Revised April 2000

August 1986

FAIRCHILD

SEMICONDUCTOR

DM74LS221 Dual Non-Retriggerable One-Shot with Clear and Complementary Outputs

General Description

The DM74LS221 is a dual monostable multivibrator with Schmitt-trigger input. Each device has three inputs permitting the choice of either leading-edge or trailing-edge triggering. Pin (A) is an active-LOW trigger transition input and pin (B) is an active-HIGH transition Schmitt-trigger input that allows jitter free triggering for inputs with transition rates as slow as 1 volt/second. This provides the input with excellent noise immunity. Additionally an internal latching circuit at the input stage also provides a high immunity to V_{CC} noise. The clear (CLR) input can terminate the output pulse at a predetermined time independent of the timing components. This (CLR) input also serves as a trigger input when it is pulsed with a low level pulse transition (¬__). To obtain the best and trouble free operation from this device please read operating rules as well as the Fairchild Semiconductor one-shot application notes carefully and observe recommendations.

Features

- A dual, highly stable one-shot
- Compensated for V_{CC} and temperature variations
- Pin-out identical to DM74LS123 (Note 1)
- Output pulse width range from 30 ns to 70 seconds ■ Hysteresis provided at (B) input for added noise
- immunity
- Direct reset terminates output pulse
- Triggerable from CLEAR input
- DTL, TTL compatible
- Input clamp diodes

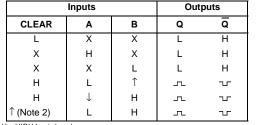
Note 1: The pin-out is identical to DM74LS123 but, functionally it is not; refer to Operating Rules #10 in this datasheet.

Ordering Code:

Order Number	Package Number	Package Description			
DM74LS221M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow			
DM74LS221SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
DM74LS221N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide			
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.			

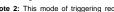
Ceve 1

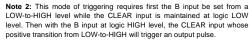
01

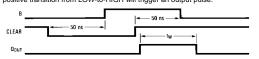

12

ñ2

12


CLR 2


Function Table



H = HIGH Logic Leve L = LOW Logic Level

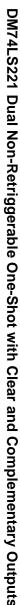
- X = Can Be Either LOW or HIGH
- = Positive Going Transition
- ↓ = Negative Going Transition ___ = A Positive Pulse
- -ur = A Negative Pulse

© 2000 Fairchild Semiconductor Corporation DS006409

ōı

۵z

CEXT 2


REXT/

CEXT 2

GND

CLR 1

www.fairchildsemi.com

Functional Description

The basic output pulse width is determined by selection of an external resistor (R_X) and capacitor (C_X). Once triggered, the basic pulse width is independent of further input transitions and is a function of the timing components, or it

Operating Rules

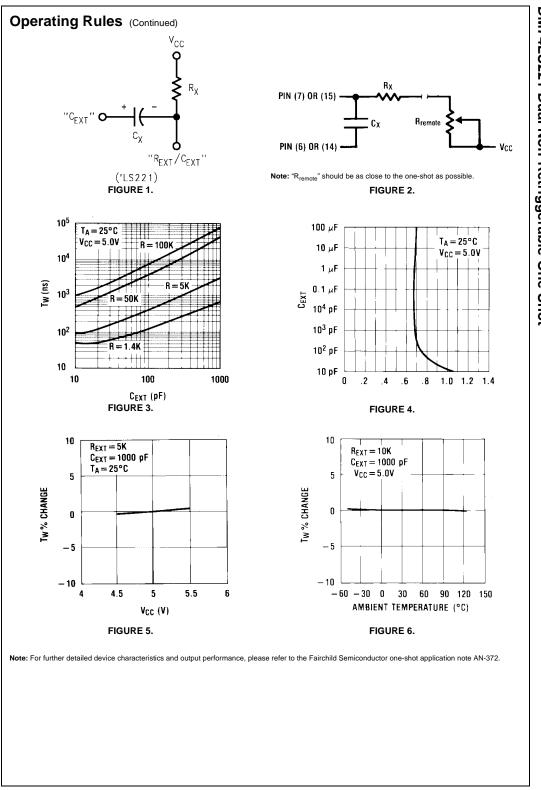
- 1. An external resistor (R_X) and an external capacitor (C_X) are required for proper operation. The value of C_X may vary from 0 to approximately 1000 μ F. For small time constants high-grade mica, glass, polypropylene, polycarbonate, or polystyrene material capacitor may be used. For large time constants use tantalum or special aluminum capacitors. If timing capacitor has leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
- 2. When an electrolytic capacitor is used for C_X a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current. This switching diode is not needed for the DM74LS221 one-shot and should not be used.

