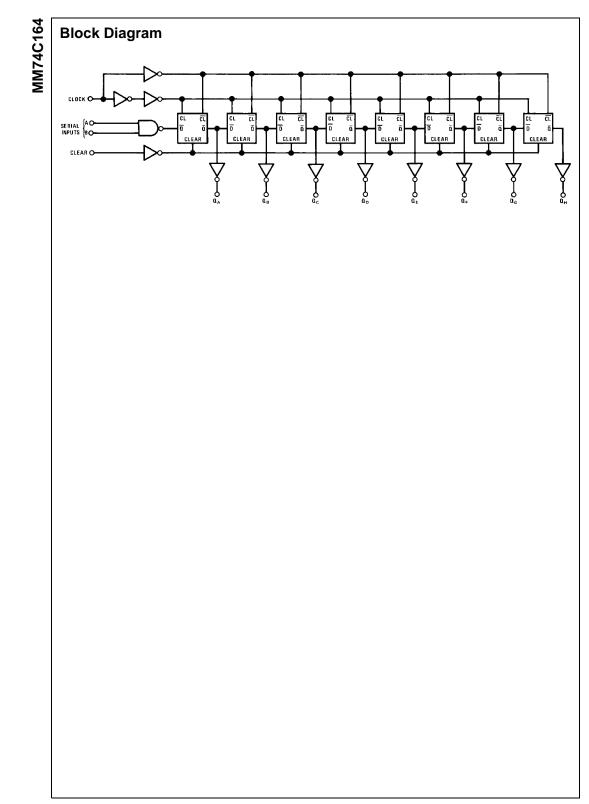
Q_G

12

Truth Table

Serial Inputs A and B

-	Inputs t _n	
A	В	t _{n+1} Q _A
1	1	1
0	1	0
1	0	0
0	0	0


Q,

11

Q E

10

© 2004 Fairchild Semiconductor Corporation DS005896

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	–0.3V to V _{CC} + 0.3V
Operating Temperature Range	$-55^{\circ}C$ to $+125^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Absolute Maximum V _{CC}	18V
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3V to 15V
Lead Temperature	
(soldering, 10 seconds)	260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	смоs			•		•
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	8.0			v
VIN(0)	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2.0	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = +10 \ \mu A$			0.5	v
		$V_{CC} = 10V, I_{O} = +10 \ \mu A$			1.0	v
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μA
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
I _{CC}	Supply Current	$V_{CC} = 15V$		0.05	300	μA
CMOS TO	LPTTL INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_O = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V
	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				
ISOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$	-1.75			mA
		$T_A = 25^{\circ}C, V_{OUT} = 0V$	-1.75			
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$	-8.0			mA
		$T_A = 25^{\circ}C, \ V_{OUT} = 0V$				
I _{SINK}	Output Sink Current	$V_{CC} = 5V, V_{IN(1)} = 5V$	1.75			mA
		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$				
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$	8.0			mA
		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$				

MM74C164

$I_A = 25$	C, $C_L = 50 \text{ pF}$, unless otherwise noted			
Symbol	Parameter	Conditions	Min	1
t _{pd1}	Propagation Delay Time to a Logical "0" or a	$V_{CC} = 5V$		
	Logical "1" from Clock to Q	$V_{CC} = 10V$		
t _{pd0}	Propagation Delay Time to a Logical "0" from	$V_{CC} = 5V$		
	Clear to Q	$V_{CC} = 10V$		
t _S	Time Prior to Clock Pulse that Data	$V_{CC} = 5V$	200	
	Must be Present	$V_{CC} = 10V$	80	
t _H	Time After Clock Pulse that	$V_{CC} = 5V$	0	
	Data Must be Held	$V_{CC} = 10V$	0	
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$	2.0	
		$V_{CC} = 10V$	5.5	
t _W	Minimum Clear Pulse Width	$V_{CC} = 5V$		
		$V_{CC} = 10V$		
t _r , t _f	Maximum Clock Rise and Fall Time	$V_{CC} = 5V$	15	

C_{PD} Power Dissipation Capacitance (Note 4)

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note AN-90.

 $V_{CC} = 10V$

Any Input (Note 3)