Furthermore, if a polarized timing capacitor is used on the DM74LS221, the positive side of the capacitor should be connected to the " C_{EXT} " pin (Figure 1).

3. For $C_X >>$ 1000 pF, the output pulse width (t_W) is defined as follows:

 $t_W = KR_X C_X$

where $[R_X \text{ is in } k\Omega]$


- [C_X is in pF]
- [t_W is in ns]
- $K\approx Ln2=0.70$
- 4. The multiplicative factor K is plotted as a function of C_X for design considerations: (See Figure 4).
- 5. For $C_X < 1000 \text{ pF}$ see Figure 3 for t_W vs. C_X family curves with R_X as a parameter.
- 6. To obtain variable pulse widths by remote trimming, the following circuit is recommended: (See Figure 2).
- Output pulse width versus V_{CC} and temperatures: Figure 5 depicts the relationship between pulse width variation versus V_{CC}. Figure 6 depicts pulse width variation versus temperatures.

may be reduced or terminated by use of the active low CLEAR input. Stable output pulse width ranging from 30 ns to 70 seconds is readily obtainable.

- 8. Duty cycle is defined as $t_W/T \times 100$ in percentage, if it goes above 50% the output pulse width will become shorter. If the duty cycle varies between LOW and HIGH values, this causes output pulse width to vary, or jitter (a function of the R_{EXT} only). To reduce jitter, R_{EXT} should be as large as possible, for example, with $R_{EXT} = 100$ k jitter is not appreciable until the duty cycle approaches 90%.
- 9. Under any operating condition C_X and R_X must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I-R and Ldi/dt voltage developed along their connecting paths. If the lead length from C_X to pins (6) and (7) or pins (14) and (15) is greater than 3 cm, for example, the output pulse width might be quite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_X in each cycle of its operation so that the output pulse width will be accurate.
- 10. Although the DM74LS221's pin-out is identical to the DM74LS123 it should be remembered that they are not functionally identical. The DM74LS123 is a retriggerable device such that the output is dependent upon the input transitions when its output "Q" is at the "High" state. Furthermore, it is recommended for the DM74LS123 to externally ground the C_{EXT} pin for improved system performance. However, this pin on the DM74LS221 is not an internal connection to the device ground. Hence, if substitution of an DM74LS123 onto an DM74LS123 design layout where the C_{EXT} pin is wired to the ground, the device will not function.
- 11. V_{CC} and ground wiring should conform to good high-frequency standards and practices so that switching transients on the V_{CC} and ground return leads do not cause interaction between one-shots. A 0.01 μF to 0.10 μF bypass capacitor (disk ceramic or monolithic type) from V_{CC} to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the V_{CC} -pin as space permits.

www.fairchildsemi.com

2

DM74LS221 Dual Non-Retriggerable One-Shot

3

www.fairchildsemi.com

Absolute Maximum Ratings(Note 3)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage		5	5.25	V
V _{T+}	Positive-Going Input Threshold Voltage at the A Input ($V_{CC} = Min$)		1	2	V
			1		
V _{T-}	Negative-Going Input Threshold Voltage at the A Input ($V_{CC} = Min$)		1		V
			1		
V _{T+}	Positive-Going Input Threshold Voltage		1	2	V
	at the B Input (V _{CC} = Min)		1	2	v
V _{T-}	Negative-Going Input Threshold Voltage		0.9		v
	at the B Input (V _{CC} = Min)		0.9		v
он	HIGH Level Output Current			-0.4	mA
OL	LOW Level Output Current			8	mA
W	Pulse Width Data	a 40			ns
	(Note 4) Clea	ar 40		1	115
REL	Clear Release Time (Note 4)	15			ns
dV	Rate of Rise or Fall of				v
dV dt	Schmitt Input (B) (Note 4)			1	<u>V</u> s
dV	Rate of Rise or Fall of				v
dt	Logic Input (A) (Note 4)			1	μs
R _{EXT}	External Timing Resistor (Note 4)			100	kΩ
C _{EXT}	External Timing Capacitance (Note 4)	0		1000	μF
DC	Duty Cycle R _T =	= 2 kΩ		50	%
	(Note 4) R _T =	R _{EXT} (Max)		60	70
T _A	Free Air Operating Temperature	0		70	°C

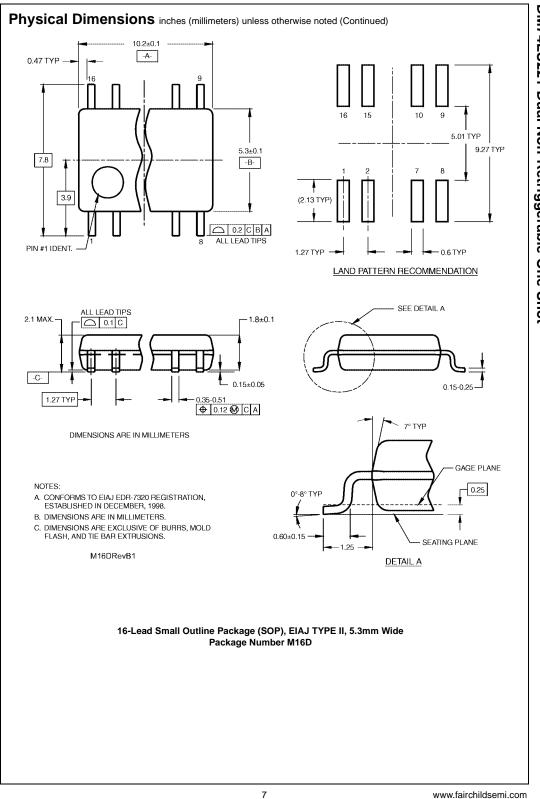
Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

www.fairchildsemi.com

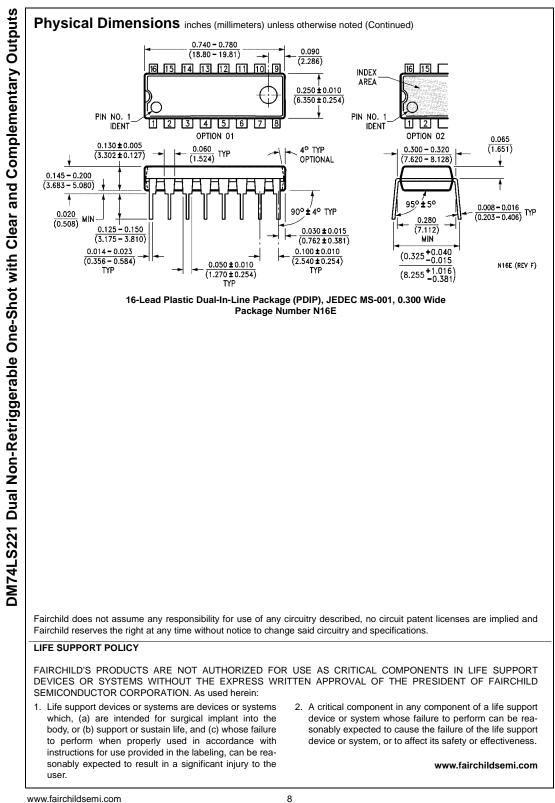

over recorr	nmended operating free air temperature	range (unless other	wise noted)				
Symbol	Parameter	Conditions $V_{CC} = Min, I_I = -18 \text{ mA}$		Min	Typ (Note 5)	Max	Units
VI	Input Clamp Voltage					-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} =$	Min	2.7	3.4		v
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max			0.35	0.5	v
	Output Voltage	$\label{eq:VIL} \begin{split} V_{IL} &= Max, \ V_{IH} = Min \\ V_{CC} &= Min, \ I_{OL} = 4 \ mA \end{split}$					
						0.4	
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
IIH	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μA
IL	LOW Level	V _{CC} = Max	A1, A2			-0.4	·
	Input Current VI =	$V_I = 0.4V$	В			-0.8	mA
			Clear			-0.8	1
I _{OS}	Short Circuit	V _{CC} = Max				100	
	Output Current	(Note 6)		-20		-100	mA
сс	Supply Current V _{CC} = Max	Quiescent		4.7	11		
			Triggered		19	27	mA

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $V_{CC}=5V$ and $T_{A}=25^{\circ}C$