Max

310

120 380

150

250

90

5

5

140

Units

ns

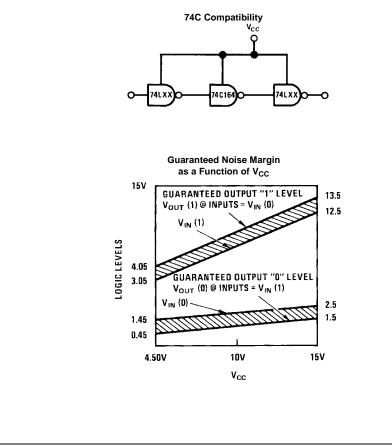
ns

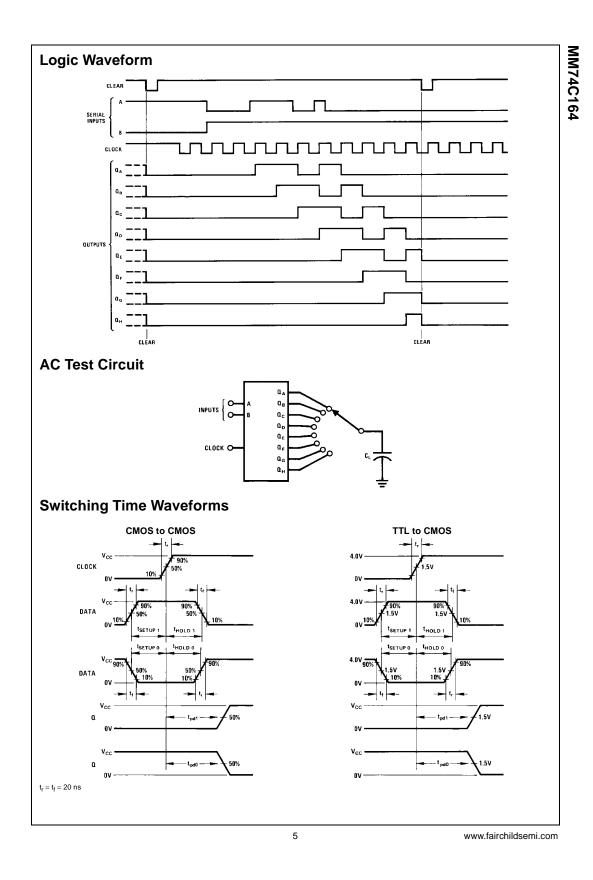
ns ns

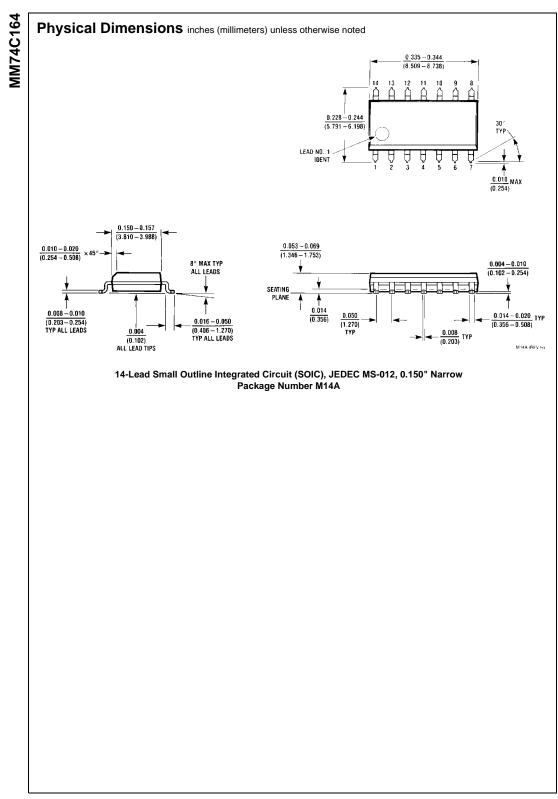
MHz

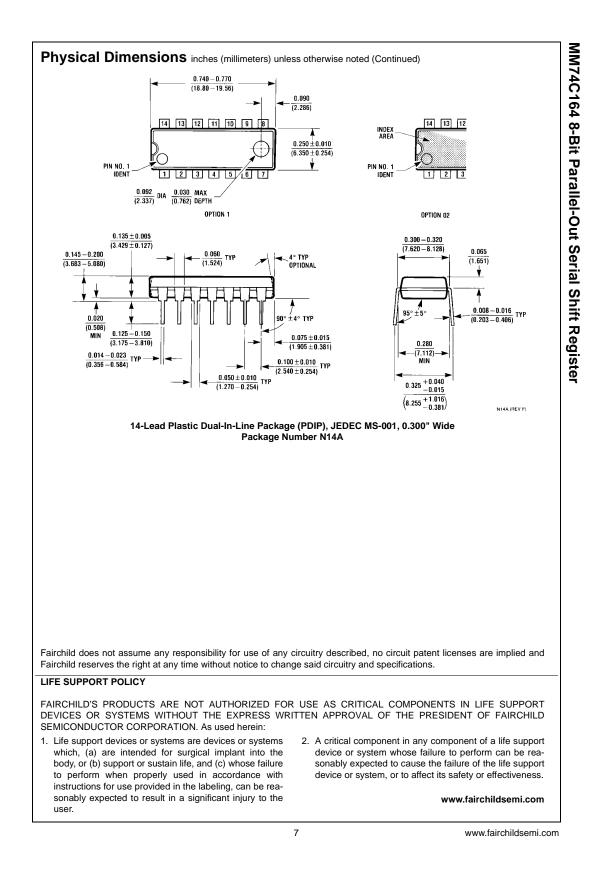
ns

μs


pF


pF


Typical Applications


Input Capacitance

 C_{IN}