Propagation Delay Time LOW-to-HIGH Level Output Propagation Delay Time LOW-to-HIGH Level Output Propagation Delay Time HIGH-to-LOW Level Output Propagation Delay Time HIGH-to-LOW Level Output Propagation Delay Time	A1, A2 to Q B to Q A1, A2 to Q B to Q	$C_{EXT} = 80 \text{ pF}$ $R_{EXT} = 2 \text{ k}\Omega$ $C_L = 15 \text{ pF}$ $R_L = 2 \text{ k}\Omega$		70 55	ns ns
Propagation Delay Time LOW-to-HIGH Level Output Propagation Delay Time HIGH-to-LOW Level Output Propagation Delay Time HIGH-to-LOW Level Output	B to Q A1, A2 to Q B	C _L = 15 pF		55	
LOW-to-HIGH Level Output Propagation Delay Time HIGH-to-LOW Level Output Propagation Delay Time HIGH-to-LOW Level Output	to Q A1, A2 to Q B				ns
Propagation Delay Time HIGH-to-LOW Level Output Propagation Delay Time HIGH-to-LOW Level Output	A1, A2 to Q B	$R_L = 2 k\Omega$			ns
HIGH-to-LOW Level Output Propagation Delay Time HIGH-to-LOW Level Output	to Q B	-			
Propagation Delay Time HIGH-to-LOW Level Output	В	_			
HIGH-to-LOW Level Output				80	ns
	to Q			05	
Propagation Delay Time				65	ns
	Clear to			05	
LOW-to-HIGH Level Output	Q			65	ns
Propagation Delay Time	Clear			55	
HIGH-to-LOW Level Output	to Q			55	ns
Output Pulse	A1, A2	C _{EXT} = 0			
Width Using Zero	to Q, Q	$R_{EXT} = 2 k\Omega$	20	70	ns
Timing Capacitance		$R_L = 2 k\Omega$			
		C _L = 15 pF			
Output Pulse	A1, A2	C _{EXT} = 100 pF			
Width Using External	to Q, Q	$R_{EXT} = 10 \ k\Omega$	600	750	ns
Timing Resistor		$R_L = 2 k\Omega$			
		C _L = 15 pF			
		C _{EXT} = 1 μF			
		$R_{EXT} = 10 \ k\Omega$			
		$R_{L} = 2 k\Omega$	0	7.5	ms
		$C_L = 15 \text{ pF}$			
		C _{EXT} = 80 pF			
			70	150	ns
		C ₁ = 15 pF			
	Dutput Pulse Vidth Using Zero Tirning Capacitance Dutput Pulse Vidth Using External	Dutput Pulse A1, A2 Vidth Using Zero to Q, Q iming Capacitance Dutput Pulse Dutput Pulse A1, A2 Vidth Using External to Q, Q	$\begin{array}{c c} \mbox{Dutput Pulse} & A1, A2 & C_{EXT} = 0 \\ \mbox{Vidth Using Zero} & to Q, \overline{Q} & R_{EXT} = 2 \ k\Omega \\ \mbox{Timing Capacitance} & & & & \\ \mbox{Timing Capacitance} & & & & \\ \mbox{Dutput Pulse} & A1, A2 & C_{EXT} = 100 \ pF \\ \mbox{Vidth Using External} & to Q, \overline{Q} & R_{EXT} = 10 \ k\Omega \\ \mbox{Timing Resistor} & & & \\ \mbox{Timing Resistor} & & & \\ \mbox{L} = 2 \ k\Omega \\ & & & \\ \mbox{C}_L = 15 \ pF \\ \hline \mbox{C}_{EXT} = 10 \ k\Omega \\ & & \\ \mbox{C}_L = 15 \ pF \\ \hline \mbox{C}_{EXT} = 10 \ k\Omega \\ & & \\ \mbox{R}_L = 2 \ k\Omega \\ \hline \mbox{R}_L = 2 \ k\Omega \end{array}$	$\begin{array}{c c} \mbox{Dutput Pulse} & A1, A2 & C_{EXT} = 0 & & \\ \mbox{Vidth Using Zero} & to Q, \overline{Q} & R_{EXT} = 2 k\Omega & & \\ \mbox{Timing Capacitance} & A1, A2 & C_{L} = 15 \mbox{ pF} & & \\ \mbox{Dutput Pulse} & A1, A2 & C_{EXT} = 100 \mbox{ pF} & & \\ \mbox{Vidth Using External} & to Q, \overline{Q} & R_{EXT} = 10 \ k\Omega & & \\ \mbox{Timing Resistor} & C_{L} = 15 \ \mbox{ pF} & & \\ \mbox{C}_{L} = 15 \ \mbox{ pF} & & \\ \mbox{C}_{L} = 15 \ \mbox{ pF} & & \\ \mbox{R}_{L} = 2 \ \mbox{ k}\Omega & & \\ \mbox{C}_{L} = 15 \ \mbox{ pF} & & \\ \mbox{C}_{L} = 15 \ \mbox{ pF} & & \\ \mbox{C}_{EXT} = 10 \ \mbox{ k}\Omega & & \\ \mbox{C}_{L} = 15 \ \mbox{ pF} & & \\ \mbox{R}_{L} = 2 \ \mbox{ k}\Omega & & \\ \mbox{C}_{L} = 15 \ \mbox{ pF} & & \\ \mbox{R}_{L} = 2 \ \mbox{ k}\Omega & & \\ \mbox{R}_{L} =$	$\begin{array}{c c c c c c c } & to Q & & & & & & & & & & & & & & & & & & $

Downloaded from $\underline{Elcodis.com}$ electronic components distributor


www.fairchildsemi.com

6

7

DM74LS221 Dual Non-Retriggerable One-Shot

